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Abstract
Advanced brain aging is commonly regarded as a risk factor for neurodegenerative diseases, for example, Alzheimer’s dementia, and it was suggested that sleep 

disorders such as obstructive sleep apnea (OSA) are significantly contributing factors to these neurodegenerative processes. To determine the association between 

OSA and advanced brain aging, we investigated the specific effect of two indices quantifying OSA, namely the apnea–hypopnea index (AHI) and the oxygen 

desaturation index (ODI), on brain age, a score quantifying age-related brain patterns in 169 brain regions, using magnetic resonance imaging and overnight 

polysomnography data from 690 participants (48.8% women, mean age 52.5 ± 13.4 years) of the Study of Health in Pomerania. We additionally investigated the 

mediating effect of subclinical inflammation parameters on these associations via a causal mediation analysis. AHI and ODI were both positively associated with 

brain age (AHI std. effect [95% CI]: 0.07 [0.03; 0.12], p-value: 0.002; ODI std. effect [95% CI]: 0.09 [0.04; 0.13], p-value: < 0.0003). The effects remained stable in the 

presence of various confounders such as diabetes and were partially mediated by the white blood cell count, indicating a subclinical inflammation process. Our 

results reveal an association between OSA and brain age, indicating subtle but widespread age-related changes in regional brain structures, in one of the largest 

general population studies to date, warranting further examination of OSA in the prevention of neurodegenerative diseases.
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Statement of Significance

Accelerated brain aging is commonly regarded as a risk factor for neurodegenerative diseases such as dementia and it has been suggested that sleep disorders are 

significantly contributing to these processes. Using polysomnography and magnetic resonance imaging data from 690 individuals of the SHIP-Trend large-scale 

population study, Weihs et al. show an association between obstructive sleep apnea and brain age, a score quantifying age-related brain patterns, which is partially 

mediated by subclinical inflammation parameters. There is a high demand to identify treatable conditions that facilitate the development of neurodegenerative 

diseases and OSA is a valuable candidate within this research field.
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Introduction

Advanced brain aging is commonly considered to be a risk factor 
for neurodegenerative diseases like Alzheimer’s dementia [1, 
2], whose prevalence in Europe is 0.6% for subjects aged be-
tween 60 and 64  years, increasing to 46.8% in subjects aged 
above 90 [3]. It is commonly accepted that neurodegeneration 
starts decades before the clinical manifestation of the disease, 
with possible contributing factors including age, hypertension, 
diabetes, obesity, or traumatic brain injury [4]. Previous studies 
have suggested that lack of sleep and sleep disorders, espe-
cially hypoxia and obstructive sleep apnea (OSA), might con-
tribute to neurodegenerative diseases [5–7].

OSA is a common form of chronic sleep-disordered breathing 
affecting around 1/7th of the world’s adult population [8] and is 
characterized by recurrent complete or partial upper airway ob-
struction during sleep [9]. The disorder often lacks symptoms 
and can lead to systemic hypertension, coronary heart diseases, 
obesity, or cognitive impairment [5, 6, 10]. The gold standard 
for diagnosing OSA is an overnight polysomnography (PSG) 
that provides objective characteristics of sleeping behavior 
including the two commonly used measures to quantify the se-
verity of OSA: (1) the apnea–hypopnea index (AHI), the standard 
parameter used to diagnose OSA, which combines multiple 
characteristics such as absence of airflow, reduction of airflow 
accompanied by oxygen desaturations or arousals and (2) the 
oxygen desaturation index (ODI), which, unlike AHI, focuses on 
the drop in oxygen levels and can therefore be interpreted as 
the clean oxygen desaturation component of OSA [9, 11, 12].

In clinical samples, OSA is associated with structural brain 
alterations, such as extensive alterations in white matter regions 
[13, 14] or reductions in gray matter areas [15–17], both being 
linked with the aging brain [18–20]. Limitations in these studies 
are the relatively high load of comorbid disorders like metabolic 
disorders or hypertension and obesity in patients with mod-
erate to severe OSA, all associated with structural brain changes 
themselves [1, 2, 21, 22], as well as the small sample sizes ran-
ging only from 16 [17] to 60 [16] subjects.

Gaining a deeper insight into the impact of OSA on the brain 
as a whole is of the utmost importance to understand age-related 
brain changes and hence enable us to combat age-related dis-
orders such as dementia [23]. Using subjects from the Study of 
Health in Pomerania (SHIP-Trend baseline) general population 
study [24], we, therefore, investigated the association between 
OSA and three MRI-based indices assessing brain aging, namely 
total brain volume, total gray matter volume, and brain age [25], 
a global brain score similar to the one used in Habes et al.[1] and 
Janowitz et al.[26]. While the first two are univariate measures 
quantifying age-related changes in the brain as a whole [19] and 
the latter is calculated using typical age-related brain atrophy 
patterns and increases in ventricle volumes and is therefore 
more sensitive to subtle but widespread deviations in regional 
brain structures [27]. We further looked at local changes caused 
by OSA using a voxel-based morphometry analysis and ad-
dressed the putative mediating role of inflammatory markers 
between OSA and brain aging.

Methods

Participants in SHIP-Trend

We included all subjects from the baseline examination of the 
SHIP-Trend study [24], who had complete data sets (N  =  690). 
The sample is a subset of 8,016 subjects randomly drawn from 

the general adult population living in Western Pomerania in 
Germany in September 2008, with the data collection of 4,420 
subjects concluding in September 2012. After excluding subjects 
who refused participation or who fulfilled exclusion criteria (e.g. 
presence of a pacemaker), N = 2,154 participants volunteered for 
an MRI scanning [28] and, after inviting all subjects participating 
in the SHIP-Trend study, N = 1,264 individuals underwent PSG 
assessment, with the main reason for nonparticipation being 
the requirement of staying overnight [9]. Of those, 703 partici-
pants passed both the PSG and MRI quality control and a further 
13 subjects had to be excluded due to missing covariable data, 
leaving 690 subjects in the analysis sample (Supplementary 
Figure S1). For the causal mediation analysis only, another 23 
samples were excluded from the high-sensitive C-reactive pro-
tein (hsCRP) analysis, one from the white blood cell (WBC) count 
analysis and five from the fibrinogen analysis due to missing 
data. An overview of the included and excluded samples can be 
seen in Supplementary Figure S1 and Table  1. All participants 
gave written informed consent and the Ethics Committee of the 
University Medicine Greifswald approved the SHIP-Trend study.

Data assessment in SHIP-Trend

The clinical data were collected using a computer-assisted 
face-to-face interview, recording, among others, smoking status, 
educational attainment, alcohol consumption [29], physical ac-
tivity, and the participants’ medication. All subjects underwent 
medical examinations in order to assess their waist-height ratio, 
blood pressure [24], glycated hemoglobin A1c (HbA1c), blood 
sugar levels, high-density cholesterol (HDL-C), low-density chol-
esterol (LDL-C), triglyceride and hsCRP, WBC, and fibrinogen con-
centration. Details can be found in Supplementary Method S1, 
as can the definitions of hypertension [30], diabetes [31, 32], and 
lifetime depression [33].

OSA parameter assessment

The PSG examination was carried out as described by Fietze 
et al. [9] and the evaluation of respiratory events, arousals, and 
sleep stages was performed according to AASM 2007 criteria by 
trained PSG scorers. AHI was defined as the average number of 
apnea (peak signal excursion drop by ≥90% for at least 10 s with 
at least 90% of the duration showing such amplitude reduction) 
and hypopnea events (either a flow drop of ≥30% for at least 10 s 
with an oxygen desaturation of ≥4% or a flow drop of ≥50% with 
an oxygen desaturation of ≥3% or an arousal) per hour of sleep 
[9]. ODI was defined as the average number of drops in arterial 
oxygen saturations ≥3% per hour of sleep [34].

MRI acquisition and image processing

We considered head T1-weighted MRI (1.5T Magnetom Avanto 
scanner, Siemens, Erlangen, Germany) [35] using the fol-
lowing set of parameters: orientation  =  axial plane; repetition 
time = 1,900 ms; echo time = 3.37 ms; flip angle = 15°; slice thick-
ness = 1 mm; resolution = 1 mm × 1 mm. After removing 103 
subjects, 3 due to strong frontal darkening in their scans and 
100 due to the presence of structural abnormalities (e.g. tumors, 
cysts) or cases of cerebral strokes, we ran the images through an 
image segmentation pipeline using the FreeSurfer image ana-
lysis suite (version 5.3, http://surfer.nmr.mgh.havard.edu), which 
resulted in the removal of an additional 81 subjects (4 failed the 

http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsaa204#supplementary-data
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsaa204#supplementary-data
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsaa204#supplementary-data
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsaa204#supplementary-data
http://surfer.nmr.mgh.havard.edu


Weihs et al. | 3

pipeline and 77 failed QC). The pipeline included the removal of 
non-brain tissue using a hybrid watershed/surface deformation 
procedure [36], automated Talairach transformation, segmen-
tation of subcortical white matter and deep gray matter volu-
metric structures (including hippocampus, amygdala, caudate, 
putamen, and ventricles) [37–39], intensity normalization [40], 
tessellation of gray matter–white matter boundary, automated 
topology correction [41, 42], and surface deformation following 
intensity gradients to optimally place gray/white and gray/cere-
brospinal fluid borders at the location where the greatest shift in 
intensity defines the transition to the other tissue class [43–45]. 
The individual images were then registered onto a spherical 
atlas based on individual cortical folding patterns, in order to 
match cortical geometry across subjects [46]. Next, the cerebral 
cortex was parceled into 68 units with respect to gyral and sulcal 
structures [47, 48] and the cortical white matters, that is, white 
matter up to 5 mm below the gray matter boundary, into 68 units 
by assigning each white matter voxel the label of the closest cor-
tical voxel [20]. Although being part of the standard FreeSurfer 
output, we excluded the 5th ventricle because it was not de-
tected in all scans (zero volume), the brain stem and the optic 
chiasm, leading to a total 169 out of 172 regions of gray matter, 
white matter and the ventricular system being used to estimate 
brain age (Figure  1, A and Supplementary Method S2). At this 
stage, FreeSurfer also measured the total intracranial volume.

Statistical quality control was performed by first regressing 
out age, gender, and intracranial volume for each brain re-
gion separately, and then rejecting those cases where the re-
sidual was more than five standard deviations away from the 
whole-sample mean.

Additionally to brain age, we considered two global brain 
measurements, namely the total brain volume (the volume of 
all brain voxels neither belonging to the brain stem, ventricles, 
cerebrospinal fluid nor choroid plexus) and total gray matter 
volume (the volume of voxels belonging to the cortex, gray 
matter of the cerebellum and subcortical gray matter, including 
thalamus, caudate, putamen, pallidum, hippocampus, amyg-
dala, nucleus accumbens, ventral diencephalon, and substantia 
nigra, if there).

Brain age estimation

Aging is accompanied by spatially heterogeneous atrophy of 
gray matter [18, 19], white matter [20], and increases in ven-
tricle volumes [19] with age-related changes in regional brain 
volumes being stronger in males than females [49]. Brain age 
was therefore calculated using gender-stratified ordinary least 
squares regression, with chronological age as the dependent 
variable and the volumes of the 169 brain regions as the in-
dependent variables. More specifically, the brain age of an in-
dividual was defined as his/her predicted age using a model 
based on all 169 regional brain volumes from the remaining in-
dividuals of the same gender (=gender-stratified leave-one-out 
cross-validation). Similar approaches have been successfully 
applied to MRI [2, 50–53] and metabolic data [54], among others. 
Instead of looking at the differences between brain age and 
chronological age as done by, for example, Cole et al. [55], which 
would require additional statistical assumptions, for example, 
brain age being an unbiased estimator of chronological age 
across the whole age-range and has been shown to potentially 

Table 1. Baseline characteristics

Study sample (N = 690) Excluded SHIP-trend sample (N = 3,730) P-value (test-statistic)

Age, mean (SD), years 52.5 (13.4) 51.5 (14.3) 0.1 (1.64)a

Gender, N (%), female 337 (48.8) 1,938 (52.0) 0.14 (2.14)b

Body size, mean (SD), cm 170.45 (9.01) 169.71 (9.44) 0.049 (1.97)a

Waist-height ratio, mean (SD) 0.53 (0.07) 0.54 (0.09) 0.03 (−2.13)a

Intracranial volume, mean (SD), mm3 1,585,832 (162,128.6) 1,593,723 (157,411.3) 0.29 (−1.06)a

Disorders
 Diabetes, N (%), yes 66 (9.57) 483 (13.0) 0.02 (5.93)b

 Hypertension, N (%), yes 308 (44.6) 1,815 (48.9) 0.045 (4.03)b

 Lifetime depression, N (%), yes 215 (31.2) 1,008 (27.8) 0.08 (3.06)b

HbA1c, mean (SD), % 5.35 (0.75) 5.38 (0.86) 0.47 (−0.72)a

Systolic blood pressure, mean (SD), mmHg 126.54 (16.5) 128.26 (19.1) 0.01 (−2.45)a

Diastolic blood pressure, mean (SD), mmHg 77.37 (9.5) 77.27 (10.4) 0.8 (0.25)a

Smoking   <0.001 (33.03)b

 Never smoked, N (%) 292 (42.3) 1,313 (35.4)  
 Ex-smoker, N (%) 273 (39.6) 1,337 (36.1)
 Current smoker, N (%) 125 (18.1) 1,058 (28.5)
Avg. alcohol consumption per day, mean (SD), g/day 8.88 (11.9) 8.37 (13.7) <0.001 (1,390,222)c

Triglyceride, mean (SD), mmol/L 1.57 (1.08) 1.69 (1.25) 0.004 (1,196,620)c

HDL-C, mean (SD), mmol/L 1.44 (0.36) 1.43 (0.39) 0.9 (0.12)a

LDL-C, mean (SD), mmol/L 3.44 (0.93) 3.33 (0.97) 0.005 (2.82)a

Educational attainment   <0.001 (65.88)b

 <10 years, N (%) 93 (13.5) 936 (25.2)  
 10 years, N (%) 355 (51.5) 1,913 (51.5)
 >10 years, N (%) 242 (35.1) 868 (23.4)
Physical activity, mean (SD) 3.57 (2.12) 3.14 (2.19) <0.001 (1,422,620)c

This table shows the baseline characteristics of the study sample and the remaining data in the excluded sample. The p-value shows the results of the comparison of 

the two sets. HbA1c, glycated hemoglobin A1c; HDL-C, high-density cholesterol; LDL-C, low-density cholesterol.
at-test.
bChi-squared test.
cWilcoxon-test.

http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsaa204#supplementary-data
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result in false-positive associations [56], we considered the re-
siduals after regressing brain age onto chronological age [25]. 
Rather than explicitly calculating these residuals, we, following 
common epidemiological practice, added chronological age as a 
covariable in all statistical analyses.

Voxel-based morphometry

To identify local areas influenced by OSA, we searched for 
changes in regional brain volumes by means of a voxel-based 
morphometry analysis using SPM12 (https://www.fil.ion.ucl.
ac.uk/spm/) and the CAT12 toolbox (developed by Christian 
Gaser, University of Jena, Germany, http://www.neuro.uni-jena.
de). The images were bias-corrected, spatially normalized using 
high-dimensional DARTEL normalization, segmented into the 
different tissue classes, modulated for nonlinear warping, and 

affine transformations and smoothed using a Gaussian kernel 
of 8 mm FWHM. The homogeneity of gray matter images was 
checked using the covariance structure of each image with all 
other images (outliers ≥3 standard deviations from the mean), 
as implemented in the check data quality function in the CAT12 
toolbox. To identify regional changes, we conducted an ordinary 
least squares linear regression adjusted for age, gender, age × 
gender, and intracranial volume for both AHI and ODI as the in-
dependent variables and the individual gray matter within each 
voxels as the dependent variable.

Statistical analysis

The data were analyzed using R version 3.6 [57] unless stated 
otherwise. We used ordinary least squares multivariable regres-
sion models to test if AHI and ODI are associated with total brain 

Figure 1. Overview of the brain age estimation. (A) Each individual’s brain was segmented into distinct cortical and subcortical regions using the automated image 

processing pipeline FreeSurfer. (B) Brain age was then estimated based on the volumes of these regions.

Table 2. Associations between brain age, total gray matter volume, or total brain volume and AHI

Brain age ~ AHI + base covariates GM volume ~ AHI + base covariates Brain volume ~ AHI + base covariates

Std. estimate [95% CI] P-value Partial R2 Std. estimate [95% CI] P-value Partial R2 Std. estimate [95% CI] P-value Partial R2

(Intercept) 0.05 [−0.02, 0.12] <0.0003***  0.03 [−0.02, 0.07] <0.0003***  0.03 [−0.02, 0.07] <0.0003***  
AHI 0.07 [0.03, 0.12] 0.002** 0.02 −0.02 [−0.05, 0.01] 0.18 0.003 −0.02 [−0.04, 0.01] 0.27 0.002
Age, years 0.83 [0.77, 0.89] <0.0003*** 0.64 −0.45 [−0.49, −0.40] <0.0003*** 0.46 −0.29 [−0.33, −0.25] <0.0003*** 0.30
Gender, female −0.09 [−0.20, 0.02] 0.09 0.004 −0.06 [−0.14, 0.02] <0.0003*** 0.02 −0.07 [−0.13, 0.004] <0.0003*** 0.03
ICV, mm3 −0.09 [−0.14, −0.04] 0.001** 0.02 0.73 [0.69, 0.77] <0.0003*** 0.67 0.84 [0.80, 0.87] <0.0003*** 0.78
Age × gender −0.10 [−0.19, −0.016] 0.02+ 0.008 0.12 [0.06, 0.18] <0.0003*** 0.02 0.11 [0.06, 0.16] <0.0003*** 0.02
 R2 = 0.69 (Adjusted R2 = 0.68) R2 = 0.84 (Adjusted R2 = 0.84) R2 = 0.88 (Adjusted R2 = 0.88)

This table shows the results of the multiple regression models between AHI and the different brain parameters. The effect sizes have been standardized. 

 The base covariables, for which the models have been adjusted are age, gender, age × gender, and intracranial volume. AHI, apnea–hypopnea index;  

ICV, intracranial volume.
+p < 0.03.

*p < 0.017.

**p < 0.003.

***p < 0.0003.

https://www.fil.ion.ucl.ac.uk/spm/
https://www.fil.ion.ucl.ac.uk/spm/
http://www.neuro.uni-jena.de
http://www.neuro.uni-jena.de
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volume, total gray matter volume, and brain age. All models 
were adjusted for age, gender, age × gender, and intracranial 
volume, referred to as base covariables (AHI/ODI models: Brain 
Parameters ~ (AHI or ODI) + Base Covariables), and model out-
liers were removed after visual inspection of the diagnostic plots 
of the regression analyses (one sample in the brain age analysis 
and two samples in the total gray matter volume analysis).

To assess the robustness of the significant associations, we 
analyzed various confounders suspected to have an impact on 
the brain parameters (Supplementary Table S1) by comparing the 
base model (Brain Parameter ~ Base Covariable) to an expanded 
model (Brain Parameter ~ Confounder + Base Covariables). 
Confounders for whom the base model’s explained variance 
changed significantly, were then added one by one to the AHI/
ODI models (extended AHI/ODI models: Brain Parameters ~ (AHI 
or ODI) + Confounder + Base Covariables) to assess the possible 
confounding effect of these covariables on the effect of AHI and 
ODI. Hypertension and blood pressure, as well as diabetes and 
HbA1c were always added in tandem as the blood pressure and 
HbA1c levels are influenced by the corresponding disorder’s 
presence.

As OSA and brain aging have been previously associated with 
inflammation [26, 58, 59], we conducted a causal mediation ana-
lysis to study potential mediation effects of hsCRP, WBC, and fi-
brinogen, as well as WBC subtypes as a secondary explorative 
sub-analyses, on the significant associations using the popular 
R package mediation [60]. The mediation and direct effects, as 
well as their 95% confidence intervals, were estimated via boot-
strapping with 100,000 simulations each. Furthermore, a log 
transformation was performed on all inflammation markers to 
normalize the distributions [26] and all models were adjusted 
for the base covariables as well as the intake of anti-inflamma-
tory medication.

We reported all effect sizes other than the ones in the medi-
ation analyses as standardized effect sizes, which were calcu-
lated by standardizing all numerical variables (subtracting the 
mean and dividing by the standard deviation) and refitting the 
models with the new values. To correct for multiple testing ac-
cording to Bonferroni, in the initial and main mediation ana-
lyses, effects were considered significant if the p-value was 
<0.017 (0.05/3) and borderline significant if <0.033 (0.1/3), with 
AHI and ODI being considered as two different test series.

Data availability

The data used in this study can be applied for at the University 
Medicine Greifswald (https://fvcm.med.uni-greifswald.de/dd_
service/data_use_intro.php) or by contacting the corresponding 
author.

Results

Baseline characteristics of the sample population

We included 690 individuals (Supplementary Figure S1) with 
48.8% women, a mean age of 52.5 years (95% CI: [51.5; 53.5]) 
and an average waist-height ratio of 0.53 (95% CI: [0.53; 0.54]). 
About 9.57% suffered from diabetes, 44.6% from hypertension, 
and 31.12% from lifetime depression (Table 1). The mean [95% 
CI] time difference between the MRI and PSG measurements 
was 6.43 [−1.04; 13.91] days and 33.68 [25.46; 41.90] days be-
tween PSG and clinical data assessment. Regarding the brain 
outcomes, as expected, total gray matter volume (mean [95% 
CI]: 612,415  mm3 [607,712; 617,117]) and total brain volume 
(mean [95% CI]: 1,116,948  mm3 [1,108,214; 1,125,683]) were 
strongly positively correlated (Pearson’s r: 0.94), while brain 
age (mean [95% CI]: 52.16 [51.27; 53.05]) was negatively cor-
related with the two volumetric scores (Pearson’s r total gray 
matter volume: −0.6, total brain volume: −0.45; Supplementary 
Figure S2).

Prevalence of oxygen saturation impairment

The mean AHI was 8.2 (95% CI: [7.3; 9.1]) events per hour with, 
using AHI as a diagnostic criterion, 41.2% of the study popu-
lation exhibiting mild to severe (AHI ≥ 5), and 6.5% exhibiting 
severe OSA (AHI ≥ 15)  [9]. The mean ODI was 5.8 (95% CI: [5.0; 
6.5]) events per hour with 31.6% exhibiting mild to severe (ODI 
≥ 5) and 3.9% exhibiting severe OSA (ODI ≥ 15) when using ODI 
as a diagnostic criterion [61, 62]. Comparing the two parameters, 
AHI and ODI were strongly positively correlated (Pearson’s r: 
0.96; Supplementary Figure S2). These results approximately re-
flect the OSA prevalence of the whole SHIP-Trend PSG sample [9] 
(Supplementary Table S2).

Table 2. Associations between brain age, total gray matter volume, or total brain volume and AHI

Brain age ~ AHI + base covariates GM volume ~ AHI + base covariates Brain volume ~ AHI + base covariates

Std. estimate [95% CI] P-value Partial R2 Std. estimate [95% CI] P-value Partial R2 Std. estimate [95% CI] P-value Partial R2

(Intercept) 0.05 [−0.02, 0.12] <0.0003***  0.03 [−0.02, 0.07] <0.0003***  0.03 [−0.02, 0.07] <0.0003***  
AHI 0.07 [0.03, 0.12] 0.002** 0.02 −0.02 [−0.05, 0.01] 0.18 0.003 −0.02 [−0.04, 0.01] 0.27 0.002
Age, years 0.83 [0.77, 0.89] <0.0003*** 0.64 −0.45 [−0.49, −0.40] <0.0003*** 0.46 −0.29 [−0.33, −0.25] <0.0003*** 0.30
Gender, female −0.09 [−0.20, 0.02] 0.09 0.004 −0.06 [−0.14, 0.02] <0.0003*** 0.02 −0.07 [−0.13, 0.004] <0.0003*** 0.03
ICV, mm3 −0.09 [−0.14, −0.04] 0.001** 0.02 0.73 [0.69, 0.77] <0.0003*** 0.67 0.84 [0.80, 0.87] <0.0003*** 0.78
Age × gender −0.10 [−0.19, −0.016] 0.02+ 0.008 0.12 [0.06, 0.18] <0.0003*** 0.02 0.11 [0.06, 0.16] <0.0003*** 0.02
 R2 = 0.69 (Adjusted R2 = 0.68) R2 = 0.84 (Adjusted R2 = 0.84) R2 = 0.88 (Adjusted R2 = 0.88)

This table shows the results of the multiple regression models between AHI and the different brain parameters. The effect sizes have been standardized. 

 The base covariables, for which the models have been adjusted are age, gender, age × gender, and intracranial volume. AHI, apnea–hypopnea index;  

ICV, intracranial volume.
+p < 0.03.

*p < 0.017.

**p < 0.003.

***p < 0.0003.
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OSA parameters are associated with brain age

Multivariable regression models adjusted for age, gender, age 
× gender, and intracranial volume revealed significant positive 
associations (p-value < 0.017) between brain age and AHI (std. 
estimate [95% CI]: 0.07 [0.03; 0.12], p-value: 0.002) and brain 
age and ODI (std. estimate [95% CI]: 0.09 [0.04; 0.13], p-value: 
< 0.0003). No significant association was found between AHI 
(std. estimate [95% CI]: −0.02 [−0.04; 0.01], p-value: 0.27) or 
ODI (std. estimate [95% CI]: −0.02 [−0.05; 0.005], p-value: 0.11) 
and total brain volume nor between AHI (std. estimate [95% 
CI]: −0.02 [−0.05; 0.01], p-value: 0.18), or ODI and total gray 
matter volume (std. estimate [95% CI]: −0.03 [−0.07; 0.0009], 

p-value: 0.04; Tables 2 and 3 and Figure 2). To assess the ro-
bustness of the significant brain age effects, we analyzed the 
effect of various potential confounders on the base models 
(Supplementary Table S1). We found that diabetes, HbA1c, 
waist-height ratio, triglyceride concentration, diastolic blood 
pressure, educational attainment, alcohol consumption, and 
% of total sleep time spent in stage 1 nonrapid eye move-
ment sleep had a significant impact on the brain age models 
(Supplementary Figure S3). After adding these variables one 
by one to both brain age models, the effect of AHI and ODI re-
mained significant, irrespective of the added extra confounder 
(Supplementary Table S3).

Descriptive voxel-based morphological maps

No family-wise error corrected significant voxels could be iden-
tified in the voxel-based morphometry analysis. More details 
can be found in Supplementary Tables S4 and S5.

Inflammation parameters mediate the OSA 
parameters’ effects on brain age

We tested for possible mediation effects of the subclinical in-
flammation parameters hsCRP, WBC, and fibrinogen, on the 
significant associations between OSA and brain age, while 
adjusting for the base covariables. WBC significantly medi-
ated the effect of AHI (average causal mediation effect [95% 
CI]: 0.01 [0.005; 0.03], p-value: 0.0007, proportion mediated: 0.19) 
and ODI (average causal mediation effect [95% CI]: 0.02 [0.006; 
0.03], p-value: 0.007, proportion mediated: 0.17). No mediation 
effect was found for fibrinogen or hsCRP (Supplementary Tables 
S6–S8). In the exploratory analyses of WBC subtypes, we found 
that monocytes and lymphocyte concentration mediated the ef-
fects in both the AHI and ODI brain age models (Supplementary 
Tables S9–S13).

Discussion
OSA is a disorder affecting roughly 1/7th of the world’s adult popu-
lation [8] and was shown to be implicated in neurodegenerative 

Table 3. Associations between brain age, total gray matter volume or total brain volume, and ODI

Brain age ~ ODI + base covariates GM volume ~ ODI + base covariates Brain volume ~ ODI + base covariates

Std. estimate [95% CI] P-value Partial R2 Std. estimate [95% CI] P-value Partial R2 Std. estimate [95% CI] P-value Partial R2

(Intercept) 0.05 [−0.02, 0.11] <0.0003***  0.03 [−0.02, 0.08] <0.0003***  0.03 [−0.01, 0.07] <0.0003***  
ODI 0.09 [0.04, 0.13] <0.0003 *** 0.02 −0.03 [−0.07, −0.0009] 0.04 0.006 −0.02 [−0.05, 0.005] 0.11 0.004
Age, years 0.83 [0.77, 0.89] <0.0003 *** 0.64 −0.44 [−0.49, −0.40] <0.0003*** 0.47 −0.29 [−0.33, −0.25] <0.0003*** 0.3
Gender, female −0.09 [−0.20, 0.02] 0.09 0.004 −0.07 [−0.14, 0.01] <0.0003*** 0.02 −0.07 [−0.14, 0.0003] <0.0003*** 0.03
ICV, mm3 −0.09 [−0.14, −0.03] 0.002 ** 0.02 0.73 [0.69, 0.77] <0.0003*** 0.67 0.83 [0.80, 0.87] <0.0003*** 0.78
Age × Gender −0.10 [−0.18, −0.02] 0.021+ 0.008 0.11 [0.05, 0.18] <0.0003*** 0.02 0.11 [0.06, 0.16] <0.0003*** 0.02
 R2 = 0.69 (Adjusted R2 = 0.69) R2 = 0.84 (Adjusted R2 = 0.84) R2 = 0.88 (Adjusted R2 = 0.88)

The table shows the results of the multiple regression models between ODI and the different brain parameters. The effect sizes have been  

standardized. The base covariables, for which the models have been adjusted are age, gender, age × gender, and intracranial volume. ODI, oxygen desaturation  

index; ICV, intracranial volume.
+p < 0.03.

*p < 0.017.

**p < 0.003.

***p < 0.0003.

Figure 2. Predicted brain age and gray matter volume values. The values were 

predicted after adjusting for the base covariates. For the prediction, the base 

covariables were fixed at age  =  52.49  years, gender  =  male and intracranial 

volume = 1,585,949.67 mm3. These values correspond to the mean values in the 

data set. Mild OSA corresponds to an AHI or ODI value below 5 and severe OSA 

corresponds to an AHI or ODI value below 15. AHI, apnea–hypopnea index; ODI, 

oxygen desaturation index; OSA, obstructive sleep apnea.
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http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsaa204#supplementary-data
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsaa204#supplementary-data
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsaa204#supplementary-data
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsaa204#supplementary-data
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(Intercept) 0.05 [−0.02, 0.11] <0.0003***  0.03 [−0.02, 0.08] <0.0003***  0.03 [−0.01, 0.07] <0.0003***  
ODI 0.09 [0.04, 0.13] <0.0003 *** 0.02 −0.03 [−0.07, −0.0009] 0.04 0.006 −0.02 [−0.05, 0.005] 0.11 0.004
Age, years 0.83 [0.77, 0.89] <0.0003 *** 0.64 −0.44 [−0.49, −0.40] <0.0003*** 0.47 −0.29 [−0.33, −0.25] <0.0003*** 0.3
Gender, female −0.09 [−0.20, 0.02] 0.09 0.004 −0.07 [−0.14, 0.01] <0.0003*** 0.02 −0.07 [−0.14, 0.0003] <0.0003*** 0.03
ICV, mm3 −0.09 [−0.14, −0.03] 0.002 ** 0.02 0.73 [0.69, 0.77] <0.0003*** 0.67 0.83 [0.80, 0.87] <0.0003*** 0.78
Age × Gender −0.10 [−0.18, −0.02] 0.021+ 0.008 0.11 [0.05, 0.18] <0.0003*** 0.02 0.11 [0.06, 0.16] <0.0003*** 0.02
 R2 = 0.69 (Adjusted R2 = 0.69) R2 = 0.84 (Adjusted R2 = 0.84) R2 = 0.88 (Adjusted R2 = 0.88)

The table shows the results of the multiple regression models between ODI and the different brain parameters. The effect sizes have been  

standardized. The base covariables, for which the models have been adjusted are age, gender, age × gender, and intracranial volume. ODI, oxygen desaturation  

index; ICV, intracranial volume.
+p < 0.03.

*p < 0.017.

**p < 0.003.

***p < 0.0003.

diseases like Alzheimer’s dementia [5, 6]. While there are several 
small-scale studies analyzing associations between OSA and 
brain subsections [13–16, 63, 64], none have, to our knowledge, 
analyzed the relationship between OSA and the brain as a whole.

In the current study, we aimed to fill this gap by investigating, 
next to total brain volume and total gray matter volume, possible 
associations between two parameters quantifying OSA, namely 
the classically used AHI and ODI, which solely describes oxygen 
desaturation, and brain age, a score specifically quantifying 
age-related brain changes, in the large-scale population-based 
SHIP-Trend study. We have found significant positive associ-
ations between both AHI and ODI and brain age, but found no 
effects of AHI or ODI on total gray matter volume nor on total 
brain volume. Considering, that total gray matter volume and 
total brain volume provide univariate volumetric measures that 
quantify global age-related changes and that brain age is more 
sensitive in detecting and quantifying subtle but widespread de-
viations in regional brain structures [27], this result indicates that 
OSA may not affect the brain in a global unspecific manner, but 
rather follows age-related regional pathways of brain atrophy.

Furthermore, we found that the significant effects of the 
two OSA parameters on brain age were not altered by the pres-
ence of additional factors that independently influence brain 
age. Diabetes and waist-height ratio had the biggest impact on 
the AHI and ODI effects and, interestingly, have been related to 
mechanisms potentially causing these associations: oxidative 
stress, chronic brain inflammation, or brain damage caused by 
repeated oxygen deficiency [65–67].

Oxidative stress and chronic inflammation have been observed 
in diabetes patients [65] and both have been associated with OSA 
[59]. Oxidative stress, an imbalance in the redox status between 
the production and removal of reactive oxygen species, is thought 
to play a role in the development of syndromes like Parkinson’s 
and Alzheimer’s disease [68] and was suggested to be responsible 
for the age-related gradual decline of brain function [68]. In animal 
models, oxidative stress was linked to chronic inflammation [59], 
which is involved in neural cell death in neurological diseases 
[68]. We therefore performed a causal mediation analysis to test if 
hsCRP, WBC, or fibrinogen concentration mediate the effect of AHI/
ODI on brain age. While hsCRP and fibrinogen showed no signifi-
cant mediation effects after correcting for multiple testing, WBC 
was found to significantly mediate both effects.

Another potential mechanism is the energy imbalance in the 
brain cells due to the repeated lack of oxygen resulting in cell 
swelling and, in extreme cases, a cytotoxic edema [69]. Animal 
models exposed to OSA-like breathing events exhibited cellular 
injury in the hippocampus, anterior fornix, regions throughout 
the thalamus and forebrain, the brainstem, frontal cortex, cere-
bral Purkinje cells, and deep nuclei. While some damage can be 
recovered during waking periods, repeated nocturnal apneic 
events would likely lead to progressive pathological changes [13, 
69].

This study has some limitations: (1) Only approximately 
one third of the SHIP-Trend population underwent a PSG and 
half an MRI examination, possibly leading to a selection bias. 
Comparing the study sample with the remaining SHIP-Trend 
sample revealed that the study sample was slightly healthier 
and more educated. This was also observed by Fietze et al. [9] in 
the whole PSG data set, who concluded that selection bias may 
not be that critical. (2) The PSG measurements have only been 
performed over one night. Multiple studies have shown night-
to-night variations in PSG-based assessments of OSA caused 
by alternating episodes of stable breathing and episodes of ob-
structive apnea and hypopneas during the night, suggesting 
that an OSA assessment should always be based on multi-night 
measurements [62, 70]. This could not be performed in our set-
ting and it should be noted that one-night PSG measurements 
are common practice in clinical and research settings [15, 71, 
72]. (3) Only cross-sectional and not longitudinal data were used 
in this study, limiting the interpretation of the results. While 
longitudinal PSG or MRI data were unfortunately not yet avail-
able, further analyses in this regard are planned in future. (4) 
OSA diagnoses and treatments prior to the study participation 
were not recorded, possibly affecting the estimated brain age. 
However, due to a small diagnosis rate of OSA of only 20%, a 
putative treatment for OSA is unlikely to have confounded the 
results [9]. Moreover, an unknown OSA treatment, especially 
surgical interventions, in some participants would have led to 
an underestimation of the true effect sizes rather than to false-
positive associations.

In conclusion, our study shows a positive association be-
tween OSA and brain age, in one of the largest population-based 
samples with both MRT and PSG data. The relationship remained 
stable even with the introduction of covariables suspected of 



8 | SLEEPJ, 2021, Vol. 44, No. 3

having an effect on the brain. We have additionally found that 
these effects are mediated by the systemic inflammation par-
ameter WBC. These results indicate that OSA might be a worth-
while study target combatting neurodegenerative diseases.

Supplementary material
Supplementary material is available at SLEEP online.
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