TABLE 3.
Latent class solution of student behaviors at the year 2018.
Model | LL | npar | AIC | BIC | CAIC | AWE | BF (K, K+1) | cmP(K) | SIC | exp(SIC-max) | Entropy |
1-class | −7907.24 | 6 | 15826.47 | 15852.51 | 15858.51 | 15908.55 | 0.000 | 0.000 | −7926.3 | 2.43E-150 | - |
2-class | −7598.58 | 13 | 15223.15 | 15279.58 | 15292.58 | 15401.00 | 0.000 | 0.000 | −7639.8 | 6.257E-26 | 0.611 |
3-class | −7528.60 | 20 | 15097.19 | 15184.00 | 15204.00 | 15370.80 | 0.000 | 0.000 | −7592 | 3.562E-05 | 0.761 |
4-class | −7496.16 | 27 | 15046.32 | 15163.51 | 15190.51 | 15415.70 | 4098.013 | 1.000 | −7581.8 | 1 | 0.760 |
5-class | −7482.29 | 34 | 15032.58 | 15180.15 | 15214.15 | 15497.72 | 67255.73 | 0.000 | −7590.1 | 0.000244 | 0.668 |
6-class | −7471.21 | 41 | 15024.43 | 15202.38 | 15243.38 | 15585.34 | 0.000 | 0.000 | −7601.2 | 3.628E-09 | 0.657 |
LL = loglikelihood; npar = number of free parameters in the model; AIC = Akaike information criterion; BIC = Bayesian information criterion; CAIC = Bozdogan’s consistent AIC; AWE = Approximate weight of evidence criterion (Masyn, 2013); BF = Bayes factor; cmP(k) = correct model probability; SIC = Schwartz information criterion. Entropy estimates are presented to realize latent class separation; this information did not contribute to the class enumeration process. Bolded estimates show preference by a criterion for a given class solution.