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ABSTRACT

Objectives: Prediction of post-transplant health outcomes and identification of key factors remain important

issues for pediatric transplant teams and researchers. Outcomes research has generally relied on general linear

modeling or similar techniques offering limited predictive validity. Thus far, data-driven modeling and machine

learning (ML) approaches have had limited application and success in pediatric transplant outcomes research.

The purpose of the current study was to examine ML models predicting post-transplant hospitalization in a

sample of pediatric kidney, liver, and heart transplant recipients from a large solid organ transplant program.

Materials and Methods: Various logistic regression, naive Bayes, support vector machine, and deep learning

(DL) methods were used to predict 1-, 3-, and 5-year post-transplant hospitalization using patient and adminis-

trative data from a large pediatric organ transplant center.

Results: DL models did not outperform traditional ML models across organ types and prediction windows with

area under the receiver operating characteristic curve values ranging from 0.50 to 0.593. Shapley additive

explanations (SHAP) were used to increase the interpretability of DL model results. Various medical, patient,

and social variables were identified as salient predictors across organ types.

Discussion: Results showed that deep learning models did not yield superior performance in comparison to

models using traditional machine learning methods. However, the potential utility of deep learning modeling

for health outcome prediction with pediatric patients in the presence of large number of samples warrants fur-

ther examination.

Conclusion: Results point to DL models as potentially useful tools in decision-support systems assisting physi-

cians and transplant teams in identifying patients at a greater risk for poor post-transplant outcomes.
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BACKGROUND AND SIGNIFICANCE

Rates of survival continue to be high and are improving for pediatric

patients after undergoing an organ transplantation procedure. Over-

all, 5-year patient survival rates for patients transplanted between

2009 and 2013 were 98.4% for pediatric kidney transplant recipi-

ents [1] and 83.2% for pediatric liver transplant recipients [2]. In pe-

diatric heart transplant recipients who underwent transplant

procedure from 2006 to2013, 1- and 5-year patient survival rates

were 90.1% and 81.5% [3]. Despite these improvements, ongoing

concerns remain regarding the rate of hospitalization for these chil-

dren [4–8] and especially for adolescent patients who experience

higher rates of complications and nonadherence to immunosuppres-

sive medication [4, 6–12].Data-driven approaches to identify unique

risk factors, at-risk patients, and development of strategies to sup-

port clinical care and enhance decision-making within pediatric or-

gan transplant centers are highly desired.

Increased number and frequency of hospitalizations, increase

stress, and burden on patients and families represent a loss of quality

of life for these pediatric patients [13, 14]. Yet, the prediction of

hospitalization has been limited in pediatric transplant recipients

[15, 16]. Notably, prior research has various methodological limita-

tions, limited sample sizes, sample bias, and lack of rigorous statisti-

cal approaches [11]. Nationally, predictive modeling has relied on

general linear modeling or Cox proportional hazards regression

approaches, which offer limited predictive validity [17–19]. Data-

driven modeling and machine learning (ML) analytic approaches of-

fer an opportunity to use ubiquitous and abundant electronic health

records (EHRs) and longitudinal data in pediatric transplanta-

tion[20–22] to make a significant advancement over the extant re-

search and increase in the clinical usefulness of patient data sources.

ML approaches over EHR data lend themselves to translation

into clinical care with the potential to improve the information

available to multidisciplinary transplant teams, patients, and their

families. These advanced analytic approaches can accommodate

many different relationships among patient variables, assess the rela-

tive predictive utility of these complex relationships, and reach a fi-

nal prediction model with an estimated value of predictive validity

[23]. ML has been used to examine health outcomes in adult kidney

[23, 24], liver [25–28], and cardiothoracic (heart and heart–lung)

transplantation [29–33]. In pediatric transplant populations, use of

ML and results have been more mixed. ML has shown limited pre-

dictive validity and sensitivity when examining mortality as an out-

come in heart transplant recipients [16] using classification and

regression trees, random forest (RF), and artificial neural network

(ANN) approaches. ANN has been used in modeling to predict

recipients’ mortality at 6-month post-transplant for pediatric liver

transplantation. Over previous standards, ANN offered superior

predictive utility when including 21 predictors in the analyses[34].

Similarly, RF identified key factors in predicting ideal post-

transplant outcomes 3years after liver transplantation[15].

Numerous assessments and evaluations of pediatric transplant

candidates pretransplant and recipients post-transplant are avail-

able, but many lack evidence of reliability and validity [11, 12]. The

use of ML approaches in examination of post-transplant outcomes

in pediatric care is limited [15, 17], yet applying ML and deep learn-

ing (DL) to large data repositories and patient records has great po-

tential to inform care and decision-making within multidisciplinary

transplant teams. Therefore, the purpose of the current study was to

test and examine ML and DL models predicting the experience of

hospitalization in samples of pediatric kidney, liver, and heart trans-

plant recipients from a large solid organ transplant program. Addi-

tionally, the current study included longitudinal data from the

transplant center to examine 1-, 3-, and 5-year outcomes to predict

patient hospitalization over the post-transplant period. The inclu-

sion of multiple windows of post-transplant and medical outcomes

data represents an important advancement in the study and ML

modeling of pediatric post-transplant outcomes.

DL models are often referred to as black-box implying the fact

that their underlying mechanisms are not easy to understand by the

end user [35]. Some application areas of DL, such as medicine, in-

volve high risk and serious consequences. The lack of transparency

in these models is a barrier towards their utilization in real-world

medical settings. Thus, considering the importance of interpretabil-

ity enhancement for DL models in medicine, in this study, an addi-

tional step was taken to interpret the results of DL models for each

organ type.

METHODS AND MATERIALS

Patients
Data for the study were United Network for Organ Sharing (UNOS,

U.S. Department of Health and Human Services) data from a pediat-

ric transplant population at a large transplant center in the south-

western United States. UNOS data include individual, family, and

medical variables which were used to predict long-term health and

transplant outcomes. The sample included pediatric kidney, heart,

or liver transplant recipients (ages 0–18). Data used in the analyses

included medical and UNOS data from the patients transplanted at

this center between 1988 and May 31, 2017.

UNOS data
The UNOS data include medical data and long-term health outcome

variables with the main outcome in the current analyses being post-

transplant hospitalization. UNOSmaintains national and center level

data on organ transplant patients beginning at listing as a candidate

for transplantation. Each transplant center is required to maintain

pretransplant and post-transplant medical and health data on all

transplant patients. Variables related to pretransplant illness sever-

ity, transplant procedure, postoperative data, post-transplant com-

plications, and health outcomes are included on these forms. UNOS

forms for each patient are completed at three points in the transplant

process and aftercare: (1) candidate registration for an organ trans-

plant (TCR), (2) recipient registration at the time of transplant pro-

cedure (TRR), (3) recipient follow-up completed annually post-

transplant (TRF) (https://www.transplantpro.org/technology/data-

collection-forms/).

Data preprocessing
For each of the three organ types in this study, we considered three

different outcome prediction windows of 1, 3, and 5years (Figure 1),

similar to other studies predicting outcomes in pediatric organ trans-

plantation [16, 36]. The binary prediction outcome was hospitaliza-

tion within the prediction window after transplantation. In this

study, the observation window of 1-year outcome prediction in-

cluded the initial follow-up information of each patient (farthest

from the prediction window) in addition to variables included in the

TCR and TRR forms. The observation window of 3-year outcome

prediction was the most recent TFR information of each patient

within 2 years after transplantation. The observation window of 5-
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year outcome prediction was the most recent TRF follow-up infor-

mation of each patient within 4 years after transplantation. In other

words, the prediction task in each of 1-, 3-, and 5-year windows is

hospitalization within a year after the observation window.

In each of the datasets, we excluded patients over 18 years of age

and those with a prior transplantation procedure. The samples with

unknown values in their outcome variable (hospitalization) were

also excluded. A medical expert (D.G.) identified clinically relevant

variables from all available sets of variables for each organ type to

be included in the final predictive models. Variables with >50%

missing values were excluded. Finally, some decisions about inclu-

sion and exclusion of certain variables for different organ types and

prediction windows were taken by the authors to ensure the validity

of prediction models. “Recipient Graft Status” across the TCR,

TRR, and TRF forms, for instance, was excluded from analyses due

to the known high correlation with hospitalization as a prediction

outcome. “Treated for Rejection within 1 Year”, on the other hand,

was excluded from the 1-year prediction in the analyses but was in-

cluded for the 3- and 5-year prediction. Table 1 summarizes the

number of variables included for each organ type in the final predic-

tive models. Table 2 summarizes the demographic information in

each prediction window for each organ type. A complete list of vari-

ables for each organ type is reported in Supplementary Material.

Since our datasets included a mixture of categorical and numeri-

cal variables, we used MissForest imputation method. This imputa-

tion method has been found effective in comparison to other

methods with medical data [37]. MissForest benefits from the built-

in routine in the RF algorithm to handle missing values [38, 39]. In

this imputation method, for each variable, an initial guess for the

missing values is considered. Then, the variables were sorted accord-

ing to their amount of missing values starting with the lowest num-

ber of missing values. Then, an RF algorithm was trained on the

observed data and then missing values were predicted using the

trained RF model. This imputation procedure was repeated until

stopping criteria were met. Further, the data sets were normalized

between 0 and 1. Figure 1 illustrates the data preprocessing for this

study. For data management and preprocessing, we used SAS, R,

and Python.

Predictive modeling
We built several ML models using WEKA software [40] as well as

DL models [41] using Python with Sklearn, Keras, and Tensorflow

libraries. Four ML algorithms were tested using WEKA and their de-

fault setting. In a previous study [16], it was shown that RF outper-

formed other ML methods. In this work, in addition to RF, we built

models based on other popular ML methods such as logistic regres-

sion, multilayer perceptron (MLP), and support vector machine

with sequential minimal optimization algorithm (SMO) for compar-

ison. DL is an algorithm biologically inspired by the way the human

brain functions. Similar to the human brain, the information is proc-

essed through neurons activation from one layer to another[42].

Since the learning process happens based on a loss function, optimiz-

ers are needed to choose the parameters of the model in a way that

reduces this loss. After hyperparameter tuning for the DL model, it

included two hidden layers with 100 neurons each. Batch size was

set to 32 with 50 epochs. Batch normalization was used for each

hidden layer. We used rectified linear unit (ReLU) [43] as the activa-

tion function, adaptive gradient algorithm (Adagrad) [44] as the op-

timizer with an initial learning rate set to 0.01, and cross-entropy as

Figure 1. The overall workflow of data processing.

Table 1. The summary of number of variables included in each dataset for each organ type

Organ type # total variables # clinically relevant variables # clinically relevant variables with

<50% missing value

Kidney 614 108 39

Liver 523 93 37

Heart 758 117 38 (1y)

43 (3y)

41 (5y)

JAMIA Open, 2021, Vol. 00, No. 0 3



the loss function. ReLU is a piecewise linear activation function that

outputs zero if the input is either negative or zero and outputs the

same input otherwise. Adagrad optimizes the model parameters

based on their update frequency during training allowing for adap-

tivity of learning rate during training. Since the samples in this study

were obtained from a single transplant center, the sample size was

limited. On the other hand, DL models can easily overfit the data

they are trained on. In the presence of high dimensionality and low

sample size, DL models are more likely to suffer from overfitting

[45]. To reduce the risk of overfitting and improve the generaliza-

tion of the DL model, we employed early-stopping. Further, for

both shallow and deep learners, we evaluated the performance using

10-fold cross-validation. We considered the area under the receiver

operating characteristic curve (AUROC) as the performance metric.

Table 2. Demographic summary of samples in each dataset

Organ type Prediction window Gender Initial age Education # total samples

Kidney 1y F: 125

M: 182

Up to 2: 12

>2–10: 115

>10–14: 82

>14–17: 93

18: 5

Attended college/techni-

cal school: 1

Grade school (0–8): 155

High school (9–12) or

GED: 103

N/A (<5 y old): 41

None: 7

307

3y F: 130

M: 179

Up to 2: 13

>2–10: 126

>10–14: 78

>14–17: 87

18: 5

Attended college/techni-

cal school: 1

Grade school (0–8): 156

High school (9–12) or

GED: 97

N/A (<5 y old): 48

None: 7

309

5y F: 130

M: 179

Up to 2: 14

>2–10: 126

>10–14: 77

>14–17: 88

18: 4

Attended college/techni-

cal school: 1

Grade school (0–8): 157

High school (9–12) or

GED: 96

N/A (<5 y old): 48

None: 7

309

Liver 1y F: 175

M: 140

Up to 2: 178

>2–10: 80

>10–14: 35

>14–17: 19

18: 3

Grade school (0–8): 77

High school (9–12): 28

N/A (<5 y old): 207

None: 3

315

3y F: 178

M: 139

Up to 2: 178

>2–10: 82

>10–14: 36

>14–17: 19

18: 2

Grade school (0–8): 81

High school (9–12): 26

N/A (<5 y old): 207

None: 3

317

5y F: 181

M: 131

Up to 2: 178

>2–10: 78

>10–14: 33

>14–17: 20

18: 3

Grade school (0–8): 77

High school (9–12): 25

N/A (<5 y old): 207

None: 3

312

Heart 1y F: 13

M:19

Up to 2: 8

>2–10: 9

>10–14: 6

>14–17: 6

18: 3

Attended college/techni-

cal school: 2

Grade school (0–8): 12

High school (9–12): 6

N/A (<5 y old): 11

None: 1

32

3y F: 87

M:102

Up to 2: 82

>2–10: 45

>10–14: 27

>14–17: 28

18: 7

Attended college/techni-

cal school: 2

Grade school (0–8): 58

High school (9–12): 32

N/A (<5 y old): 96

None: 1

189

5y F: 89

M:104

Up to 2: 84

>2–10: 46

>10–14: 29

>14–17: 27

18: 7

Attended college/techni-

cal school: 2

Grade school (0–8): 60

High school (9–12): 31

N/A (<5 y old): 99

None: 1

193
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We also reported other performance metrics including precision

(true positives/[true positives þ false positives]), recall (true posi-

tives/[true positives þ false positives]), F-measure (harmonic mean

of precision and recall), and area under the precision-recall curve

(AUPRC).

Interpretability enhancement of DL models using

Shapley additive explanations
Prediction models based on DL algorithms are inherently complex

and challenging to interpret, despite their superior predictive power

[41]. The underlying reasoning behind their predictions is more dif-

ficult to extract in comparison to traditional ML models [46]. Thus,

a large body of research is dedicated to explainable artificial intelli-

gence (XAI) to explore possible methods for interpreting complex

AI models to humans [47]. Shapley additive explanations (SHAP)

area state-of-the-art unified framework for XAI [48]. SHAP reports

variable or feature importance in a complex model based on Shapley

values (i.e., function for numerically evaluating the “value” of a

game in the cooperative game theory) of a conditional expectation

function of that model [49]. Shapely values are one of the leading

approaches to attribution problem (i.e., the distribution of the pre-

diction score of a model over the input variables). Thus, values can

represent the influence of a variable on the prediction outcome of

the model. Since computing the exact SHAP values is challenging,

we introduced Kernel SHAP [48] which benefits from the known ad-

ditive variable attribution methods (i.e., LIME) [50] to approximate

actual SHAP values. We refer the interested audience to the original

paper for more details [48]. The implementation of SHAP is made

publicly available by its authors on GitHub (https://github.com/

slundberg/shap).

RESULTS

The performance of different traditional ML and DL models is

reported in Tables 3–5. Each uses different datasets corresponding

to the various outcome prediction windows by organ-types. Since

the classification task is binary (0 or negative result: patient will not

be hospitalized and 1 or positive result: patient will be hospitalized),

the performance is measured using precision, recall, F-measure,

AUROC, and AUPRC metrics.

Predictive models
Models based on RF algorithm and logistic regression were persis-

tently the best performing models based on traditional ML algo-

rithms across three organ types when considering the AUROC as the

performance measure. The only exception was the 1-year prediction

window in heart dataset with MLP demonstrating the best perform-

ing models. Focusing on the ML models based on kidney datasets

suggested that long-term hospitalization prediction was more diffi-

cult than shortterm. The average AUROC of models predicting 1-

year hospitalization after kidney transplantation was 0.58 6 0.03.

Average AUROC was 0.50 6 0.037 and 0.54 6 0.048 for 3- and 5-

year outcomes, respectively. However, this was not the case for the

models based on liver datasets. For predicting hospitalization after

liver transplantation, in this study, the 1-year outcome prediction

showed a performance of 0.57 6 0.031 on average. Average

AUROC was 0.61 6 0.028 and 0.61 6 0.036 for 3- and 5-year out-

comes, respectively. A similar trend was observed for the models

based on heart datasets: 0.631 6 0.092, 0.64 6 0.033, and

0.678 6 0.046 for 1-, 3-, and 5-year outcomes, respectively. Thus,

overall organ types and outcome prediction windows, the models

based on long-term (5years) hospitalization prediction for heart

transplantation, on average, resulted in a better performance.

DL models did not outperform traditional ML models across or-

gan types and prediction windows (Figure 2). The average AUROC

of DL models across all three prediction windows for kidney trans-

plantation was 0.5455 6 0.018, for liver transplantation was

0.5358 6 0.016, and for heart transplantation was 0.5528 6 0.047.

The same trend observed in the ML models’ performance was ob-

served in the DL models. In case of the kidney datasets, DL models

demonstrated better prediction of short-term hospitalization out-

comes. In case of the liver and heart datasets, longer prediction win-

dows from the initial transplantation enabled more accurate

predictive modeling. The best performing DL model across all organ

types and prediction windows was for 3-year hospitalization after

heart transplantation with an AUROC of 0.593.

Interpreting DL models using SHAP
The result of applying SHAP on DL models in this study is demon-

strated in terms of variable importance (Figure 3). The bar plots in

each row correspond to an organ type: kidney, liver, and heart. The

bar plots in each column refer to the prediction of 1-, 3-, and 5-year

outcomes. Variables in these plots are ranked (descending) based on

importance. The more important a variable is, the larger magnitude

of impact on the model’s output it is associated with. Note that the

produced SHAP explanations in this study are global (i.e., the expla-

nation is provided regarding the whole samples in the dataset rather

than a specific sample) by summing SHAP value magnitudes over all

samples in the dataset. Also, to lower the computational cost, we

summarized the samples to 50 weighted samples using the k-means

algorithm (25 for heart 1-year dataset) [51]. The corresponding

SHAP summary plots are available in Supplementary Material. Con-

sidering all nine models across organ types and prediction windows

suggests that, in general, the functional status of the recipient (at the

time of listing, transplantation, and follow-up) along with the pri-

mary diagnoses (at the time of listing and transplantation), ethnicity,

and race are among the most important variables.

DISCUSSION

Based on the current analyses, although deep learning did not out-

perform traditional methods, its potential predictive utility should

not be underestimated. The data sets in this study were small with

a mixed of numeric and categorical variables. Deep learning is

known to be “data-hungry” and might not be the best approach

for all predictive modeling problems. In a follow-up study on

whole UNOS data, we are re-examining the performance of deep

learning models in comparison to traditional ML methods in the

presence of larger number of samples. Results also represent an

important development in the use of ML models with pediatric

transplant data as prior research found only poor to fair predic-

tive utility and sensitivity [16]. Similar studies in adult populations

have similarly reported lower predictive utility[29–31, 52–54]. Accu-

racy of DL models here outperformed a recent examination of pe-

diatric liver transplantation using the Studies of Pediatric Liver

Transplantation data and a RF decision tree approach to ML

[15]. Importantly, DL models offer increased predictive utility

through the examination and evaluation of complex relationships

among variables as important pathways (e.g., neurons activation)

for improving outcome prediction [42]. With gains in the com-
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plexity and predictive accuracy, DL models become increasingly

complex and challenging to interpret the influence of individual

variables, for example. In the current study, SHAP values [48]

were examined to aid in the interpretability of DL models and the

influence of individual variables within the models.

Medical variables
Primary pretransplant diagnosis and functional status of the patient

at TCR and TRR were consistently the most predictive medical fac-

tors across prediction windows and organ types. Functional status

across organ types and UNOS data collection forms is a measure of

Table 3. The performance of different machine learning and DL models for hospitalization prediction using the kidney datasets

Prediction window Algorithm Precision Recall F-Measure AUROC AUPRC

1y Logistic 0.615 0.616 0.615 0.62 0.605

MLP 0.513 0.515 0.513 0.544 0.544

SMO.PolyKernel 0.561 0.56 0.56 0.559 0.535

RandomForest 0.562 0.564 0.563 0.612 0.623

DL 0.546 0.553 0.530 0.557 0.542

3y Logistic 0.517 0.528 0.518 0.506 0.525

MLP 0.449 0.45 0.449 0.45 0.483

SMO.PolyKernel 0.493 0.511 0.492 0.487 0.501

RandomForest 0.574 0.583 0.568 0.559 0.559

DL 0.533 0.531 0.523 0.523 0.522

5y Logistic 0.563 0.57 0.562 0.545 0.556

MLP 0.525 0.528 0.526 0.514 0.529

SMO.PolyKernel 0.509 0.524 0.507 0.501 0.508

RandomForest 0.621 0.625 0.611 0.609 0.587

DL 0.568 0.563 0.553 0.555 0.538

Table 4. The performance of different machine learning and DL models for hospitalization prediction using the liver datasets

Prediction window Algorithm Precision Recall F-Measure AUROC AUPRC

1y Logistic 0.523 0.524 0.523 0.531 0.517

MLP 0.574 0.575 0.574 0.6 0.586

SMO.PolyKernel 0.584 0.581 0.571 0.577 0.545

RandomForest 0.545 0.546 0.545 0.596 0.61

DL 0.561 0.556 0.544 0.554 0.534

3y Logistic 0.601 0.609 0.601 0.639 0.634

MLP 0.552 0.552 0.552 0.574 0.592

SMO.PolyKernel 0.64 0.644 0.641 0.628 0.592

RandomForest 0.623 0.631 0.612 0.619 0.602

DL 0.551 0.555 0.536 0.530 0.525

5y Logistic 0.662 0.676 0.664 0.645 0.667

MLP 0.574 0.577 0.575 0.574 0.606

SMO.PolyKernel 0.674 0.686 0.644 0.593 0.598

RandomForest 0.65 0.67 0.625 0.645 0.66

DL 0.562 0.618 0.56 0.523 0.517

Table 5. The performance of different machine learning and DL models for hospitalization prediction using the heart datasets

Prediction window Algorithm Precision Recall F-Measure AUROC AUPRC

1y Logistic 0.777 0.75 0.76 0.695 0.774

MLP 0.705 0.656 0.676 0.726 0.833

SMO.PolyKernel 0.688 0.688 0.688 0.543 0.674

RandomForest 0.599 0.719 0.653 0.56 0.71

DL 0.611 0.781 0.685 0.50 0.50

3y Logistic 0.588 0.587 0.588 0.597 0.589

MLP 0.62 0.619 0.619 0.66 0.647

SMO.PolyKernel 0.64 0.64 0.636 0.633 0.587

RandomForest 0.607 0.608 0.603 0.673 0.68

DL 0.505 0.576 0.50 0.593 0.564

5y Logistic 0.654 0.658 0.654 0.66 0.641

MLP 0.649 0.648 0.648 0.68 0.675

SMO.PolyKernel 0.671 0.668 0.646 0.631 0.598

RandomForest 0.715 0.71 0.696 0.741 0.745

DL 0.537 0.554 0.499 0.565 0.547
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Figure 2. The comparison between best performing machine learning models and DL models in terms of AUROC across all organ types and prediction windows.

Figure 3. SHAP results of deep learning models across all organ types and prediction windows: (A) kidney 1-y prediction window, (B) kidney 3-y prediction win-

dow, (C) kidney 5-y prediction window, (D) liver 1-y prediction window, (E) liver 3-y prediction window, (F) liver 5-y prediction window, (G) heart 1-y prediction

window, (H) heart 3-y prediction window, and (I) heart 5-y prediction window.
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the health–related quality of life of the patient. This variable is

recorded as a percentage ranging from 10% to 100% with responses

related to inpatient status, ability to carry out daily living activities,

and evidence of the impact of disease symptoms on daily activities.

Primary pretransplant diagnosis includes hundreds of possible diag-

noses across the three organ types.

Predictive medical variables for kidney recipients included dialy-

sis status, creatinine levels, received treatment for hypertension at

TCR, Kidney Donor Risk Index, and treatment for rejection epi-

sodes within 1-year post-transplant. Hospitalization for liver trans-

plant recipients was predicted by the initial or final model for end-

stage liver disease (patients age 12 years and older) or pediatric end-

stage liver disease (younger than 12 years of age) scores, ascites at

TCR, albumin levels at TCR, and treatment of rejection within 6

and 12 months post-transplant. Body mass index, days status 1A

(most urgent status on transplant waiting list), use of inotropes with

acute decompensated heart failure, and other forms of life support

including ventricular assist devices during the pretransplant period

predicted hospitalization for heart transplant patients. Most of these

variables indicate severity of disease at the time of listing and/or

transplantation however use of ML brings a unique set of variables

out of the many which demonstrate good predictive ability and can

help prognosticate the risk of complications in the post-transplant

period.

Importantly, physician- or transplant team-reported noncompli-

ance (UNOS variable of PX_NCOMPLIANT, “Recipient Noncom-

pliant During this Follow-Up Period”) was a variable included on

UNOS TRF forms from late 1999 to 2007. Within our data, this

variable did not have >50% values and therefore had missing values

imputed through MissForest, consistent with bestpractices in ML

approaches [37–39]. The removal of this variable despite apparent

predictive utility in this data and prior studies [11], and inclusion of

adherence in other bigdata studies of pediatric post-transplant out-

comes [17], points to the need for inclusion of an adherence measure

within UNOS data. Nonadherence is associated with increased num-

ber and frequency of hospitalizations, the need for biopsies testing

for organ rejection, and even mortality [4, 6–10, 55]. Although in

need of continued validation across organ types, the Medication

Level Variability Index (MLVI) has shown promise as a measure of

nonadherence as higher MLVI scores have predicted poor post-

transplant outcomes in samples of pediatric heart, liver, and kidney

transplant recipients [4, 56–60]. Inclusion of measures of nonadher-

ence in UNOS TRF forms, such as yearly patient MLVI and other

measures of medication adherence, would provide a leap forward in

post-transplant monitoring, care, and identification of high-risk

patients.

Psychosocial variables
Numerous social, familial, and patient variables were found to be

predictive of outcomes through DL models, across prediction win-

dows, and within organ types. Across organ types and prediction

windows, patient age, gender, race, and ethnicity each provided pre-

dictive utility to the DL models. Age and gender were both identified

in numerous post-transplant models as predictive of hospitaliza-

tions. Older age at transplant and current patient age have been

found to predict lower post-transplant health–related quality of life

[61], more rejection episodes (both acuteand chronic) [62–64], and

greater mortality riskwhen compared toyounger children across or-

gan type [55, 65]. Female patients have reported poor post-

transplant outcomes in studies of pediatric kidney [55, 66, 67] and

heart [68] recipients.

Academic progress and level were important predictors in DL

models. While these variables are likely highly correlated with func-

tional status, their inclusion in the models suggests additional pre-

dictive utility beyond a proxymeasure of health–related quality of

life. Social factors identified as predictive of hospitalizations in the

current study included race, ethnicity, and socio-economic status

(SES). Race/ethnicity and SES have been among the most studied

factors predicting post-transplant outcomes and medication adher-

ence [11], and numerous studies have identified significant associa-

tions between these social factors and medical outcomes in pediatric

kidney, liver, and heart patients [13, 66–68]. Correlates of lower SES

such as single-parent households, lower parental education, and re-

ceipt of public insurance have been reported as associated with

poorer post-transplant outcomes [13, 22, 66, 69].

Limitations and future direction
One of the most important limitations of this study was the sample

size. After preprocessing the data and only including the features

with lower rates of missing values in the models in this study, the

number of remained records in each prediction window of each

organ type is pretty limited, especially in the case of heart data sets.

DL models usually have more trainable parameters in comparison to

the number of samples they are trained on. Thus, in theory, it is sug-

gested to use some form of regularization to control the generaliza-

tion error and reduce complexity [70]. However, building DL

models on larger number of data points can potentially enhance the

reliability and generalizability of the models. Also, the majority of

features included in the predictive models in this study were categor-

ical features. For the means of predictive modeling, we converted

these categorical variables to numerical ones by assigning numbers

to each category of each feature. Although the one-hot coding

scheme might have been a better choice for the goal of this study, es-

pecially in terms of interpretations, the small sample size, the num-

ber of categorical variables, and the number of categories in each of

these variables would not allow for inducing more sparsity. This

would in turn lower the predictive accuracy of the models. Also, for

some of the patients a complete record of follow-up data for a spe-

cific prediction window might have not been available. Thus, we as-

sumed the outcome will not change in the subsequent years. While

the current study serves as a proof of concept and informs the poten-

tial advantages of predictive modeling for future works, to address

the aforementioned limitations, we are extending this research by

modeling the complete UNOS data where we have more data points

available. This will allow us to exclude those patients with incom-

plete follow-up data in each prediction window and have separate

training, validation, and test sets for the learning process, hyper-

parameter tuning, and performance analysis.

CONCLUSIONS

Patients and their families experience varying challenges throughout

the pre- and post-transplant period. The pediatric transplant service

environment is rich in health, medical, patient, and family data,

which can be collected from traditional EHR, administrative data

(e.g., UNOS), unstructured clinical data (e.g., text from clinical

notes), and even prospective data collection from patients and fami-

lies. ML techniques and a DL approach to modeling have the ability

to model evolving and heterogeneous patient-level data over time,
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identify predictors of poor outcomes, and inform care. Uses of ML

in pediatric transplantation have numerous applications including

decision-support systems and even development of data-driven

assessments. A foundation for a physician and transplant team

decision-support system is needed and will assist in identifying

patients at greatest risk, the optimal time to intervene, and modifi-

able post-transplant factors [15]. These approaches can be powerful

tools to aid in the mission of the transplant team to enhance and sus-

tain health–related quality of life for these children and their families

directly affecting patient and allograft survival.
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