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Mitochondrial dysfunction has been suggested to be the key factor in the development and progression of cardiac hypertrophy. The
onset of mitochondrial dysfunction and the mechanisms underlying the development of cardiac hypertrophy (CH) are
incompletely understood. The present study is based on the use of multiple bioinformatics analyses for the organization and
analysis of scRNA-seq and microarray datasets from a transverse aortic constriction (TAC) model to examine the potential role
of mitochondrial dysfunction in the pathophysiology of CH. The results showed that NADH:ubiquinone oxidoreductase core
subunit S1- (Ndufs1-) dependent mitochondrial dysfunction plays a key role in pressure overload-induced CH. Furthermore,
in vivo animal studies using a TAC mouse model of CH showed that Ndufs1 expression was significantly downregulated in
hypertrophic heart tissue compared to that in normal controls. In an in vitro model of angiotensin II- (Ang II-) induced
cardiomyocyte hypertrophy, Ang II treatment significantly downregulated the expression of Ndufs1 in cardiomyocytes. In vitro
mechanistic studies showed that Ndufs1 knockdown induced CH; decreased the mitochondrial DNA content, mitochondrial
membrane potential (MMP), and mitochondrial mass; and increased the production of mitochondrial reactive oxygen species
(ROS) in cardiomyocytes. On the other hand, Ang II treatment upregulated the expression levels of atrial natriuretic peptide,
brain natriuretic peptide, and myosin heavy chain beta; decreased the mitochondrial DNA content, MMP, and mitochondrial
mass; and increased mitochondrial ROS production in cardiomyocytes. The Ang II-mediated effects were significantly
attenuated by overexpression of Ndufs1 in rat cardiomyocytes. In conclusion, our results demonstrate downregulation of
Ndufs1 in hypertrophic heart tissue, and the results of mechanistic studies suggest that Ndufs1 deficiency may cause
mitochondrial dysfunction in cardiomyocytes, which may be associated with the development and progression of CH.

1. Introduction

Cardiac hypertrophy (CH) is a pathophysiological response
characterized by increased thickness of the ventricular wall,
greater myocardial cell volume, and enhanced myocardial

contractility during the early stage of overload pressure [1].
Primarily, CH is the compensatory response for preservation
of cardiac function; however, persistent CH is often associ-
ated with disturbed energy metabolism, deteriorated cardiac
function, and interstitial fibrosis, which will eventually
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progress into heart failure [2, 3]. Heart failure caused by CH
has been shown to be an independent risk factor for various
cardiovascular diseases [4, 5]. To date, the pathophysiology
underlying the progression of myocardial hypertrophy
remains elusive. Thus, determination of potential molecular
mechanisms is necessary for identification of novel and effec-
tive therapies to attenuate myocardial hypertrophy.

The contraction and relaxation of cardiomyocytes
require a sufficient energy supply to meet the workload
demand, and mitochondria are important primary organ-
elles for energy production in cardiomyocytes [6–8]. Mito-
chondrial dysfunction was shown to be closely associated
with the development of heart failure [9–11]. Under patho-
logical conditions of CH, the activities of ATP synthase and
mitochondrial oxidative phosphorylation complex are atten-
uated, which results in reduced production of ATP [12, 13].
Moreover, attenuated mitochondrial dynamics, reduced
mitochondrial volume, and abnormal mitochondrial mor-
phology were detected in cardiomyocytes in CH [14, 15].
Mitochondrial dysfunction was shown to increase the pro-
duction of reactive oxygen species (ROS) via impaired elec-
tron transport chains, which can lead to increased oxidative
stress and decreased energy production in cardiomyocytes
[9, 16, 17]. Thus, restoration of impaired mitochondrial
functions will provide novel strategies to attenuate the pro-
gression of CH. NADH:ubiquinone oxidoreductase core
subunit S1 (Ndufs1) is one of the core subunits of mitochon-
drial complex I that regulates mitochondrial oxidative phos-
phorylation and ROS production [18–20]. However, the
detailed role of Ndufs1 in the pathophysiology of CH is
largely unknown.

In the present study, we initially demonstrated the dereg-
ulation of Ndufs1 in heart tissue of mice with CH by analyz-
ing the GSE95140 scRNA-seq dataset. The expression of
Ndusf1 was confirmed in heart tissue in a mouse model of
CH. Furthermore, in vitro studies determined the molecular
mechanisms of Ndusf1-mediated CH. The present study
may provide novel insight into the role of Ndusf1 in the path-
ophysiology of CH.

2. Materials and Methods

2.1. Analysis of scRNA-seq and Microarray Datasets. RNA
sequencing data for single cardiomyocytes were downloaded
from the GSE95140 dataset of the GEO database [21]. This
dataset is based on the GPL17021 platform and contains
396 single-cardiomyocyte transcriptomes of mice after trans-
verse aortic constriction (TAC) or sham operation assayed
on day 3 (D3), week 1 (W1), week 2 (W2), week 4 (W4),
and week 8 (W8). The expression in each cell was detected
by using the “DropletUtils” package. Gene expression in
the cells was calculated using the “QC-Metrics” function in
the “scater” package [22]. Ribosomal genes ≥ 10% and
mitochondrial genes ≤ 5% were used for subsequent filtering.
After filtering, the expression matrix of each sample was
normalized by using the “NormalizeData” function of the
“Seurat” package (version 3.0) [23]. The genes with the most
pronounced differences between the cells were selected using
the “FindVariableFeatures” function of the “Seurat” package.

The “ScaleData” function was used to convert the expression
data to linear scale. Then, principal component analysis
(PCA) was performed using the “RunPCA” function of the
“Seurat” package. Principal components (PCs) with standard
deviations > 70% were selected. “RunUMAP” of the “Seurat”
package was employed to perform UMAP dimensionality
reduction analysis. The “FindAllMarkers” function of the
“Seurat” package was used to define the criteria for identifica-
tion of differentially expressed genes (DEGs) as follows: cell
population expression ratio > 0:25, log ∣ fold change ðFCÞ ∣ >
0:25, and p ≤ 0:05.

The differentially expressed genes were validated using
the GSE24454 microarray dataset. In this dataset, mice were
sacrificed 4 weeks after aortic banding (AB) or sham proce-
dure (sAB) and subsequent debanding, including banding
and subsequent debanding (DB3) or sham procedure and
subsequent debanding (sDB3); the data were obtained at var-
ious time points up to day 3 [24]. Thus, the CEL raw data and
corresponding annotation platform file were downloaded
and preprocessed by background adjustment, normalization,
probe summarization, and log2 transformation of the expres-
sion values using the “Affy” package in R.

2.2. Gene Ontology (GO) Term Enrichment Analysis. GO
enrichment analysis was performed using the “clusterProfi-
ler” package in R [25]. Notably, the major GO terms of
DE genes in biological processes, molecular functions,
cellular components, and pathways were evaluated. The
Benjamini-Hochberg method was used to adjust the original
p values. The GO terms corresponding to the DE genes were
enriched with the threshold of correction p value < 0.05.
Additionally, the enrichment analyses of the biological pro-
cesses of the hub genes were carried out with the ToppGene
tool (https://toppgene.cchmc.org/), which is a web-based
analytic tool used for functional enrichment analysis of the
gene lists [26]. Additionally, the cellular compartment-
specific protein-protein interaction network was constructed
by the ComPPI database (https://comppi.linkgroup.hu/) [27].

2.3. Gene Set Enrichment Analysis (GSEA). GSEA was used to
assess the Kyoto Encyclopedia of Genes and Genomes
(KEGG) maps involved in TCA-induced CH development
based on time series analysis [28]. Initially, the Kolmogorov-
Smirnov method was used to determine the enrichment score
(ES); then, the statistical significance of ES was assessed using
the empirical phenotype replacement test procedure. The
enrichment score (NES) was derived by normalization of
ES for each gene set. The false discovery rate (FDR) of each
NES was determined.

2.4. Gene Set Variation Analysis (GSVA). The GSVA package
of R was used to analyze the activation of the gene sets by
unsupervised and nonparametric scoring calculations [29].
The hub pathway-related scores were calculated by the
GSVAmethod in each cell based on the transcription expres-
sion matrix after assigning various groups in the TACmodel.
Significant differences in GSVA scores between various
groups were assessed by one-way ANOVA.
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2.5. Animals and Surgical Intervention. All animal experi-
ments were approved by the Animal Ethics Committee of
Sun Yat-sen University (SYSU-IACUC-2020-000469). Six-
teen male C57BL/6 mice (8 weeks old) were purchased from
Sun Yat-sen University, and the mice were randomly divided
into two groups, including the sham (n = 8) and TAC groups
(n = 8). Before operation, the animals were anaesthetized by
intraperitoneal injection with 100mg/kg ketamine + 5mg/
kg xylazine. After the animals reached general anesthesia, a
small incision was made in the second intercostal space at
the left upper sternal border to open the chest cavity, and
the animals were subjected to respiratory ventilation. After
exposure of the aortic arch, TAC was performed by tying a
7-0 nylon suture ligature against a 27-gauge needle between
the left common carotid artery and the brachiocephalic
artery. Then, the needle was quickly retracted to complete
the partial constriction procedure. Sham-operated mice were
subjected to the same surgical procedures without transverse
aortic constriction. The chest was closed with 5-0 nonabsorb-
able sutures. Postoperatively, the animals were subcutane-
ously injected with 1.0mg/kg buprenorphine to relieve
postoperative pain every 12 h for 3 consecutive days. The
mice were closely monitored every day for body weight and
any signs of labored breathing or postoperative pain.

2.6. Echocardiography. Four weeks after ascending TAC
operation, the animals from the sham and TAC groups were
subjected to echocardiography examination. Briefly, the mice
were anaesthetized by 3% isoflurane using an anesthesia
machine. The hair on the left chest was carefully removed,
and cardiac geometry was determined from the parasternal
long axis view with a probe frequency of 30MHz using a
small animal color ultrasonic diagnostic apparatus (Vevo
2100, VisualSonics, Toronto, Canada). The images of the left
ventricular area were captured using M-type echocardiogra-
phy. The interventricular septum (IVS) thickness and left
ventricular posterior wall (LVPW) thickness were measured.

2.7. Evaluation of Cardiac Index. After assessment by echo-
cardiography, the animals were sacrificed by an overdose of
5% isoflurane. The heart was immediately dissected and
rinsed with ice-cold saline to remove blood clots. After drain-
ing the heart tissue on sterile paper, the whole weight of the
heart was measured using a digital balance. The left ventric-
ular weight (LVW) was determined by removing the atrium
and right ventricle from the whole heart. The heart mass
index (HMI) and left ventricular mass index (LVMI) were
calculated as follows: HMI = LVW/body weight; LVMI =
LVW/body weight. The length of the medial malleolar dis-
tance on the right hindlimb to the tibial plateau edge was
defined as the tibia length (TL). The ratios of LVW to TL
were used as an index of cardiac hypertrophy.

2.8. Hematoxylin and Eosin (H&E) Staining. After animals
were sacrificed by an overdose of 5% isoflurane, a part of
the heart tissue was fixed with 4% paraformaldehyde and
embedded in paraffin. The paraffin-embedded heart tissue
was sectioned into 5μm sections and stained by hematoxylin

and eosin. The stained sections were examined under a light
microscope (Nikon, Tokyo, Japan).

2.9. Transmission Electron Microscopy (TEM). The mito-
chondria in the heart tissue were evaluated by TEM. Briefly,
the heart tissue was sectioned into 1mm3 pieces, which were
fixed with 4% glutaraldehyde and 1% osmic acid. Then, the
tissue was dehydrated with acetone, embedded in Epon
821, and cut into 70 nm sections. Then, the sections were
double stained with uranyl acetate and lead citrate. The mito-
chondria were examined using TEM (JEM-1230, Tokyo,
Japan). Mitochondrial volume and mitochondrial number
were evaluated based on the TEM images.

2.10. Rat Cardiomyocyte Culture. Neonatal Sprague-Dawley
rats (1-2 days old) were sacrificed by cervical dislocation,
and the heart was immediately dissected under sterile condi-
tions. Ventricular tissue was isolated from the atria and
digested in Hanks balanced salt solution containing 0.25%
trypsin (Sigma-Aldrich, St. Louis, USA) at 37°C for 5min,
and the digestion cycle was repeated 10 times. After diges-
tion, the supernatants were pooled and mixed with an equal
volume of DMEM supplemented with 10% fetal bovine
serum (FBS; Thermo Fisher Scientific, Waltham, USA). After
centrifugation at 1,000 × g for 5min, the supernatant was
discarded, and the cell pellet was resuspended in DMEM sup-
plemented with 10% FBS. After incubation for 4 h at 37°C in
a humidified 5% CO2 incubator, cardiomyocytes were col-
lected from the medium. Cardiac fibroblasts adhered to the
walls of the dishes. Cardiomyocytes were cultured in 6-well
plates for 24 h and in fresh DMEM supplemented with 10%
FBS for 2-3 days before in vitro assays.

2.11. Construction of the Ndusf1 siRNA and Overexpression
Vectors and Ang II Treatment. The siRNAs targeting Ndusf1
(si-Ndusf1) and the corresponding scrambled siRNAs were
designed and synthesized by RiboBio (Guangzhou, China).
The vector for Ndusf1 overexpression was constructed by
cloning the full-length Ndusf1 sequence into the pcDNA3.1
vector, and the empty pcDNA3.1 vector was used as the cor-
responding negative control. All plasmids were purchased
from RiboBio. For transfections, rat cardiomyocytes were
seeded in 12-well plates and cultured for 24 h; then, cardio-
myocytes were transfected with various plasmids or siRNAs
by using Lipofectamine 2000 reagent (Invitrogen, Carlsbad,
USA) according to the manufacturer’s protocol. Cardio-
myocytes were collected for the experiments 24 h after the
transfection. For angiotensin II (Ang II; Sigma-Aldrich)
treatment, cardiomyocytes were seeded in 12-well plates
and cultured for 24h; then, cardiomyocytes were treated
with 100nM Ang II for 24 h and harvested for subsequent
experiments.

2.12. Quantitative Real-Time PCR (qRT-PCR). Total RNA
from cardiomyocytes and heart tissue was extracted using
TRIzol reagent (Invitrogen, Carlsbad, USA) according to
the manufacturer’s protocol. RNA was reverse transcribed
using a PrimerScript RT kit with gDNA eraser (Takara,
Dalian, USA). Real-time PCR was performed using a SYBR
Premix Ex Taq II kit (Takara) on an ABI7900 instrument
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(Applied Biosystems, Foster City, USA). The parameters for
thermal cycling were as follows: 95°C for 15 s, 55°C for 15 s,
and 72°C for 15 s for 40 cycles. The relative mRNA expres-
sion levels were determined by the comparative Ct method,
and β-actin was used as the internal control.

2.13. Western Blot Assay. Proteins from cardiomyocytes or
heart tissue were isolated using RIPA buffer supplemented
with proteinase inhibitors (Sigma-Aldrich). The concentra-
tions of the protein samples were measured by the BCA
method. Equal amounts of proteins (50μg) were resolved
by gel electrophoresis and transferred to a polyvinylidene
difluoride (PVDF) membrane. After blocking with 5% nonfat
milk at room temperature for 1 h, the membranes were incu-
bated with primary antibodies against NDUFS1 (1 : 1,000;
CST, Danvers, USA), atrial natriuretic peptide (ANP;
1 : 1,000; CST), brain natriuretic peptide (BNP; 1 : 1,000;
CST), myosin heavy chain beta (β-MHC; 1 : 1,000; CST),
and β-actin (1 : 2,000; CST) at 4°C overnight. Then, the mem-
brane was incubated with horseradish peroxidase-conjugated
secondary antibodies (1 : 2,000; CST) for 2 h at room temper-
ature. The immunoreactive bands were analyzed by using a
chemiluminescence system (Bio-Rad).

2.14. Assessment of mtDNA Copy Number. The
mtDNA/nDNA ratio was evaluated by using the qRT-PCR
assay as described previously. The primers were designed
to target mtDNA (NADH dehydrogenase: 1,5′-AAACGC
CCTAACAACCAT-3′ and 5′-GGATAGGATGC TCGG
ATT-3′) and nDNA (β-actin: 5′-ATGGTGGGAATGGG
TCAGAA-3′ and 5′-CTTTTCACG GTTGGCCTTAG-3′).
The relative mtDNA copy number was calculated by nor-
malizing the mtDNA content to the expression of the β-
actin gene.

2.15. Assessment of Mitochondrial Membrane Potential
(MMP). MMP of cardiomyocytes was evaluated using a JC-
1 mitochondria staining kit (Thermo Fisher Scientific).
Briefly, cardiomyocytes (5 × 103 cells/well) were plated in
96-well plates, treated for 24, and incubated with JC-1 fluo-
rescent dye for 20min at room temperature in the dark.
The fluorescent staining by JC-1 was evaluated by fluores-
cence microscopy. JC-1 monomers were imaged at excitation
and emission wavelengths of 490nm and 530 nm, respec-
tively; JC-1 aggregates were imaged at excitation and emis-
sion wavelengths of 525nm and 590 nm, respectively.

2.16. Detection of Mitochondrial ROS. The production of
mitochondrial ROS was determined by using a MitoSOX
fluorescent staining kit (Thermo Fisher Scientific, Waltham,
USA) according to the manufacturer’s protocol. Confocal
laser scanning microscopy was used to capture fluorescent
images, which were further analyzed using ImageJ software.

2.17. Flow Cytometry Analysis of ROS-Positive Cells. ROS
production in cardiomyocytes was evaluated using the 2′,7′
-dichlorofluorescein diacetate (DCF-DA) staining assay
(Thermo Fisher Scientific). Briefly, the cells were incubated
with DCF-DA for 30min at 37°C in the dark, washed, resus-

pended in PBS, and maintained on ice for immediate assay by
flow cytometry (BD Biosciences). The data were analyzed
using FACSDiva software (BD) to calculate the number of
ROS-positive cardiomyocytes.

2.18. Mitochondrial Mass Analysis Using MitoTracker Red
Staining. MitoTracker Red staining was performed to assess
mitochondrial mass. Briefly, cardiomyocytes were incubated
with 100nM MitoTracker Red for 30min at 37°C. Fluores-
cence was detected at excitation and emission wavelengths
of 490 and 516 nm, respectively, using an ELx-800 microplate
reader (BioTek; Winooski, VT, USA).

2.19. Statistical Analysis. The data are presented as the
mean ± standard deviation. All data analyses were performed
using GraphPad Prism software (version 8; GraphPad
Software, La Jolla, USA). Statistical significance of differences
between various treatment groups was assessed using
unpaired Student’s t-test or one-way ANOVA followed by
the Bonferroni multiple comparison test. p < 0:05 indicated
statistical significance.

3. Results

3.1. scRNA-seq Clustering by the Seurat Package and
Functional Enrichment Analysis. The number of principal
components was set as 12, and cardiomyocytes were classi-
fied into six clusters based on UMAP visualization after
batch correction (Figure 1(a)). A total of 3,408 highly vari-
able genes were detected after normalization. Consequently,
a total of 288 markers were identified by the Wilcoxon
signed-rank test. These markers were then subjected to GO
enrichment analysis. As shown in Figure 1(b) and Table S1,
the genes were significantly enriched in “ribonucleotide
metabolic process” (enriched genes = 97, p value = 1:44E −
48), “mitochondrion organization” (enriched genes = 77, p
value = 3:35E − 29), “muscle cell development” (enriched
genes = 43, p value = 1:72E − 20), “heart contraction”
(enriched genes = 42, p value = 2:16E − 19), and “proton
transmembrane transport” (enriched genes = 77, p value =
7:66E − 17) in the biological process category. Additionally,
DE genes were significantly enriched in “mitochondrial
protein complex” (enriched genes = 104, p value = 2:18E −
78), “myelin sheath” (enriched genes = 65, p value = 4:38E −
41), “respiratory chain” (enriched genes = 43, p value = 2:76
E − 37), “intercalated disc” (enriched genes = 18, p value =
6:72E − 12), and “chaperone complex” (enriched genes = 11,
p value = 4:69E − 11) in the cellular component category.
For molecular function, the terms “structural constituent
of ribosome” (enriched genes = 37, p value = 2:43E − 17),
“electron transfer activity” (enriched genes = 24, p value =
2:73E − 17), “proton transmembrane transporter activity”
(enriched genes = 29, p value = 5:49E − 16), “coenzyme
binding” (enriched genes = 41, p value = 1:63E − 13), and
“ubiquitin protein ligase binding” (enriched genes = 39, p
value = 2:34E − 11) were also enriched.

As shown in Figure 1(c) and Table S2, GSEA was used to
analyze the CH-related KEGG pathways, and the KEGG: oxi-
dative phosphorylation pathway was significantly enriched in
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Figure 1: Continued.
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the progression of CH based on time series analysis (ES = 0:96,
S = 2:79, nominal p value < 0.01, FDR q value = 0.035). Fur-
thermore, the GSVA calculated scores of the KEGG: oxidative
phosphorylation (OxP score) pathway at various stages of CH
were distinctly different from those in the sham operation
group. Specifically, CH-related scores were significantly lower
in the TAC W1 and W4 groups compared to those in the
sham group (all p value < 0.05; Figure 1(d) and Table S3).
Moreover, the patterns of GSVA calculated based on the cor-
responding OxP scores across various cell clusters showed that
the scores were significantly lower in cluster 2 than those in
cluster 0 (p value < 0.05; Figure 1(e)).

3.2. Identification of Candidate Biomarkers Involved in TAC-
Induced CH.DE genes in cluster 2 are illustrated by a volcano
plot (Ndusf1: average LogFC = 2:21, adjusted p value = 1:78
E − 38; Figure 2(a)). These genes included genes with log
fold change > 1, which were used for Spearman correlation
analysis; the results showed that Ndusf1 was highly corre-
lated with the OxP score (R = 0:74, p value < 0.05;
Figure 2(b)). The validation of Ndusf1 using GSE24454
showed that Ndusf1 was significantly downregulated in
the heart tissue from aortic banding mice compared to that
in sham-operated mice (Figure 2(c)). Additionally, NDUSF1
was identified as a key interactor in the protein-protein
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Figure 1: scRNA-seq clustering by the Seurat package and functional enrichment analysis. (a) UMAP visualization after batch correction.
Cells are colored according to the clusters. (b) GO enrichment analysis of differentially expressed genes, including biological process,
cellular component, and molecular function categories. (c) KEGG: oxidative phosphorylation pathway enrichment map of time series
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interaction network using ComPPI analysis and shared a
close relationship with mitochondrial functional proteins,
including STAT3, COX6B1, and ATP5PF (Figure 2(d),
Figure 2(e), and Table S4). The biological process
enrichment analysis showed that proteins that potentially
interact with Ndusf1 were significantly associated with key
mitochondrial functions, such as “mitochondrial electron
transport, NADH to ubiquinone” (p value = 2:78E − 4),
“mitochondrial respiratory chain complex I assembly”
(p value = 1:52E − 3), and “NADH dehydrogenase complex
assembly” (p value = 1:15E − 2) (Figure 2(f) and Table S5).
Based on the results of bioinformatics analysis, Ndusf1 was
selected for subsequent validation and functional analysis.

3.3. Ndufs1 Was Downregulated in the Hypertrophic Mouse
Heart. As shown in Figures 3(a) and 3(b), the results of
H&E staining indicated that cardiomyocytes were signifi-
cantly enlarged in the TAC group compared to those in

the sham group (p < 0:05). Examination of the dissected
heart tissue indicated that the heart weight, HMI, LVMI,
and LV/TL were significantly higher in the TAC group than
those in the sham group (Figures 3(c)–3(f); all p < 0:05). The
results of echocardiography examination showed that the
thickness of IVS and LVPW was significantly higher in the
TAC group than that in the sham group (Figures 3(g)–3(i);
all p < 0:05). qRT-PCR analysis showed that the mRNA
expression levels of ANP, BNP, and β-MHC were signifi-
cantly higher in heart tissue from the TAC group than
those in the sham group (Figures 3(j)–3(l); all p < 0:05).
Importantly, the expression levels of Ndusf1 mRNA and
protein were significantly reduced in the heart tissue from
the TAC group compared to those in the sham group
(Figures 3(m) and 3(n); all p < 0:05). TEM examination
showed that the mitochondrial volume was significantly
increased, and the number of mitochondria was significantly
decreased in the heart tissue from the TAC group compared
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Figure 2: Identification of candidate biomarkers involved in TAC-induced CH. (a) Volcano plot of the differentially expressed genes in
cluster 2 based on the p value and expression fold changes. (b) Spearman correlation analysis of genes from cluster 2 and GSVA scores of
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Figure 3: Continued.
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to those in the control group (Figures 3(o)–3(q); all p < 0:05).
The sarcomeres were enlarged, and myofibrils were disor-
dered in the TAC group. Comparison with the sham group
indicated that mitochondria in TAC-induced CH cardio-
myocytes showed mild to moderate swelling, intact adventi-
tia, edema of the matrix, disappearance of partial cristae,
and aggregation between myofibrils.

3.4. Effects of Ang II on the Expression Levels of ANP, BNP, β-
MHC, and Ndusf1. As shown in Figure 4, Ang II treatment
caused a significant increase in the mRNA and protein
expression levels of ANP, BNP, and β-MHC in cardiomyo-
cytes compared to those in the control group (Figures 4(a)–
4(f); all p < 0:05). On the other hand, the mRNA and protein
expression levels of Ndusf1 in cardiomyocytes were signifi-
cantly reduced by Ang II treatment compared to those in
the control group (Figures 4(g) and 4(h); all p < 0:05). These
results indicated that Ndusf1 may have certain biological
functions in Ang II-stimulated cardiomyocytes.

3.5. Effects of Ndusf1 Knockdown on the Expression Levels of
ANP, BNP, and β-MHC and on Mitochondrial Functions.

Ndusf1 was silenced by transient transfection of cardiomyo-
cytes with Ndusf1 siRNA. As shown in Figures 5(a) and
5(b), Ndusf1 siRNA transfection (si-Ndusf1) significantly
reduced the expression levels of Ndusf1 mRNA and protein
in cardiomyocytes compared to that in cells transfected with
scrambled siRNA (si-NC; all p < 0:05). The size of cardiomyo-
cytes was significantly increased in the si-Ndufs1 group com-
pared with that in the si-NC group (Figure 5(c); p < 0:01). The
results of qRT-PCR and western blot indicated that the expres-
sion levels of mRNA and protein of ANP, BNP, and β-MHC
were significantly downregulated in si-Ndusf1-transfected
cardiomyocytes compared to those in si-NC-transfected car-
diomyocytes (Figures 5(d)–5(i); all p < 0:05). Furthermore,
the effects of Nudsf1 knockdown on mitochondrial functions
were determined by measuring mitochondrial DNA content,
ROS production, and MMP. As shown in Figure 5(j), Ndusf1
knockdown significantly reduced the mitochondrial DNA
content in cardiomyocytes compared to that in the si-NC
group (p < 0:01). Consistently, the levels of ROS production
in cardiomyocytes were significantly elevated after Ndusf1
silencing (Figures 5(k) and 5(l); all p < 0:05). Moreover, the
fluorescent staining results showed that Ndufs1 knockdown
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Figure 3: Ndufs1 was downregulated in the hypertrophic heart of mice. (a) H&E staining of mouse heart tissue in the sham and TAC groups.
(b) The cardiomyocyte area was evaluated in the sham and TAC groups. The heart was dissected, and the heart weight (c), HMI (d), LVMI (e),
and LV/TL (f) in the sham and TAC groups were determined. (g) Representative images of echocardiography in the sham and TAC groups,
and the thickness of IVS (h) and LVPW (i) in the sham and TAC groups according to echocardiography. (j–l) The mRNA expression levels of
ANP, BNP, and β-MHC in the heart tissue of the sham and TAC groups determined by qRT-PCR. (m, n) The mRNA and protein expression
levels of Ndufs1 in the heart tissue of the sham and TAC groups were determined by qRT-PCR and western blot assays, respectively. (o)
Representative TEM images of the heart tissue of the sham and TAC groups. (p, q) The mitochondrial volume and number were analyzed
based on TEM images. N = 6. ∗p < 0:05, ∗∗p < 0:01, and ∗∗∗p < 0:001.
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dramatically increased MMP and mitochondrial mass of
cardiomyocytes compared to those in the si-NC group
(Figures 5(m) and 5(n); all p < 0:05). These results indicate
that silencing Ndusf1 gene expression may aggravate MMP
damage in Ang II-induced myocardial hypertrophy.

3.6. Effects of Ndusf1 Overexpression on Ang II-Induced
Hypertrophy of Cardiomyocytes. Initially, we constructed
the vector for Ndusf1 overexpression using the pcDNA3.1
plasmids. Cardiomyocytes transfected with the vector for
Ndusf1 overexpression exhibited a significant increase in
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Figure 4: Ang II induced downregulation of Ndufs1 in rat cardiomyocytes. The mRNA and protein expression levels of ANP (a, b), BNP (c, d),
β-MHC (e, f), and Ndufs1 (g, h) in control and Ang II-treated cardiomyocytes were determined by qRT-PCR and western blot assay. N = 3.
∗p < 0:05, ∗∗p < 0:01, and ∗∗∗p < 0:001.
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Figure 5: Continued.
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the levels of Ndusf1 mRNA and protein compared with
those in the cells transfected with pcDNA3.1 (NC group;
Figures 6(a) and 6(b); all p < 0:05). As expected, Ang II
treatment increased the cardiomyocyte area compared with
that in the control group, and Ndusf1 overexpression atten-
uated Ang II-induced increase in the cardiomyocyte area
(Figure 6(c); p < 0:05). Consistently, Ang II treatment
caused a significant increase in the levels of mRNA and pro-
tein of ANP, BNP, and β-MHC (all p < 0:05), and Ndusf1
overexpression partially counteracted the stimulatory effects
of Ang II on ANP, BNP, and β-MHC expression in cardio-
myocytes (Figures 6(d)–6(i); all p < 0:05). The mitochon-
drial DNA content of cardiomyocytes was significantly
reduced by Ang II, and this effect was attenuated by Ndusf1
overexpression (Figure 6(j); all p < 0:05). Moreover, Ndusf1
overexpression attenuated Ang II-induced elevation in the
ROS production levels in cardiomyocytes (Figures 6(k) and
6(l); all p < 0:05). Importantly, Ang II treatment significantly
repressed MMP and mitochondrial mass in cardiomyocytes,

and the effect was significantly alleviated by overexpression
of Ndusf1 (Figures 6(m) and 6(n)). In turn, these results indi-
cate that Ndusf1 overexpression may protect against MMP
disorder in Ang II-induced mitochondrial dysfunction.

4. Discussion

CH is a pathophysiological response characterized by
increased thickness of the ventricular wall, greater myocar-
dial cell volume, and enhanced myocardial contractility in
the early stage of overload pressure [1, 3]. The pathophysiol-
ogy of CH is complex and involves multiple cellular events,
and the mechanisms of the development of CH are not fully
understood [1, 3, 30]. Growing evidence indicates that mito-
chondrial dysfunction is closely related to the development
and progression of CH. In the present study, we explored
the GSE95140 datasets by using integrated bioinformatics
analysis and demonstrated downregulation of Ndusf1 in
heart tissue of mice with CH. The expression of Ndusf1 was
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Figure 5: Effects of Ndufs1 knockdown on the expression of hypertrophic markers and mitochondrial function. (a, b) The mRNA and
protein expression levels of Ndufs1 in cardiomyocytes transfected with scrambled siRNA or Ndufs1 siRNA were determined by qRT-PCR
and western blot assays. (c) The relative cardiomyocyte area was determined in cardiomyocytes transfected with scrambled siRNA or
Ndufs1 siRNA. The mRNA and protein expression levels of ANP (d, e), BNP (f, g), and β-MHC (h, i) in cardiomyocytes transfected with
scrambled siRNA or Ndufs1 siRNA were determined by qRT-PCR and western blot assays. The mitochondrial DNA content (j),
mitochondrial ROS production (k), ROS-positive cardiomyocytes (l), MMP (m), and mitochondrial mass (n) were evaluated in
cardiomyocytes transfected with scrambled siRNA or Ndufs1 siRNA. N = 3. ∗p < 0:05, ∗∗p < 0:01, and ∗∗∗p < 0:001.
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further validated in amouse TACmodel; our data showed that
Ndusf1 expression was significantly downregulated in hyper-
trophic heart tissue compared to that in normal controls.
Moreover, in vitro mechanistic studies showed that Ndusf1
knockdown induced cardiomyocyte hypertrophy, decreased
mitochondrial DNA content and MMP, and increased mito-
chondrial ROS production in cardiomyocytes. On the other
hand, Ang II treatment upregulated the expression levels of
ANP, BNP, and β-MHC, decreased mitochondrial DNA

content and MMP, and increased mitochondrial ROS pro-
duction in cardiomyocytes; moreover, Ang II-mediated
effects were significantly attenuated by overexpression of
Ndusf1 in rat cardiomyocytes. Overall, our results indicate
the important roles of Ndusf1 in the development and pro-
gression of CH.

In the present study, TAC surgery was performed to
establish a CH mouse model. Enlarged cardiomyocytes and
increases in the heart weight, HMI, LVMI, LV/TL, and
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Figure 6: Ndufs1 overexpression attenuated Ang II-induced cardiac hypertrophy and mitochondrial dysfunction in cardiomyocytes. (a, b)
The mRNA and protein expression levels of Ndufs1 in cardiomyocytes transfected with pcDNA3.1 or pcDNA3.1-Ndufs1 were determined
by qRT-PCR and western blot assays. (c) The relative cardiomyocyte area was determined in cardiomyocytes subjected to various
treatments. The mRNA and protein expression levels of ANP (d, e), BNP (f, g), and β-MHC (h, i) in cardiomyocytes subjected to various
treatments were determined by qRT-PCR and western blot assays. The mitochondrial DNA content (j), mitochondrial ROS production
(k), ROS-positive cardiomyocytes (l), MMP (m), and mitochondrial mass (n) were evaluated in cardiomyocytes subjected to various
treatments. N = 3. ∗p < 0:05, ∗∗p < 0:01, and ∗∗∗p < 0:001.
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thickness of IVS and LVPW were detected in mice subjected
to TAC compared with those in sham-operated mice; these
findings are consistent with the results of previous studies
[31]. Additionally, the mRNA expression levels of ANP,
BNP, and β-MHC were elevated in the heart tissue of the
mice with CH. ANP, BNP, and β-MHC are commonly used
cardiac hypertrophic biomarkers, and elevated levels of these
biomarkers have been demonstrated in heart tissue in clini-
cal studies and animal models [32–35]. Overall, these results
suggest successful establishment of CH in mice subjected to
TAC treatment. Further validation by qRT-PCR and western
blot showed that the expression levels of Ndusf1 mRNA and
protein were downregulated in hypertrophic heart tissue.
The data suggest that Ndusf1 may play an important role
in CH.

Mitochondria are considered to be dynamic “energy sta-
tions”, and these morphological changes are characterized by
fragmented disconnection and elongated interconnection of
mitochondria, which are regulated by activation of mito-
chondrial fission and fusion proteases or posttranslational
modifications of proteins during the development of CH [1,
36]. Ndusf1 (NADH:ubiquinone oxidoreductase core sub-
unit S1) is the largest subunit of complex I; the corresponding
gene encodes a 75 kDa subunit of NADH-ubiquinone oxido-
reductase [37] and thus has gained particular attention due to
its significant role in the activity of mitochondrial oxidative
phosphorylation. Mutations or deficiency of this gene can
destabilize complex I assembly and result in defects of the
activity of the electron transport chain (ETC) and elevated
ATP production, which can cause mitochondrial fusion and
fission to restore damaged mitochondrial DNA and remove
damaged mitochondrial fragments, respectively [38–40].
However, the role of Ndusf1 in the pathophysiology of CH
has not been reported; however, the importance of Ndusf1
in cardiovascular diseases has been emphasized by several
research groups. Qi et al. showed that Akap1 deficiency
exacerbates diabetic cardiomyopathy in mice by Ndusf1-
mediated mitochondrial dysfunction and apoptosis [19].
Ndusf1 was shown to be upregulated in cardiac cells upon
cyclic stretch, which may be associated with mitochondrial
biogenesis [41]. Sato et al. showed that Ndusf1 is associated
with the cardiac response to iron deficiency [42]. Addition-
ally, the cardiac levels of acetylated forms of Ndusf1 are
decreased in caloric restriction [43]. Impaired electron trans-
port chains in mitochondria contribute to the development
and progression of CH [44, 45]. Ndusf1 is one of the key reg-
ulators of the electron transport chain; thus, we speculate that
Ndusf1 may be a key factor in CH. The results of our in vitro
studies indicated that the Ang II-induced increase of the
expression of hypertrophic biomarkers was accompanied by
downregulation of Ndusf1 in cardiomyocytes. Ang II is
widely used to induce a cellular model of CH in cardiomyo-
cytes [46, 47]. Schwartz et al. used serial analysis of gene
expression to demonstrate that continuous Ang II treatment
induces downregulation of Ndusf1 in the mouse heart [48].
The activation of the endogenous renin-angiotensin aldoste-
rone system increases the protein levels of Ndusf1 in urine in
hypertensive patients [49]. Additionally, Ang II exacerbates
mitochondrial dysfunction and oxidative stress to cause heart

failure [50]. Thus, in combination with these findings, our
results may imply that Ang II-induced CH in cardiomyocytes
may be associated with downregulation of Ndusf1.

To gain additional insight into the mechanism of action
of Ndusf1 in Ang II-induced CH, we performed loss- and
gain-of-function studies in cardiomyocytes. Our results
showed that Ndusf1 knockdown decreased the mitochon-
drial DNA content and MMP and increased mitochondrial
ROS production; in addition, Ndusf1 knockdown increased
the expression levels of hypertrophic biomarkers in cardio-
myocytes, possibly indicating that Ndusf1 knockdown
promoted CH by impairing mitochondrial functions. Down-
regulation of Ndusf1 inhibits the neuroprotective effects of
pyrroloquinoline against rotenone injury in cultured SH-
SY5Y cells and cultured midbrain neurons, and rotenone
can impair mitochondrial dysfunction [51]. Lopez-Fabuel
et al. showed that Ndusf1 knockdown impairs mitochon-
drial O2 consumption and increases ROS production in
neurons [52]. On the other hand, our results showed that
overexpression of Ndusf1 attenuated Ang II-mediated
effects in cardiomyocytes. Thus, Ndusf1 may be involved
in Ang II-mediated CH by modulating mitochondrial func-
tions in cardiomyocytes.

Balanced regulation of mitochondrial fusion and fission
is very delicate and susceptible to the development of CH
and heart failure; thus, efficient myocardial therapies that
target mitochondrial lesions and dysfunction may be a new
strategy to suppress susceptibility to myocardial remodeling
and attenuate myocardial fibrosis; however, these possibili-
ties are poorly characterized [1, 5, 11]. Ndufs1 has been
illustrated to play a central role in the regulation of morpho-
logical dynamics and oxidative stress and may play an
important role in mitochondrial crista remodeling, cyto-
chrome release, and mitochondrial respiration in the develop-
ment of CH and heart failure. A decrease in the expression of
Ndufs1, in turn, contributes to aggravated mitochondrial
membrane potential disorder, mitochondrial ROS produc-
tion, and mitochondrial DNA damage.

In conclusion, our results demonstrated downregula-
tion of Ndusf1 in hypertrophic heart tissue, and the results
of the mechanistic studies suggest that Ndusf1 deficiency
causes mitochondrial dysfunction in cardiomyocytes, which
may be associated with the development and progression
of CH.

5. Limitations

There are several limitations in the present study. First, the
expression of Ndusf1 in the mouse cardiac tissue was deter-
mined 4 weeks after TAC surgery in mice, which cannot
reflect the changes in Ndusf1 during the progression of CH.
Thus, future studies may determine the expression of
Ndusf1 at various time points to confirm the role of Ndusf1
in the progression of CH. Second, the expression of Ndusf1
was validated only in mouse cardiac tissue and cardiomyo-
cytes, and future studies should determine the expression
of Ndusf1 in the clinical samples of hypertrophic hearts.
Third, loss- and gain-of-function studies were only per-
formed in vitro, and the functional role of Ndusf1 in vivo
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in the pathophysiology of CH should be determined. Fourth,
the downstream signaling pathways mediated by Ndusf1
should be further explored.
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