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Abstract
This narrative review provides a broad perspective on immature control of breathing, which is universal in infants born
premature. The degree of immaturity and severity of clinical symptoms are inversely correlated with gestational age. This
immaturity presents as prolonged apneas with associated bradycardia or desaturation, or brief respiratory pauses, periodic
breathing, and intermittent hypoxia. These manifestations are encompassed within the clinical diagnosis of apnea of
prematurity, but there is no consensus on minimum criteria required for diagnosis. Common treatment strategies include
caffeine and noninvasive respiratory support, but other therapies have also been advocated with varying effectiveness. There
is considerable variability in when and how to initiate and discontinue treatment. There are significant knowledge gaps
regarding effective strategies to quantify the severity of clinical manifestations of immature breathing, which prevent us from
better understanding the long-term potential adverse outcomes, including neurodevelopment and sudden unexpected
infant death.

Introduction

Apnea-related symptoms are the clinical manifestation of
immature control of breathing and are a common occur-
rence in the neonatal intensive care unit (NICU) [1–5]. The
clinical diagnosis of apnea of prematurity (AOP) relies on
evidence of prolonged apnea lasting 15–20 s or more, or
shorter durations if associated with bradycardia or desa-
turation. Virtually all infants <28 weeks gestation have
AOP-related symptoms, decreasing to only about 20% at
34 weeks and <10% beyond 34 weeks gestation [6, 7].

In this narrative review, we will address (1) the patho-
physiology of immature control of breathing and its clinical
manifestations; (2) pharmacological and nonpharmacological
therapies for AOP; (3) resolution of clinical symptoms of
AOP and readiness for discharge home; (4) post-discharge
outcomes, including neurodevelopmental sequelae, brief

resolved unexplained events (BRUE), sudden infant death
syndrome (SIDS), and sleep disordered breathing (SDB); and
(5) gaps in knowledge with future research directions. The
methodology for this narrative review was based on a com-
prehensive summary of known studies published in English
and supplemented by a PubMed search for additional rele-
vant publications. Both sources were supplemented by a
review of all relevant secondary references. Publications only
as abstracts were not included.

Pathophsyiology

Control of breathing is a complex process with neurons in
the respiratory control centers of the bulbopontine region of
the brainstem responsible for rhythmogenesis. Neurons
within this region respond to multiple afferent inputs to
modulate rhythmicity and provide efferent output to
respiratory control muscles. The afferent inputs include
signals from peripheral and central chemoreceptors, pul-
monary stretch receptors, and cortical neurons. Preterm
infants exhibit immature control of breathing, which
includes aberrant activity of both central and peripheral
chemoreceptors as well as poor neuromuscular control of
upper airway patency (Fig. 1) [2]. Due to immaturity,
central chemosensitivity to hypercarbia is diminished in
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infants born preterm, and when matched for gestational age,
further reduced with AOP-related symptoms. Chemosensi-
tivity to hypoxia is also impaired and is characterized by a
biphasic response. The initial response is hyperventilatory
and likely due to peripheral chemoreceptor input, but this
initial hyperventilation may not occur in extremely preterm
infants. The secondary depressive ventilatory response to
hypoxia is due primarily to centrally mediated suppression
of peripheral chemoreceptor activity [2, 8].

Apnea is the best known symptomatic indicator of
immature control of breathing, and bradycardia or desa-
turations are common consequences of prolonged apneas.
Apnea can be central, obstructive, or mixed (Fig. 1) [8].
Mixed apneas can begin either with obstructive breaths or
central apnea. Obstructive apneas are related to absent
neuromuscular upper airway control, but all three apnea
types are related to brainstem immaturity [3]. Mixed apneas
with loss of upper airway patency at the end of a central
pause are the most common type in the NICU, and mixed or
obstructive events account for the majority of apneas [9]. It
is unknown if the frequency of mixed apneas differ in
preterm infants born at lower gestational ages than those
included in published studies. Most studies of apnea type
and mixed apnea preponderance have been limited to the
acute phase of immature breathing in the NICU, but
the Collaborative Home Infant Monitoring Evaluation
(CHIME) Study included outpatient recordings in infants
born ≤34 weeks gestation from term-equivalent age through
4–6 months postnatal age; using respiratory inductance
plethysmography to assess apnea type, these recordings

confirmed that most long apneas continued to be mixed,
with about 70% of all apneas including at least three
obstructed breaths [10, 11].

Additional clinical manifestations of immature control of
breathing include shorter respiratory pauses that can be
isolated or occur in clusters [12, 13]. Respiratory pauses
occurring in clusters manifest as periodic breathing, which
is an oscillatory breathing pattern due to hyperventilation
followed by brief apneas or respiratory pauses [14–16].
Periodic breathing is primarily a consequence of immature
brainstem control, but peripheral chemoreceptors are also of
critical importance (Fig. 1) [9, 17]. Indeed, periodic
breathing appears to be related at least in part to increased
sensitivity or gain in peripheral chemoreceptors leading to
overcompensation for small changes in PaO2 or PaCO2 and
hence oscillations between brief episodes of tachypnea
leading to relative hypocarbia that results in apnea in a
cyclic pattern [15].

The prevalence of periodic breathing may approach
100% at very low gestational ages, and progressively
decreases with increasing postnatal and postmenstrual age
(PMA), reaching a nadir by about 44 weeks PMA [15, 18].
The respiratory pauses in periodic breathing are generally
not of sufficient duration to cause bradycardia or desatura-
tion that trigger monitor alarms or to be evident clinically
unless occurring in prolonged clusters. Intermittent hypoxia
(IH) is perhaps the most important consequence of periodic
breathing, but requires continuous respiratory recording for
documentation. In preterm infants <28 weeks gestation, IH
frequency is lowest in the first postnatal week, progressively
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Fig. 1 The pathophysiology of
apnea of prematurity.
Brainstem respiratory centers
demonstrate both immature
central and peripheral
chemoreceptor responses and
diminished neuromuscular
control of upper airway patency.
In addition to prolonged apneas
leading to bradycardia and
desaturation, the immature
respiratory centers also result in
shorter respiratory pauses and
periodic breathing. Peripheral
chemoreceptors mature more
rapidly postnatally than central
chemoreceptors, which can
result in the cyclic pattern of
periodic breathing and
intermittent hypoxia.
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increases over the first 4 weeks, and then progressively
decreases after 6–8 weeks postnatal age [19]. This time
course coincides with a more rapid maturation in peripheral
relative to central chemoreceptors and hence greater cyclic
instability. This time course may also be affected in part by
sleep state maturation; periodic breathing and hence IH
occur primarily during quiet (NREM) sleep, which is at a
nadir initially but progressively increases with increasing
postnatal age [9, 15, 16, 20].

The AOP phenotype has been attributed solely to
immature control of breathing consequent to preterm birth
but there may also be important genetic influences. In one
study of heritability of AOP, twin modeling demonstrated
that the heritability of AOP is 87% (95% CI 0.64–0.97)
among same-gender twins; genetic factors accounted for
99% (95% CI 0.89–1.00) of the variance in AOP in males,
but only 78% (95% CI 0.49–0.94) in females [21], but
shared environment was not a significant influence. As an
additional effect of genotype, polymorphisms in the ade-
nosine A1 and A2A receptor genes have been associated with
a higher risk of AOP and increased variability in response to
methylxanthine therapy [22, 23].

In summary, AOP and periodic breathing with IH are
manifestations of immature control of breathing due to
central and peripheral chemoreceptor immaturity. The
severity of immature control of breathing and its clinical
manifestations are inversely associated with gestational age
at birth. Clusters of periodic breathing and associated IH
may be as important as prolonged apneas in determining
risk for long-term morbidities. The extent to which geno-
type affects the phenotype of AOP is unknown, but an
important focus for future research.

Therapeutic strategies

There is no consensus on when to initiate therapy for AOP.
Generally, treatment is indicated when episodes are recur-
rent, do not resolve spontaneously or with minimal stimu-
lation, and are associated with bradycardia or hypoxemia.
Various nonpharmacological therapies have been advocated
for AOP, but the first line of therapy is usually a methyl-
xanthine, specifically caffeine.

Methylxanthines

Methylxanthines have been used for >40 years to treat
AOP. Early studies using aminophylline and theophylline
showed they effectively reduced the incidence of apnea
[24]. Caffeine, a trimethylxanthine, is the major metabolite
of the dimethylxanthine theophylline and demonstrates
more potent central activity and less peripheral effects.
Caffeine has become the preferred methylxanthine due to

fewer side effects, a wider therapeutic index, and a longer
half-life that allows once-daily dosing [25, 26].

Methylxanthines act both centrally and peripherally to
stimulate respiration through antagonism of adenosine A1

and A2A receptors They activate the medullary respiratory
centers and increase CO2 sensitivity, induce bronchodila-
tion, and enhance diaphragmatic function, all of which lead
to increased minute ventilation, improved respiratory pat-
tern, and reduced hypoxic respiratory depression [24].
Studies suggest that the primary mechanism by which
methylxanthines reduce apnea is antagonism of excitatory
A2A receptors on GABAergic neurons and blockade of
inhibitory A1 receptors, with resultant stimulation of central
respiratory neural output [27, 28].

Caffeine is metabolized in the liver by the cytochrome
P450 enzyme system. The enzymes responsible for its
metabolism are functionally deficient at birth, but mature
progressively with increasing gestational age and postnatal
age. In the early postnatal weeks, elimination of caffeine
mainly occurs by renal excretion in preterm infants. The
clearance of caffeine is very slow and the plasma half-life
very prolonged in preterm infants, ranging from 41 to 231 h
[29, 30]. Oral caffeine is completely absorbed, facilitating
the transition from intravenous to oral preparations when
infants are able to tolerate enteral medications.

Caffeine dosing

The initial studies of caffeine citrate for AOP that led to
FDA approval used a loading dose of 20 mg/kg followed by
a daily maintenance dose of 5 mg/kg in infants born between
28 and 33 weeks’ gestation. This dosing regimen generated
concentrations within the recommended therapeutic range of
5–25 μg/mL. A recent study from the Pediatric Trials Net-
work confirmed the safety of maintenance doses up to 10
mg/kg/day in extremely preterm infants for longer durations
than recommended on the drug label [31]. Other studies
have suggested that higher dose regimens convey ther-
apeutic advantages without increasing adverse effects.
Compared to standard dosing regimens, higher dosing
regimens (loading doses up to 80 mg/kg, maintenance doses
of 10–20mg/kg/day) have been shown to be more effective
in reducing apnea and preventing extubation failure [32]. A
recent retrospective study associated a higher average daily
dose of caffeine with improved neurodevelopmental out-
comes [33]. However, some concerns about adverse effects
have limited the use of high-dose caffeine. One study
showed a higher incidence of cerebellar hemorrhage with
early high-dose caffeine compared to standard dosing, but
there was no difference in developmental outcomes at 2
years [34]. Well-designed randomized controlled trials are
needed to determine the optimal dose of caffeine to treat
AOP and to optimize neonatal outcomes.

Immature control of breathing and apnea of prematurity: the known and unknown 2113



Side effects/toxicity of methylxanthine therapy

Adenosine receptors are present throughout the brain as
well as in the heart, blood vessels, respiratory system,
gastrointestinal system, and kidneys. Since methylxanthines
are nonspecific adenosine antagonists, their use can lead to
secondary effects in organ systems outside the brain. The
side effects of methylxanthine therapy result from increased
metabolic rate and catecholamine stimulation, leading
potentially to transient tachycardia, irritability, and slowing
of growth. In the Caffeine for Apnea of Prematurity (CAP)
trial, caffeine-treated infants gained less weight during the
first 3 weeks after randomization but by 4 weeks there was
no difference in weight gain, and there were no long-term
adverse effects on growth [35–37]. Animal studies and
small clinical trials show that caffeine delays gastric emp-
tying time, decreases lower esophageal sphincter tone, and
transiently reduces splanchnic oxygenation but the clinical
significance of these findings is uncertain [38–40]. Impor-
tantly, the CAP trial observed no differences in the rate of
NEC between caffeine and placebo groups [35].

In preterm infants studied >12 h after starting caffeine,
urine flow and urinary sodium excretion increased [41],
potentially impacting fluid management. However, these
effects on renal function appear to be beneficial. In the
Assessment of Worldwide Acute Kidney Injury Epide-
miology in Neonates study, preterm infants treated with
caffeine in the first week of life had a decreased incidence
and severity of acute kidney injury [42].

Case reports of caffeine toxicity in preterm infants have
described a variety of symptoms, including seizures, cardiac
arrhythmias, and rhabdomyolysis [24, 43, 44]. Signs of
toxicity are generally not seen until levels exceed 40 μg/mL.
Therefore, measuring drug concentrations is not recom-
mended in the absence of persistent apnea-related symp-
toms or potential toxicity [24, 45].

Clinical use

In addition to reducing apnea-related symptoms, methyl-
xanthines facilitate extubation and reduce the need for
mechanical ventilation [46]. The CAP trial revealed many
other benefits of caffeine therapy for extremely preterm
infants born <1250 g, including reductions in the incidence
of bronchopulmonary dysplasia (BPD), need for patent
ductus arteriosus (PDA) treatment, severity of retinopathy
of prematurity (ROP), and improved long-term neurodeve-
lopment related to motor function [36, 37]. In a subset
followed to 11 years, children treated with caffeine had
improved lung function [47].

In the CAP Trial, the benefits of caffeine were most
significant when treatment was initiated within 3 days after
birth [48]. Several retrospective cohort studies have

associated earlier initiation of caffeine therapy with
improved outcomes, but the evidence is generally of low
quality and has to be interpreted with caution [24, 49]. The
only randomized, controlled trial investigating early caf-
feine administration in extremely preterm ventilated infants
was terminated early due to concern for higher mortality in
the early caffeine group without any clinical benefit; how-
ever, baseline demographic differences between the groups
and small sample size limit the ability to draw definitive
conclusions [50]. Nevertheless, clinical practice has evolved
and early initiation of caffeine treatment has become very
common in extremely preterm infants, with 62% of inter-
national neonatologists reporting prophylactic use [51].

The optimal duration of treatment with a methylxanthine
is highly variable. Neonatologists typically use a combi-
nation of PMA, length of time since the last documented
clinical episode, and general clinical status to decide when
to stop treatment. After stopping, most physicians will
observe an infant for 3–8 days during drug “washout”
before concluding that the infant is ready for discharge [52].
Recent data suggest that infants continue to have con-
centrations of caffeine ≥5 μg/mL for 5–10 days after drug
discontinuation, especially when the maintenance dose at
discontinuation is greater than 5 mg/kg/day [53, 54]. Infants
developing recurrent clinical symptoms of bradycardia or
desaturation after stopping caffeine may require reinstitu-
tion of treatment.

Noninvasive respiratory support strategies

Nasal continuous positive pressure (CPAP) is effective in
treating apnea by splinting open the upper airway to
improve patency and through improved oxygenation by
increasing functional residual capacity [55]. Heated humi-
dified high flow nasal cannula (HHFNC) use has become
increasing popular and is often used interchangeably with
CPAP for treatment. Small studies have demonstrated
comparable positive distending pressures between HHFNC
and CPAP with no differences in rate of AOP-related
symptoms [56, 57]. HHFNC thus appears to be an accep-
table alternative to CPAP in treatment of AOP, but larger
studies are needed to delineate any differences in frequency
and severity of AOP-related symptoms between these
modalities.

Nasal intermittent positive pressure ventilation (NIPPV)
may be more effective than CPAP in reducing AOP-related
symptoms, but earlier studies of non-synchronized NIPPV
showed mixed results [58, 59]. A randomized crossover
study comparing synchronized NIPPV (sNIPPV) to stan-
dard therapies demonstrated a reduction in central apneas
with sNIPPV [60], but this study was limited by small
sample size and a short study period. A recent retrospective
study of NIPPV triggered via neurally adjusted ventilatory
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assistance (niNAVA) showed a reduction in bradycardic
events and more periods without events while on niNAVA
compared to NIPPV, though there was no difference in the
number of apnea events [61]. Another retrospective study
showed a reduction in clinically significant events with
niNAVA compared to CPAP [62]. These synchronized
modalities show promise for improvement in management
of AOP but further studies are needed to confirm the
benefit.

Gastric acid suppression

The association of AOP with gastroesophageal reflux
(GER) has been very controversial. Researchers continue to
examine if a causal relationship between these entities can
be established. A review summarizing the most recent stu-
dies reiterated that there is not sufficient evidence to support
a temporal, much less a causal, relationship between GER
and AOP [63]. Combined with data suggesting harmful
effects, gastric acid suppression is not indicated for the
treatment of AOP.

Blood transfusions

Anemia may exacerbate apnea by reducing oxygen-carrying
capacity of the blood and decreasing oxygen delivery to the
brain. Previous studies have provided conflicting evidence
for the effectiveness of blood transfusions to reduce apnea
episodes due to study design limitations, including lack of
blinding and retrospective identification of events based on
chart review. Utilizing continuous waveform analysis, a
retrospective study demonstrated that blood transfusions
decreased apnea events on a short-term basis and that a
lower hematocrit was associated with increased frequency
of apnea [64]. This study, however, could not account for
many variables that contribute to AOP-related symptoms or
for the initial indication for blood transfusion. Another
recent study demonstrated an improvement in IH following
transfusion after the first week of life [65]. While this study
did not include any direct recording of apneic events, it did
demonstrate that the timing of packed red blood cell
(PRBC) transfusion may have important implications for its
effectiveness in management of AOP-related symptoms. A
decreased frequency of IH was observed after PRBC
transfusions but not non-PRBC transfusions, suggesting
that the observed beneficial effects of blood transfusions on
apnea are mediated through an enhanced oxygen-carrying
capacity [66]. Despite these additional studies, there are
still no data showing long-term reduction in apnea
events following transfusions. Additional investigation of
neurodevelopmental outcomes following liberal versus
restrictive transfusion thresholds are needed to determine
optimal management strategies for treatment of AOP [67].

Other therapies

A variety of other pharmacologic and non-pharmacologic
treatments have been proposed in the management of AOP
(Tables 1, 2). These strategies have not been widely
employed either because of concerning side effects, limited
cost-effectiveness, or non-superiority compared to estab-
lished therapies. Some of these treatments have shown
potential in animal models, but definitive translational stu-
dies have not yet been conducted.

In summary, the mainstay of treatment for AOP is caf-
feine, which has substantial benefits for preterm infants
born <1250 g and minimal adverse effects. Effective non-
pharmacologic therapies include noninvasive respiratory
support that maintain upper airway patency and functional
residual capacity. Blood transfusions may temporarily
decrease the frequency of apnea and IH but longer-term
benefits have not been confirmed. Other therapies for AOP
have unclear efficacy and are not used for routine
clinical care.

Resolution of AOP and discharge home

AOP-related symptoms improve as control of breathing
matures with increasing postnatal age and PMA. Clinical
resolution generally occurs by 34–36 weeks PMA, but there
is considerable individual variation. In infants born at very
low gestational ages, apnea-related symptoms may persist
to 43–44 weeks PMA and may delay hospital discharge
[68]. These infants, however, rarely display apnea lasting
longer than 20 s; instead, they exhibit shorter respiratory
pauses, IH, and possible bradycardia [68–70].

Many studies have attempted to establish the minimum
number of symptom-free hospital days required to ensure
that AOP-related symptoms will not recur after discharge
home. In the CHIME study, infants with a history of AOP
who exhibited apnea-related symptoms within the last
5 days prior to NICU discharge had a higher relative risk of
at least one extreme event at home compared to those who
had no clinically apparent apnea-related events for ≥5 days
before discharge [10]. In a retrospective cohort study of
1400 preterm infants, a 5–7 day apnea-free period predicted
resolution of apnea in ~95% of cases, but the success rate
was lower for infants born at <28 weeks’ gestation [4].
These studies support requiring some days free of AOP-
related events before discharge, but clinical practice remains
highly variable. The specified event-free period probably
does not need to be uniform for all infants, however, and
shorter durations may be considered for infants born at later
gestational ages [52].

Providers usually rely on nursing observation and bed-
side monitors for discharge planning but these often do not
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correlate with events recorded electronically [71]. No stu-
dies have been done to determine whether the relative risk
of having a BRUE or sudden unexpected infant death
(SUID) is any greater in infants with shorter symptom-free
periods or in whom the event-free period is determined only
by clinical observation versus overnight cardiorespiratory
recordings. The “Choosing Wisely” campaign recommends
that clinicians do not utilize routine cardiorespiratory
recordings for determining when to safely discharge
infants [72].

There is no consensus on management of infants with
persistent AOP-related events who are otherwise ready for
discharge. Indications for prescription of home apnea
monitors vary by institution and individual providers.
Descriptive studies report that home apnea monitors did not
result in earlier discharge [68, 73]. Commercially available
wireless pulse oximeters are now available to families for
home use without a prescription and are marketed with an
emphasis on prevention of SIDS. However, there is no
evidence that home monitoring prevents SIDS [74].
Importantly, there also are no studies on effectiveness,
benefits, or harms of these wireless oximeters to prevent
potential life-threatening events, in infants born full term
nor in infants born preterm with prior AOP.

In summary, the symptoms of immature control of
breathing progressively improve with increasing age, with
resolution around 34–36 weeks PMA. Infants born at
younger gestations, however, may have persisting symp-
toms to 40–44 weeks PMA. Infants need to be symptom-
free for a period of time prior to discharge but the optimal
duration of observation prior to discharge has not yet been
established, and there is no data to support use of home
electronic surveillance.

Adverse consequences of immature control
of breathing

The extent to which immature control of breathing and
AOP-related symptoms contribute to adverse outcomes is
poorly understood. IH is one of the most important con-
sequences of immature breathing patterns. IH in the first
month of life in premature infants has been associated with
ROP, BPD, and airway hyperreactivity [19, 75–77]. The
direct adverse effects of IH on neurodevelopment have not
been studied as a consequence of immature control of
breathing and AOP. However, studies in animals, and in
children and adults with SDB, have confirmed that
IH is pro-inflammatory and associated with cognitive
impairments and adverse brain MRI changes [78–81]. A
post-hoc analysis of the Canadian Oxygen Trial showed that
prolonged IH episodes were associated with adverse neu-
rodevelopmental outcomes at 18 month of age [79].Ta
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There is a direct correlation between lower gestational
age at birth and adverse neurodevelopmental outcomes.
Studies have demonstrated neurodevelopmental impairment
with increasing number of days of apnea, delayed resolution
of apnea, and with both increasing frequency and severity
of cardiorespiratory events [82–84]. However, these studies
are significantly limited by imprecision in characterizing the
frequency and severity of AOP-related symptoms and
extent of IH, and absence of data beyond 3 years of age.

In summary, prolonged apneas with significant brady-
cardia or desaturation including IH appear to increase the
risk for adverse outcomes. However, the extent of this
increased risk is ill-defined, in large part due to a lack of
accurate assessments of the severity of AOP-related symp-
toms. The impact of IH on adverse neurodevelopment may
be at least as important as the risks associated with pro-
longed and symptomatic apnea, but IH is only clinically
evident with continuous recordings with high resolution
pulse oximetry, which is not done as a part of routine
clinical care.

BRUE, SIDS, and SDB

Infants born preterm are at increased risk for BRUE, pre-
viously defined as apparent life-threatening events [85]. In
addition, infants born preterm are at risk for more severe
events and for subsequent adverse events after the first
event. In a recent report, 90% of BRUE met the criteria for
higher risk, and prematurity was the only risk factor that
significantly increased the odds of a recurrent event [86].

Compared to infants born full term, infants born preterm
are also at increased risk for SIDS, a subset of SUID [87].
The odds ratio for SIDS progressively increases as the
gestational age decreases from full term to 24–28 weeks
gestation [88]. The explanation for increased risk in infants
born preterm is likely multifactorial, and linked to auto-
nomic consequences of preterm birth interacting with other
epidemiological and genetic risk factors including unsafe
sleep environments and prone positioning for sleep [89].

Finally, infants born preterm are at increased risk for
SDB, with an odds ratio of 1.74 (CI 1.30–2.32; p < 0.001)
compared to children born full term [90]. In population-
based cohort studies, the risk for SDB in children born
preterm was 3–6 times greater than in term-born children,
and 9.6% of preterm infants born at 500–1250 g had SDB at
school age compared to just 1–2% in children born full term
[91, 92]. The mechanisms for this increased frequency of
SDB in children born preterm have not been established,
but abnormalities in orofacial development related to post-
natal severity of illness factors have been implicated
[93, 94].

In summary, preterm birth is known to increase the risk
for BRUE, SIDS, and SDB, with the risk inversely

correlated to gestational age at birth. It is unknown, how-
ever, to what extent immature control of breathing and
severity of AOP-related symptoms including IH may
amplify or enhance the relationship of gestational age at
birth to these risks [1, 91].

Gaps in knowledge and future directions

Gaps and limitations

Despite the frequency of AOP-related symptoms in the
NICU, there are still significant gaps in our knowledge that
need to be addressed (Table 3). One of the main barriers to
improved knowledge regarding immature control of
breathing is lack of consistent criteria for quantifying the
severity of AOP-related symptoms. There is no consensus
on severity or duration of associated bradycardia or desa-
turation, or on the number of events that triggers a diagnosis
of AOP. Medical record reviews cannot adequately
distinguish between neonates who have few or relatively
mild symptoms and those who have frequent or severe
manifestations.

Neither bedside nursing observations of AOP-related
symptoms nor NICU cardiorespiratory monitors accurately
document apnea events [95]. Importantly, clinical electronic
monitoring only detects apnea by transthoracic impedance
(TTI), which only detects central apnea. Since most AOP-
related apneas are mixed or obstructive, TTI monitors will not
detect an event unless associated with bradycardia or desa-
turation [96]. Apnea detection using respiratory inductance
plethysmography, which does accurately detect obstructive
apneas, has not been developed for routine clinical use [8–
10, 97]. A recently developed apnea detection technology
utilized a central network server to collect central apnea (A)
events ≥10 s in combination with criteria-based bradycardia
(B) and desaturation (D) of any duration incorporated in
algorithm-based ABD10 events [12]. This research-based
technology is superior to routine clinical methods for detect-
ing symptomatic apnea, but it is a single-site technology, and
direct comparisons with recordings that also capture mixed
and obstructive apneas have not been reported.

Future directions (Table 3)

Therapeutic options

In addition to NIPPV, synchronized NIPPV and neurally
adjusted ventilatory assistance (niNAVA) have potential
roles in complementing pharmacologic treatment for AOP-
related symptoms. In particular as related to niNAVA,
further studies are needed to confirm its cost-effective
benefits and to adapt this technology for routine clinical use.

2118 G. Erickson et al.



Clinical trials are needed to compare the effectiveness
of high-dose caffeine regimens to standard-dose regimens,
and to better delineate optimal time to initiate caffeine
therapy. Head-to-head comparisons of caffeine with other
pharmacologic strategies should be done if and when
alternative drug therapies are identified, especially in
infants with AOP-related symptoms refractory to treat-
ment. Two current ongoing studies investigating extended
caffeine therapy (ICAF and MOCHA, NCT03321734, and
NCT03340727, respectively) may yield new insights
regarding the optimal time to stop therapy. Extended caf-
feine treatment after discharge home decreases the extent
of persisting IH and has not been associated with any
known risks [69]. However, persisting IH is not associated
with any acute clinical symptoms, and there is currently no
evidence that persisting IH causes any acute injury, is a
risk for either a BRUE or for SIDS, or adversely affects
later neurodevelopment.

Apnea detection

Cost-effective technologies for clinical use are needed that
can accurately detect mixed and obstructive as well as

central apneas. The automated technology described above
(ABD10) may be a promising alternative, but this technol-
ogy is not commercially available and currently neither
cost-effective nor practical for incorporation into routine
clinical practice [12].

An alternative to direct apnea recordings to detect
obstructive and mixed apneas is the assessment of electrical
activity of the diaphragm using transcutaneous electro-
myography (dEMG) [98]. This research-based technology
improves the accuracy of apnea classification compared to
TTI, but is not presently adaptable for cost-effective use in
routine clinical care.

A computational framework for assessing apnea based on
multimodal measurements followed by machine learning is
another promising approach [99]. Although presently still in
the engineering domain, such frameworks may represent
future translational research opportunities, with cost-effective
potential that could improve clinical practice and outcomes.

Intermittent hypoxia

IH requires continuous recordings for accurate identification
and analysis. Studies are needed to determine cost-effective

Table 3 Gaps in knowledge and future research priorities.

Category Comments

Gaps in knowledge

Defining AOP-related symptoms Lack of consistent criteria and cost-effective strategies for assessing frequency and severity of
AOP-related symptoms in routine clinical care

Apnea detection [8, 96] Transthoracic impedance (TTI) is the only technology for apnea detection in routine clinical
practice, but TTI cannot detect obstructive apneas

Future research opportunities

sNIPPV and niNAVA [58–61] May have advantages over other noninvasive ventilatory strategies, but studies are needed to
confirm cost-effective advantages

High-dose caffeine [114] May be beneficial, but needs to be confirmed in large randomized clinical trials

When to start and stop caffeine treatment [115] Randomized clinical trials are needed to better inform clinicians on optimum time to initiate
treatment, and objective criteria for when to discontinue treatment

Caffeine vs. new pharmacologic treatments Direct prospective comparisons with caffeine of any proposed alternative will be needed to
determine if cost-effective and superior to caffeine

Apnea detection Cost-effective methods for detecting obstructive and mixed apneas or for accurate detection by
indirect methods need to be developed for routine clinical practice

dEMG [98] Diaphragmatic EMG can detect all apnea types and may be a useful clinical strategy, but studies
are needed to determine if cost-effective for routine clinical use

Intermittent hypoxia [69, 70] Likely has important impacts on multiple clinical outcomes, but requires continuous high
resolution recordings for detection. Strategies are needed for cost-effective ways to incorporate
in routine clinical practice

Artificial intelligence [99] Currently in the engineering domain, but machine learning strategies may have future role in
predicting significant AOP-related events

Improved neurodevelopmental outcomes New insights from any combination of the above research opportunities may yield improved
recognition and quantification of AOP-related symptoms, and optimize opportunities for
prevention or treatment of clinical symptoms

The relevant references are cited in parenthesis after each treatment.

dEMG Diaphragmatic electromyography, sNIPPV synchronized nasal intermittent positive pressure ventilation, niNAVA NIPPV triggered via
neurally adjusted ventilatory assistance.
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strategies for assessing IH in the NICU, track the extent of
IH during and following resolution of acute AOP-related
symptoms, determine adverse consequences of IH, and
assess potential strategies to ameliorate its sequelae
[69, 70].

In summary, additional studies are needed to refine
optimal strategies for initiating and stopping caffeine
treatment, which also should contribute to reducing the
extensive variability in management of AOP [100]. In
addition to improving methodologies for apnea detection,
strategies are needed to detect and quantify IH, arguably the
most important downstream consequence of immature
control of breathing, and to track IH both acutely and fol-
lowing resolution of treatment for clinically apparent AOP-
related symptoms. Addressing the current limitations in
knowledge will require translational studies of emerging
technologies to explore cost-effective strategies for use in
routine clinical practice. However, addressing these gaps in
knowledge offers compelling new directions with high
potential to change clinical practice and yield new insights
into the mechanistic links for adverse outcomes including
neurodevelopmental impairment, and risk for BPD, ROP,
BRUE, SIDS, and SDB.
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