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Abstract

We introduce a model-based reconstruction framework with deep learned (DL) and smoothness 

regularization on manifolds (STORM) priors to recover free breathing and ungated (FBU) cardiac 

MRI from highly undersampled measurements. The DL priors enable us to exploit the local 

correlations, while the STORM prior enables us to make use of the extensive non-local similarities 

that are subject dependent. We introduce a novel model-based formulation that allows the seamless 

integration of deep learning methods with available prior information, which current deep learning 

algorithms are not capable of. The experimental results demonstrate the preliminary potential of 

this work in accelerating FBU cardiac MRI.
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1. INTRODUCTION

The acquisition of cardiac MRI data is often challenging due to the slow nature of MR 

acquisition. The current practice is to integrate the information from multiple cardiac cycles, 

while the subject is holding the breath. Unfortunately, this approach is not practical for 

several populations, including pediatric and obese subjects. Several self-gated strategies [1], 

which identify the respiratory and cardiac phases to bin the data and reconstruct it, have 

been introduced to enable free breathing and ungated (FBU) cardiac MRI. The recently 

introduced, smoothness regularization on manifolds (STORM) prior in [6] follows an 

implicit approach of combining the data from images in a data-set with similar cardiac 

respiratory phases. All of the current gating based methods require relatively long (≈ 1 

minute) acquisitions to ensure that sufficient Fourier or k-space information is available for 

the recovery.

Several researchers have recently proposed convolutional neural network (CNN) 

architectures for image recovery [2, 3, 4]. A large majority of these schemes retrained 

existing architectures (e.g., UNET or ResNet) to recover images from measured data. The 

above strategies rely on a single framework to invert the forward model (of the inverse 

problem) and to exploit the extensive redundancy in the images. Unfortunately, this 

approach cannot be used directly in our setting. Specifically, the direct recovery of the data-

set using CNN priors alone is challenging due to the high acceleration (undersampling) 

HHS Public Access
Author manuscript
Proc IEEE Int Conf Acoust Speech Signal Process. Author manuscript; available in PMC 
2021 March 11.

Published in final edited form as:
Proc IEEE Int Conf Acoust Speech Signal Process. 2018 April ; 2018: 6533–6537. doi:10.1109/
icassp.2018.8462637.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



needed (≈50 fold acceleration); the use of additional k-space information from similar 

cardiac/respiratory phases is required to make the problem well posed. Here, high 

acceleration means reduced scan time which is achieved with undersampling. None of the 

current CNN image recovery schemes are designed to exploit such complementary prior 

information, especially when the prior depends heavily on cardiac and respiratory patterns of 

the specific subject. Another challenge is the need for large networks with many parameter 

to learn the complex inverse model, which requires extensive amounts of training data and 

significant computational power. More importantly, the dependence of the trained network 

on the acquisition model makes it difficult to reuse a model designed for a specific 

undersampling pattern to another one. This poses a challenge in the dynamic imaging setting 

since the sampling patterns vary from frame to frame.

The main focus of this work is to introduce a model based framework, which merges the 

power of deep learning with model-based image recovery to reduce the scan time in FBU 

cardiac MRI. Specifically, we use a CNN based plug-and-play prior. This approach enables 

easy integration with the STORM regularization prior, which additionally exploits the 

subject dependent non-local redundancies in the data. Since we make use of the available 

forward model, a low-complexity network with a significantly lower number of trainable 

parameters is sufficient for good recovery, compared to black-box (CNN alone) image 

recovery strategies; this translates to faster training and requires less training data. More 

importantly, the network is decoupled from the specifics of the acquisition scheme and is 

only designed to exploit the redundancies in the image data. This allows us to use the same 

network to recover different frames in the data-set, each acquired using a different sampling 

pattern. The resulting framework can be viewed as a iterative network, where the basic 

building block is a combination of a data-consistency term and a CNN; unrolling the 

iterative network yields a network. Since it is impossible to acquire fully sampled FBU data, 

we validate the framework using retrospective samples of STORM [6] reconstructed data, 

recovered from 1000 frames (1 minute of acquisition). In this work, we aim to significantly 

shorten the acquisition time to 12–18 secs (200–300 frames) by additionally capitalizing on 

the CNN priors.

The main difference between the proposed scheme and current unrolled CNN methods [2, 5] 

is the reuse of the CNN weights at each iteration; in addition to reducing the trainable 

parameters, the weight reuse strategy yields a structure that is consistent with the model-

based framework, facilitating its easy use with other regularization terms. In addition, the 

use of the CNN as a plug and play prior rather than a custom designed variational model [2] 

allows us to capitalize upon the well-established software engineering frameworks such as 

Tensorflow and Theano.

2. PROPOSED METHOD

We note that the STORM prior does not exploit the local similarities, such as smooth nature 

of the images or the similarity of an image with its immediate temporal neighbors. In 

contrast, the 3-D CNN architecture is ideally suited to exploit the local similarities in the 

dynamic data-set. To capitalize on the complementary benefits of both methods, we 

Biswas et al. Page 2

Proc IEEE Int Conf Acoust Speech Signal Process. Author manuscript; available in PMC 2021 March 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



introduce the model based reconstruction scheme to recover the free breathing dynamic 

data-set X

C(X) = ∥ A(X) − B ∥2
2

data consistency 
+ λ1 Nw(X)2

CNN prior 
+ λ2 tr XTLX

STORM prior 

.
(1)

Here, A is the Fourier measurement operator. The second and third terms are the 

regularization terms, which exploit the redundancy in the images. Nw is a learned CNN 

estimator of noise and alias patterns, which depends on the learned network parameters w. 

Specifically, Nw(x) 2 is high when x is contaminated with noise and alias patterns; its use 

as a prior will encourage solutions that are minimally contaminated by noise and alias 

patterns. Since Nw(X) is an estimate of the noise and alias terms, one may obtain the 

denoised estimate as

Dw(X) = ℐ − Nw (X) = X − Nw(X) . (2)

This reinterpretation shows that Dw can be viewed as a denoising residual learning network. 

When Dw is a denoiser, Nw(X) = X − Dw(X) is the residual in X. With this interpretation, the 

CNN prior can be expressed as X − Dw(X) 2.

The third term in (1) is the STORM prior, which exploits the similarities between image 

frames with the same cardiac and respiratory phase; tr denotes the trace operator. Here, L = 

D − W is the graph Laplacian matrix, estimated from the k-space navigators [6]. W is a 

weight matrix, whose entries are indicative of the similarities between image frames. 

Specifically, W(i,j) is high if xi and xj have similar cardiac/respiratory phase. D is a diagonal 

matrix, whose diagonal entries are given by D(i,i) = Σj W(i,j).

2.1. Implementation

We re-express the STORM prior in (1) using an auxiliary variable X = Z:

2tr XTLX = tr XTDX + tr ZTDZ − 2tr XTWZ (3)

This alternate expression allow us to rewrite (1) using two auxiliary variables Y = Dw(X) and 

Z = X:

C = ∥ A(X) − B ∥2
2 + λ1 ∥ X − Y ∥2 + λ2 tr XTDX + tr ZTDZ − 2tr XTWZ

We propose to use an update strategy, where we assume Z and Y to be fixed and minimize 

the expression with respect to X. The variables Z and Y are then updated based on the 

previous iterate. The minimization of C w.r.t X yields

∇C = A*(A(X) − B) + λ1(X − Y) + λ2(DX − WZ) = 0 (4)

where A* is the adjoint of the operator A. This normal equation which gives the update rules
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Yn = Dw Xn (5)

Qn = WZn = WXn
Rn = A*(B) + Yn + Qn

(6)

Xn + 1 = A*A + λ1I + λ2D −1Rn (7)

Note that since we rely on 2-D sampling on a frame by frame basis and because D is a 

diagonal matrix, the matrix A*A + λ1I + λ2D  is separable; it can be solved analytically on a 

frame by frame basis in the Fourier domain; we term this operation as the data consistency 

(DC) step. Specifically, the update rule for the ith frame is given by

xn + 1
(i) = Ai

HAi + λ1 + λ2di I −1 Ai
H(B) + yn(i) + qn(i) , (8)

where Ai = SiF and di = Di,i. Here, Si is the sampling pattern in the ith frame and F is the 2D 

Fourier transform. yn(i) is the ith frame of Yn, which is the CNN denoised version of the nth 

iterate Xn. Likewise, qn(i) is the ith frame of Qn, which is the STORM denoised version of 

Xn, with the exception that each column of Qn is scaled by di. This update rule shows that 

the framework is very similar to [7], where the power of existing denoising algorithms are 

capitalized as plug and play priors in a model based regularization framework. The 

algorithm alternates between signal recovery and denoising steps.

This iterative algorithm is illustrated in Fig. 1.(a), where we initialize the algorithm with 

X0 = A*(B). The STORM and CNN denoised signals Q and Y are then fed into the DC 

block specified by (7). Once the number of iterations are fixed, we can obtain the unrolled 

network, which is illustrated in Fig. 1.(b). We observe that 5–8 iterations of the network is 

often sufficient for good recovery.

2.2. Training phase

We propose to train the unrolled CNN shown in Fig. 1.b. Specifically, we present the 

network with exemplar data consisting of undersampled data B as the input and their 

reconstructions as the desired output. The CNN parameters are learned to minimize the 

reconstruction error, in the mean square sense. Unfortunately, it is difficult to present the 

network with a full data-set (≈ 200 frames) in the training mode. Specifically, the feature 

maps for each layer need to be stored for the evaluation of gradients by back-propagation, 

which is difficult on GPU devices with limited onboard memory.

Note that both the CNN and the data-consistency layer perform local operations. If the 

STORM prior was not present, one could pass smaller subsets of input and output (e.g. 20–

30 frames) data in multiple batches for training. In contrast, the STORM prior uses non-local 

or global information from the entire data-set. Specifically, for the evaluation of the ith frame 

of Qn, specified by qn(i), we require the entire data-set. We hence propose a lagged approach, 
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where Qn is updated less frequently than the other parameters. Specifically, we use an outer 

loop to update Qn, while the trainable parameters of the CNN w and the regularization 

parameters λ1 and λ2 are updated assuming Qn to be fixed. We feed in batches of 20–30 

frames of training data. The network during this training mode is illustrated in Fig. 2. After 

one such training, we run the model on the entire data-set to determine the Xn;n = 0,..,N − 1 

for all 204 frames. The variables Qn are updated using (6), which are then used in the next 

training.

3. EXPERIMENTAL DETAILS

The raw data data was acquired using a golden angle FLASH sequence with k-space 

navigators on a Siemens Aera scanner from congenital heart patients with FOV=300 mm, 

slice thickness=5 mm, radial views=10000, base resolution=256, TR/TE=4.68/2.1 ms, 

resulting in an acquisition time of ≈ 50 s, was binned to frames with 12 lines/frame and 

reconstructed using the STORM algorithm using [6], where 4 channel k-space data obtained 

by PCA combining the data from 24 channels were used. Note that the direct acquisition and 

reconstruction of similar data-sets are impossible. Sub-segments of this data, each consisting 

of 204 frames, were used to train the proposed scheme; note that our objective is to reduce 

the acquisition window to around 15–20 seconds. The recovered data was retrospectively 

undersampled to 17 lines/frame, consisting of 4 navigator and 13 golden angle lines. The 

navigator lines were only used for the Laplacian estimation and not used for final 

reconstruction. We assumed single channel acquisition for simplicity.

We implemented the CNN network Dw in TensorFlow with a 3D kernel size of 3 × 3, five 

layers, and 64 filters per layer. We considered the number of iterations of the network to be 

N = 8. Each layer was a cascade of 3D convolution, batch normalization and a ReLU 

activation. Since the memory demands restricted the training using all 204 frames in the 

data-set, we split the data into batches of 17 frames each, extracted from the original data-

set. Note that the sampling pattern for each frame used in training is different; since the 

model based framework uses the numerical model for the acquisition scheme, it can account 

for this variability without requiring a very deep network with several trainable parameters. 

As discussed previously and illustrated in Algorithm 1, we pre-compute the variables Qn; n 
= 1, .., N and assume them to be fixed during the deep learning training procedure. We 

restricted the cost function to only include comparisons with the middle frames in the output 

to reduce boundary issues; the mean square error cost function was used to perform the 

optimization. We relied on ADAM optimizer with its default hyperparameters to train the 
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network weights as well as the regularizers, λ1, λ2. We used 200 epochs of network training 

for each outer loop. The training time for 200 epochs is around 2.5 hours; the total time 

taken for NOuter = 4 is ≈ 11 hours on a NVDIA P100 GPU processor.

Once the training is complete, the reconstruction follows the unfolded network in Fig. 1.b. 

Specifically, the entire undersampled single channel k-space data corresponding to the 204 

frame data-set is fed to the trained network. Since the network just requires eight repetitions 

and the basic steps involve convolutions and fast Fourier transforms, hence the 

reconstructions are fast. Testing time for 204 frames with N = 8 repetitions was 38 seconds.

4. RESULTS & CONCLUSION

Fig 3 shows the reconstruction results with corresponding to 17 lines/frame) using single 

channel data. This data is used as the ground truth for the reconstruction. A similar STORM 

reconstructed data-set from another patient was used for training. These comparisons show 

that the combination of deep learning and STORM priors yield reconstructions that are 

comparable in quality to the ground truth.

We introduced model based dynamic MR reconstruction for free breathing and ungated 

cardiac MRI. The proposed framework enables the seamless integration of deep learned 

architectures with other regularization terms. It additionally exploits the prior information 

that is subject dependent (e.g. due to respiratory variations and cardiac rate). The 

preliminary study in this paper shows that the proposed framework enables us to 

significantly reduce the acquisition time in free breathing approaches. Our future work will 

focus on demonstrating the power of the framework on prospectively acquired data. We also 

plan to capitalize on the multichannel data, which is not exploited in this work for simplicity.
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Fig. 1. 
Illustration of the MoDL-STORM architecture. (a) indicates the iterative structure denoted 

by (5)–(7). Here, Dw denotes the denoising residual network, shown with the yellow box. 

This residual learning is performed using an out of the box CNN approach. (b) Once the 

number of iterations N is fixed, the network can be unrolled to obtain a non-iterative 

unrolled deep learning model, which relies on weight sharing.
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Fig. 2. 
Modified network used in training illustrated in Algorithm 1. The main difference between 

the unrolled network in Fig.1.(b) is that the variables Qn; n = 0, .., N are assumed to be 

fixed. These variables are estimated in the outer loop as shown in Algorithm 1.
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Fig. 3. 
Reconstruction results at 16 fold acceleration. The ground truth data, recovered from 50 

second (1000 frames) acquisition using STORM is shown in (a). The data from a subset of 

204 frames is retrospectively downsampled assuming single channel acquisition and tested 

using different algorithm. The zero-filled IFFT reconstruction is shown in (b). A 

reconstructed frame using a network similar to ours without STORM priors (only CNN) is 

shown in (c). Note that the exploitation of the local similarities enabled by CNN alone is 

insufficient to provide good reconstructions at 16 fold acceleration. In contrast, the 

combination of deep learning and STORM priors yield reconstructions that are comparable 

in quality to the ground truth. The temporal profiles of the ground truth and MoDL-STORM 

reconstructions are shown in (e) and (f), respectively

Biswas et al. Page 10

Proc IEEE Int Conf Acoust Speech Signal Process. Author manuscript; available in PMC 2021 March 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	INTRODUCTION
	PROPOSED METHOD
	Implementation
	Training phase

	EXPERIMENTAL DETAILS
	RESULTS & CONCLUSION
	References
	Fig. 1.
	Fig. 2.
	Fig. 3.

