Table 5.
The performance of different machine learning and DL models for hospitalization prediction using the heart datasets
| Prediction window | Algorithm | Precision | Recall | F-Measure | AUROC | AUPRC |
|---|---|---|---|---|---|---|
| 1y | Logistic | 0.777 | 0.75 | 0.76 | 0.695 | 0.774 |
| MLP | 0.705 | 0.656 | 0.676 | 0.726 | 0.833 | |
| SMO.PolyKernel | 0.688 | 0.688 | 0.688 | 0.543 | 0.674 | |
| RandomForest | 0.599 | 0.719 | 0.653 | 0.56 | 0.71 | |
| DL | 0.611 | 0.781 | 0.685 | 0.50 | 0.50 | |
| 3y | Logistic | 0.588 | 0.587 | 0.588 | 0.597 | 0.589 |
| MLP | 0.62 | 0.619 | 0.619 | 0.66 | 0.647 | |
| SMO.PolyKernel | 0.64 | 0.64 | 0.636 | 0.633 | 0.587 | |
| RandomForest | 0.607 | 0.608 | 0.603 | 0.673 | 0.68 | |
| DL | 0.505 | 0.576 | 0.50 | 0.593 | 0.564 | |
| 5y | Logistic | 0.654 | 0.658 | 0.654 | 0.66 | 0.641 |
| MLP | 0.649 | 0.648 | 0.648 | 0.68 | 0.675 | |
| SMO.PolyKernel | 0.671 | 0.668 | 0.646 | 0.631 | 0.598 | |
| RandomForest | 0.715 | 0.71 | 0.696 | 0.741 | 0.745 | |
| DL | 0.537 | 0.554 | 0.499 | 0.565 | 0.547 |