Skip to main content
. 2021 Feb 26;12:624221. doi: 10.3389/fpsyg.2021.624221

TABLE 3.

Latent class solution of student behaviors at the year 2018.

Model LL npar AIC BIC CAIC AWE BF (K, K+1) cmP(K) SIC exp(SIC-max) Entropy
1-class −7907.24 6 15826.47 15852.51 15858.51 15908.55 0.000 0.000 −7926.3 2.43E-150 -
2-class −7598.58 13 15223.15 15279.58 15292.58 15401.00 0.000 0.000 −7639.8 6.257E-26 0.611
3-class −7528.60 20 15097.19 15184.00 15204.00 15370.80 0.000 0.000 −7592 3.562E-05 0.761
4-class −7496.16 27 15046.32 15163.51 15190.51 15415.70 4098.013 1.000 −7581.8 1 0.760
5-class −7482.29 34 15032.58 15180.15 15214.15 15497.72 67255.73 0.000 −7590.1 0.000244 0.668
6-class −7471.21 41 15024.43 15202.38 15243.38 15585.34 0.000 0.000 −7601.2 3.628E-09 0.657

LL = loglikelihood; npar = number of free parameters in the model; AIC = Akaike information criterion; BIC = Bayesian information criterion; CAIC = Bozdogan’s consistent AIC; AWE = Approximate weight of evidence criterion (Masyn, 2013); BF = Bayes factor; cmP(k) = correct model probability; SIC = Schwartz information criterion. Entropy estimates are presented to realize latent class separation; this information did not contribute to the class enumeration process. Bolded estimates show preference by a criterion for a given class solution.