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Abstract
Study Objectives: Estimate the genetic relationship of cannabis use with sleep deficits and an eveningness chronotype.

Methods: We used linkage disequilibrium score regression (LDSC) to analyze genetic correlations between sleep deficits and cannabis use 
behaviors. Secondly, we generated sleep deficit polygenic risk score (PRS) and estimated their ability to predict cannabis use behaviors using 
linear and logistic regression. Summary statistics came from existing genome-wide association studies of European ancestry that were 
focused on sleep duration, insomnia, chronotype, lifetime cannabis use, and cannabis use disorder (CUD). A target sample for PRS prediction 
consisted of high-risk participants and participants from twin/family community-based studies (European ancestry; n = 760, male = 64%; 
mean age = 26.78 years). Target data consisted of self-reported sleep (sleep duration, feeling tired, and taking naps) and cannabis use 
behaviors (lifetime ever use, number of lifetime uses, past 180-day use, age of first use, and lifetime CUD symptoms).

Results: Significant genetic correlation between lifetime cannabis use and an eveningness chronotype (rG = 0.24, p < 0.001), as well as 
between CUD and both short sleep duration (<7 h; rG = 0.23, p = 0.017) and insomnia (rG = 0.20, p = 0.020). Insomnia PRS predicted earlier age 
of first cannabis use (OR = 0.92, p = 0.036) and increased lifetime CUD symptom count (OR = 1.09, p = 0.012).

Conclusion: Cannabis use is genetically associated with both sleep deficits and an eveningness chronotype, suggesting that there are genes 
that predispose individuals to both cannabis use and sleep deficits.
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Statement of Significance

This study provides the first genomic-based evidence of a genetic relationship between both sleep deficits and an eveningness chronotype 
with cannabis use behaviors. These results complement prior twin studies and suggest that the relationship between these phenotypes can 
be partially explained by a common genetic liability, implying that the genetic influences on sleep deficits also have an influence on can-
nabis use. Furthermore, this is the first study to find a positive genetic relationship between an eveningness chronotype and cannabis use.
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Introduction

Cannabis is one of the most widely used psychoactive sub-
stances in the world [1] and has a well-documented but unclear 
relationship with sleep. Cannabis contains cannabinoids, which 
are the major contributors to psychoactive and medicinal ef-
fects [2]. The brain contains cannabinoid receptors, which are 
affected by exogenous cannabinoids and endogenous cannabin-
oids (i.e. produced within the brain). Together, these receptors 
and endogenous cannabinoids comprise the endocannabinoid 
system. The two most prominent exogenous cannabinoids are 
tetrahydrocannabinol (THC), the primary psychoactive can-
nabinoid, and cannabidiol (CBD), which appears to have add-
itional sedating and anxiolytic properties [3]. Evidence suggests 
that an interplay between THC and CBD may underlie a nu-
anced relationship with sleep. For example, acute/low-dose 
THC and high-dose CBD may aide sleep, but low-dose CBD and 
long-term/high-dose THC may interfere with sleep [4]. While 
cannabis is often associated with being a sleep aid [5–10], re-
peated cannabis use may lead to tolerance of its sleep-aid prop-
erties and consistent use is linked to negative sleep outcomes 
via habituation [4].

Increased frequency of cannabis use is associated with an 
assortment of sleep problems including prolonged latency to 
sleep onset [11], lower sleep duration [11–16], sleep disturbances 
[17], sleep quality problems [17–20], later bed times [15], and 
insomnia-related outcomes [12, 17, 19, 21–23]. These adverse 
effects might be specific to daily or chronic users, as a recent 
study found that daily cannabis users endorsed worse sleep 
quality and increased insomnia symptoms compared with both 
nonusers and non-daily users, but also found that nonusers and 
non-daily users demonstrated similar sleep scores [17]. Thus, 
irregular users might not experience the adverse sleep effects 
experienced by heavy users. Additionally, sleep disturbances are 
a primary withdrawal symptom of cannabis use disorders (CUD) 
and are often a leading risk factor for relapse, suggesting that 
those with ongoing CUD might suffer from continuous sleep 
issues stemming from discontinued use or attempts to abstain 
[4, 24]. Lastly, an eveningness chronotype (a diurnal preference 
for a sleep–wake pattern of activity and alertness in the evening 
which is linked to insomnia [25] and sleep complaints [26, 27]) is 
associated with increased cannabis frequency [28–30] and can-
nabis addiction [31].

In addition to cross-sectional association, there is evidence 
of early cannabis exposure and use predicting later sleep out-
comes. The fetal brain is densely inhabited with CB1 receptors 
that spread during gestation [32]. CB1 receptors are thought to 
be involved in the regulation of sleep processes since they are 
found in numerous regions of the brain associated with the 
sleep–wake cycle [33]. THC binds to CB1 receptors, and animal 
research implies this possibly modifies fetal cortical circuitry in 
the womb [34]. Several studies have found associations of pre-
natal cannabis exposure with early sleep factors, such as dif-
ferences in quiet time, irregular sleep, and sleep-related body 
movements a few days after birth [35], less efficient sleep and 
less total sleep time at three years of age [36], and increased 
endorsement of sleep disorder symptoms at age 9–10 years [37].

The endocannabinoid system also plays a critical role in 
the development of the adolescent brain [38] and because the 
brain is changing and developing well throughout early adult-
hood [39], could be susceptible to the effects of cannabis for a 

large part of the lifespan. A handful of studies have found that 
cannabis initiation and early use predict later sleep problems 
such as tiredness, trouble sleeping [22], short sleep duration [16, 
40], and insomnia-related outcomes [23]. Evidence exists for the 
reverse relationship as well, with premorbid insomnia [21] and 
generalized sleep problems [40–42] predicting later cannabis 
use. This effect appears strong in early development, such that 
early childhood sleep deficits predict cannabis use in later ado-
lescence [22, 43–45] and sleep factors during adolescence predict 
adult cannabis use [21, 46]. Lastly, endorsements of an adoles-
cent eveningness chronotype are associated with follow-up 
reports of increased cannabis use controlling for baseline ado-
lescent substance use [41]. With evidence of both cross-sectional 
associations and a bidirectional relationship between cannabis 
and sleep deficits/eveningness chronotype, there could be an 
underlying common liability such as shared or common gen-
etics responsible for this association.

The concept of common genetic liability is that the same 
genetic influences can act on distinct or separately measured 
phenotypes. This can be referred to as “shared genetics” or, more 
formally, genetic pleiotropy. That is, if phenotypes are genetic-
ally correlated, the relationship between those phenotypes can 
be partially explained by a common genetic liability (pleiotropy 
and shared genetics), implying that the genetic influences on 
one phenotype also have an influence on another phenotype. 
There is increasing evidence of a genetic relationship between 
cannabis use and sleep deficits, which may be biologically cen-
tered on the endocannabinoid system’s involvement in the 
circadian sleep–wake cycle [47–49]. Additionally, disruption of 
circadian genes might disturb the reward processing system, 
which can influence substance use [50, 51]. While research has 
shown evidence of common genetics between both alcohol and 
tobacco use and disorders with sleep outcomes using both twin 
studies and genomic methods (e.g. genetic correlations) [52–57], 
studies specifically focused on the genetic relationship between 
cannabis and sleep components remain scarce. Two twin studies 
have found evidence of shared genetics between cannabis use 
and sleep outcomes, specifically lower adult sleep duration [16] 
and adult insomnia outcomes [23]. Additionally, several clock 
gene polymorphisms have been linked to risk for cannabis ad-
diction [58].

Consistent with this literature, there is converging evidence 
that supports a shared genetic liability hypothesis. Recent large 
genome-wide association studies (GWAS) on sleep-related and 
chronotype variables [57, 59–62] have found genes and genetic 
pathways linked with both cannabis use or cannabinoid activity 
[63–69]. Likewise, several GWAS of lifetime cannabis use and 
CUD disorder [66, 67, 70, 71] have found genetic associations that 
are believed to be involved in circadian rhythm and sleep be-
haviors [72–75]. These studies imply genetic pleiotropy between 
cannabis use and sleep deficits, but research is needed to ana-
lyze the specific role of the potentially shared genetics in this 
relationship, especially using modern genomic methods.

As mentioned, modern GWAS have been used to identify in-
dependent genome-wide significant loci associated with various 
sleep traits and to estimate genome-wide single nucleotide poly-
morphism (SNP) heritability for several sleep-related traits such 
as chronotype (eveningness–morningness; 14%), sleep duration 
(10%), and insomnia (17%) [57, 59, 76] as well as for cannabis be-
haviors such as lifetime cannabis use (11%) [67] and CUD (4%) 
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[71]. These results suggest that the combined effects of common 
SNPs capture a considerable proportion of the heritability of 
various sleep behaviors and cannabis use behaviors. A polygenic 
risk score (PRS) is an individual measure of genetic propensity 
to a trait of risk that is generated by multiplying the number 
of risk alleles that an individual possesses at a particular SNP 
by the effect size from a discovery GWAS for that same SNP. By 
applying summary statistics from a large GWAS to a smaller 
genotyped target sample, PRS can be generated to estimate if 
genetic risk for a trait is associated with another trait, implying 
shared genetics between traits. Additionally, summary statis-
tics from GWAS can be used to analyze genetic correlations by 
using a technique called linkage disequilibrium score regression 
(LDSC) which estimates if the direction of the effect of SNPs is 
correlated between traits. Thus, LDSC analyzes if the direction of 
effect between the SNPs of two traits are correlated based on the 
whole genome, while PRS uses the genetic scores assigned to in-
dividuals (derived from a GWAS) to determine if the genetic risk 
attributed to the PRS can predict behaviors observed in a target 
sample and can readily control for covariates.

In this study, we first conducted genetic correlation analyses 
using the summary statistics of several large cannabis (lifetime 
cannabis use and CUD) and sleep (sleep duration, chronotype, 
and insomnia) GWAS to identify any significant genetic cor-
relations between the sleep deficits and cannabis use behav-
iors. Secondly, we generated PRS based on summary statistics 
of various large sleep-related GWAS (chronotype, sleep dur-
ation, and insomnia) and analyzed the ability of sleep trait PRS 
to predict cannabis measures in a target sample consisting of 
both high-risk participants and participants from twin/family 
community-based studies.

Methods

Participants

Our target data consisted of subjects who participated in a third 
wave of data collection from either the Center on Antisocial 
Drug Dependence (CADD) in Boulder, CO (PI: Hewitt) or the 
Genetics of Antisocial Drug Dependence (GADD) cohort from 
Denver, CO and San Diego, CA (PI: Hopfer). To generate accurate 
and bias-free PRS, the ideal analysis requires that the ancestry of 
the target data reflect the original GWAS data that the PRS was 
derived from [77]. With this in mind, we only included subjects 
in our target sample of European ancestry (n  =  868; identified 
by principal component analysis with the 1,000 Genome phase 
III European subsample as a reference [78]) in order to match 
the ethnicity of the discovery GWAS and avoid biased poly-
genic score estimates [79]. Among those in the sample with a 
family member (206 total subjects were nested within a family), 
we kept one member of each family at random to make our 
final sample 760 subjects. Removing subjects from the same 
family allowed us to avoid the potential convergent complica-
tions of using mixed-effects models as well to avoid the role of 
the shared environment amongst family members. Of our re-
maining sample, we had 622 subjects from the CADD and 138 
from the GADD. Subjects from the CADD included data from the 
Colorado Adoption Project (n = 5; [80]), Longitudinal Twin Study 
(n = 143; [81]), Community Twin Sample (n = 315; [81]), and the 
Adolescent Substance Abuse Project (n = 115; [82]). In addition to 
the San Diego and Denver subsamples of the GADD, 44 subjects 

in this consortium were part of a separate study (PI: Hopfer, 
DA035804) that were integrated into the third wave of the GADD. 
The final sample was 64% male (n = 491) with an average age of 
26.78 years (SD = 3.09, range = 19–37).

Measures

Cannabis measures in the target sample
Cannabis measures in our target sample were self-reported 
via a supplement to the Composite International Diagnostic 
Interview Substance Abuse Module (CIDI-SAM) [83]. Any/lifetime 
cannabis use was measure with a screening question regarding 
lifetime cannabis use (“Have you ever used cannabis?”). Subjects 
who endorsed any lifetime cannabis use (n  =  593; no lifetime 
cannabis use as the reference group) were asked a series of 
cannabis-related questions, including age of first use (“How old 
were you the first time you used cannabis?”; mean = 15.28 years, 
SD = 3.10), and number of lifetimes uses (“How many times in 
your life have you used cannabis?”). Responses for number of 
lifetime cannabis uses included: “1–2 times” (n = 36), “3–5 times” 
(n = 57), “6–9 times” (n = 27), “10–19 times” (n = 41), “20–39 times” 
(n  =  39), and “40 or more times” (n  =  393), and were coded as 
1–5. Anyone who denied any lifetime cannabis use was assigned 
a 0 for the number of lifetime cannabis use (n = 167). Previous 
180-day cannabis use was measured by asking, “How many days 
have you used marijuana in the past six months (180 Days)?” 
(mean = 32.60, SD = 63.31). Past 180-day cannabis use was cat-
egorized as 0 days (n = 487), 1–100 days (n = 154), and more than 
100 days (n = 119).

We included several measures of DSM-IV CUD [84] taken from 
the CIDI-SAM to generate a measure that consisted of the sum 
of the number of both lifetime cannabis dependence and abuse 
symptoms endorsed (mean = 1.47, SD = 2.47, range = 0–11), with 
the goal of generating a variable conceptually similar to the uni-
dimensional symptom count of CUD in DSM-5 [85]. Research has 
determined that the cannabis abuse and dependence criteria of 
DSM-IV might not distinguish between two separate disorders 
or constructs [86] and that a unidimensional symptom count 
classifies CUD more appropriately [87]. Studies with DSM-IV 
cannabis dependence and abuse symptom data have utilized 
this summation technique to make a symptom count measure 
that is comparable to CUD reflecting a single disorder [87, 88].

Sleep measures in target data
Sleep measures in our target sample were assessed using the 
Jessor Health Questionnaire [89]. Sleep duration was assessed 
using two questions which asked, “How many hours of sleep 
do you typically get on a weekend?” and “How many hours of 
sleep do you typically get on a weekday?” with responses being 
“5 h or less,” “6 h,” “7 h,” “8 h,” “9 h,” “10 h,” or “11 h or more.” 
Our measures of short sleep duration were coded to match the 
GWAS we generated our PRS from [57]. Short sleep duration <7 h 
was coded as a 1 (n = 225 and n = 158) and the reference group of 
7–8 h sleep duration was coded as 0 (n = 471 and n = 395) for both 
weekday and weekend sleep, respectively. Those who reported 9 
or more hours were assigned an NA to match the coding of the 
sleep duration GWAS. Subjects also were asked: “How often do 
you feel tired or sleepy when you get up in the morning?,” “How 
often do you feel tired or low on energy in day?,” and “How often 
do you take a nap during the daytime?” with possible responses 
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for these three questions being “almost never,” “once a week or 
so,” “2 or 3 times a week,” “nearly every day,” and “would rather 
not answer”; coded as 1–4 and NA.

Generating PRS
After removing duplicate SNPs, quality control performed in 
PLINK [90] included pruning variants based on missingness 
(>5%), minor allele frequency (<1%), and Hardy–Weinberg equi-
librium (p-value < 0.001) followed by pruning variants based on 
linkage disequilibrium (wherever r2 exceeds 0.20 within a 50 kb 
window). There were 1,089,148 SNPs available for generating PRS 
after applying QC. Effect sizes (reported as log odds ratios) from 
the discovery GWAS of dichotomously measured sleep traits [57, 
59, 76] were multiplied by the number of affected alleles at each 
individual SNP in our target sample to generate a unique PRS 
for each participant. Each participant in our data was assigned 
a PRS for each sleep trait by applying the GWAS effect size to 
their genomic data equating to a summation of log odds ratios 
weighted genotypes per individual [91]. That is, each participant 
in our data was assigned a PRS for each sleep trait, by applying 
GWAS effect sizes to their genomic data. Each PRS comprised 
of all SNPs that passed quality control steps (all p < 1) and thus 
explained the highest variance in the sleep phenotypes in our 
target sample. This is consistent with work suggesting that com-
plex traits display a high amount of polygenicity and that using 
only genome-wide significant SNPs may exclude many SNPs 
with small but meaningful additive effects [92]; thus including 
all possible SNPs captures the highest amount of variance pos-
sible for a given trait [93, 94].

Summary statistics from sleep GWAS for PRS analysis and 
genetic correlations via LDSC
Sleep trait PRS effect sizes were generated from the summary 
statistics of several large sleep-related GWAS (all performed 
by the same research team) that utilized data of European an-
cestry from the UK biobank [57, 59, 76]. The sleep-related traits 
included self-report chronotype [59], short sleep duration 
(<7  h) [57], and self-reported insomnia symptoms [76]. The 
original chronotype GWAS utilized morningness, which was 
a binary measure of being a morning person or not (if partici-
pants endorsed any morningness measures as opposed to any 
eveningness measure) with morning people coded as 1 and 
evening people coded as 0.  For the purpose of this study and 
the emphasis on sleep deficits, we reverse coded this measure 
and interpreted the results as eveningness chronotype (127,622 
cases and 120,478 controls). Short sleep was defined as <7 h rela-
tive to 7–8 h sleep duration (106,192 cases and 305,742 controls). 
Severe insomnia (as defined by the GWAS) was classified using a 
self-report question: “Do you have trouble falling asleep at night 
or do you wake up in the middle of the night?,” with participants 
being dichotomized into controls (“never/rarely,” n  =  108,357) 
and frequent insomnia symptoms (“usually,” n  =  129,270) and 
with those reporting “sometimes” excluded. These same sum-
mary statistics were used for the genetic correlation analysis.

Summary statistics from cannabis GWAS for genetic 
correlations via LDSC
Summary statistics from several large scale GWAS of cannabis 
use behaviors were used for LDSC. Summary statistics for life-
time cannabis use were generated from self-report measures of 

whether a participant had ever used cannabis during their life-
time from a sample comprised of both the UK biobank and the 
International Cannabis Consortium (n = 162,082 [67]). Summary 
statistics for CUD were derived via the International Statistical 
Classification of Diseases and Related Health Problems, 10th re-
vision diagnosis of CUD [95] reflecting a problematic and per-
sistent use of cannabis and were derived from the deCODE 
cohort based in Iceland (5,501 cases and 301,041 controls) [71].

Covariates
We included known correlates of cannabis use and sleep 
including age [96, 97], sex [98–100], depression [101–103], and 
current alcohol and tobacco use [104–107] as covariates in all 
regression models. Current alcohol and tobacco use were meas-
ured using the number of days that tobacco (mean  =  33.89, 
SD  =  42.23) and alcohol (mean  =  59.61, SD  =  80.32) were used 
in the past 180 days. Past 180-day tobacco use was categorized 
as 0 days (n = 126), 1–10 days (n = 187), 11–40 days (n = 233), and 
more than 40 days (n = 214). Past 180-day alcohol use was cat-
egorized as 0 days (n = 368), 1–100 days (n = 158), and more than 
100 days (n = 234). Depression symptoms were assessed using 
the Center for Epidemiological Studies-Depression (CES-D) scale 
[108] with the caveat of the sleep disturbance question being 
removed due to its direct overlap with our sleep PRS measure 
(mean = 27.76, SD = 9.29). All regression models also included the 
first 10 ancestral principal components (PCs 1–10) generated in 
PLINK as covariates to account for population stratification as is 
common in genetic and PRS analysis [109, 110].

Statistical analysis

Genetic correlations via LDSC
We used LDSC [111] to calculate genetic correlations between 
traits. Summary statistics were filtered by INFO > 0.90 and MAF 
> 0.01. Strand ambiguous SNPs, SNPs with duplicated rs num-
bers, multi-allelic variants, and insertion/deletions were all re-
moved. SNPs with low Ns (as determined by the LDSC program) 
were also removed when sample sizes were available. Alleles 
were merged with the Hap Map 3 [112] reference panel, with 
the major histone complex removed. The LD scores and beta 
weights used were pre-computed from 1,000 Genomes European 
GWAS data included in the LDSC download.

LDSC is a computationally efficient method that regresses 
chi-square statistics from GWAS on LD scores of the trait of 
interest [111]. LD scores per SNP are the sum of the variance 
explained by LD with other SNPs [113]. Genetic correlations 
were calculated using overlapping SNPs from filtered summary 
statistic files. Genetic correlations also account for population 
stratification and are not confounded by overlapping samples.

Polygenic risk regression analysis
All regression analyses were conducted in R version 3.5.1 [114]. 
Linear and logistic regression models were used to test the associ-
ation between sleep trait PRS and cannabis use behaviors including 
the previously mentioned covariates of age, sex, depression symp-
toms, past 180-day alcohol and tobacco use, and ancestral principal 
components (PCs 1–10). In terms of the steps of our analyses, we first 
used LDSC to estimate potential genetic correlations between sleep 
and cannabis GWAS summary statistics. Second, we ran pheno-
typic regression models between our sleep measures and cannabis 
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behaviors in our target data to establish associations of sleep 
deficits and cannabis behaviors amongst our target sample. Third, 
we ran regression models between our sleep PRS and sleep traits in 
our discovery sample to confirm that the sleep PRS predicted sleep 
constructs in our target data. Lastly, we ran regression models to see 
how sleep PRS predict cannabis behaviors. For all series of regres-
sions models involving PRS, we ran two sets of models: (1) with just 
age, sex, and PCs 1–10 as covariates and (2) with the prior covariates 
and the addition of current depression symptoms and past 180-day 
alcohol and tobacco use. We utilized this two-model approach to 
(1) look at the associations between sleep PRS and cannabis factors 
controlling for both basic covariates and more complex covariates 
and (2) determine if the effects seen in our final models (including 
all covariates) were driven by the more maladaptive covariates (de-
pression and past 180-day substance use).

Results

Genetic correlations using LDSC

We first used LDSC to look at potential genetic correlations between 
cannabis and sleep traits using the largest GWAS to date for each 
trait. Table 1 displays the LDSC analysis between sleep traits and 
cannabis use traits using large scale GWAS. We found significant 
positive genetic correlations between any lifetime cannabis use and 
an eveningness chronotype (rG = 0.24; 95% CI = 0.18,0.30; p = < 0.001). 
We also found significant genetic correlations between CUD and 
both short sleep duration (rG = 0.23; 95% CI = 0.03,0.43; p = 0.017) and 
insomnia (rG = 0.20; 95% CI = 0.02,0.38; p = 0.020). Figure 1 displays 
the genetic correlations between cannabis and sleep phenotypes 
using LDSC (error bars are 95% confidence intervals).

Sleep traits predicting cannabis in target data

Table 2 displays regression outputs of our target data sleep traits 
predicting cannabis use behaviors controlling for sex, age, de-
pression, and past 180-day alcohol and tobacco use. Short sleep 

duration on the weekday significantly predicted earlier age of 
first cannabis use (β  =  −0.06; 95% CI  =  −0.10,−0.02; p  =  0.004). 
Short sleep duration on the weekend significantly predicted 
lifetime cannabis use (β  =  0.70; 95% CI  =  0.12,1.32; p  =  0.022), 
increased number of lifetime cannabis uses (β  =  0.24; 95% 
CI  =  0.08,0.40; p  =  0.001), and earlier age of first cannabis use 
(β = −0.06; 95% CI = −0.11,−0.02; p = 0.006). How often one felt 
tired or low on energy during the day significantly predicted 
early age of first cannabis use (β = −0.14; 95% CI = −0.22,−0.05; 
p = 0.001) and increased lifetime CUD symptom count (β = 0.11; 
95% CI = 0.02,0.19; p = 0.010). How often one takes a nap during 
the daytime predicted earlier age of first cannabis use (β = −0.12; 
95% CI = −0.20,−0.03; p = 0.001).

Sleep PRS predicting sleep traits

Table 3 displays the regression betas between the sleep PRS and 
our sleep variables in our target data controlling for age, sex, 
and PCs 1–10. We converted the original coefficients for the PRS 
regressions from log odds ratios to odds ratios for clearer inter-
pretation, thus the coefficients for the PRS regressions can be 
interpreted as a summation of odds ratio weighted genotypes of 
the trait that it represents. A significant association greater than 
1 between a PRS and an outcome measure implies a liability 
such that a genetically determined unit log-odds increase in PRS 
is positively associated with a liability for the outcome measure. 
A significant association less than 1 between a PRS and an out-
come measure implies a liability such that a genetically deter-
mined unit log-odds increase in PRS is negatively associated 
with a liability for the outcome measure (in the reverse direc-
tion or an association with the reference group). We found evi-
dence of significant associations between the PRS for short sleep 
duration and numerous sleep factors including short weekday 
sleep duration (OR  =  1.37; 95% CI  =  1.16,1.64; p  <  0.001), short 
weekend sleep duration (OR = 1.43; 95% CI = 1.15,1.77; p = 0.001), 
and frequency of taking naps during the day (OR  =  1.10; 95% 
CI = 1.04,0.17; p = 0.002). Insomnia PRS was significantly asso-
ciated with short sleep duration on the weekday (OR  =  1.20; 
95% CI = 1.02,1.42; p = 0.031). There were no significant associ-
ations between the eveningness chronotype PRS and any of our 
sleep measures. Table 4 displays regression betas for the sleep 
PRS predicting sleep outcomes/traits in our target data in our 
full models controlling for age, sex, PCs 1–10, current depres-
sion, and past 180-day alcohol and tobacco use. Short sleep 
PRS was significantly predicted short sleep on the weekday 
(OR  =  1.38; 95% CI  =  1.16,1.66; p  <  0.001), short sleep on the 
weekend (OR = 1.52; 95% CI = 1.22,1.90; p < 0.001) and how often 
one takes naps during the day (OR  =  1.10; 95% CI  =  1.04,1.17; 
p = 0.001). Insomnia PRS significantly predicted how short sleep 
on the weekday (OR  =  1.22; 95% CI  =  1.03,1.45; p  =  0.024). The 
eveningness chronotype PRS did not significantly predict any 
sleep variables in our target data.

Sleep PRS predicting cannabis traits

Table 5 displays the regression betas between the sleep PRS and 
cannabis behaviors in our target data controlling for age, sex, 
and PCs 1–10. The insomnia PRS significantly predicted earlier 
age of first cannabis use (OR = 0.91; 95% CI = 0.84,0.99; p = 0.023) 
and increased lifetime CUD symptom count (OR  =  1.09; 95% 

Table 1. Genetic correlations and 95% confidence intervals between 
sleep and cannabis phenotypes using large scale GWAS

Lifetime cannabis use  
(No lifetime cannabis 
use as the reference 
group)

CUD  
(No CUD as the 
reference group)

Short sleep duration 
(<7 h)

(7–8 h sleep duration 
as the reference 
group)

−0.05 [−0.11,0.01] 0.23* [0.03,0.43]

Eveningness chronotype
(Morningness chronotype  

as the reference group)

0.24* [0.18,0.30] 0.16# [−0.02,0.34]

Insomnia 
(never/rare insomnia 

symptoms as the 
reference group)

0.01 [−0.05,0.07] 0.20* [0.02,0.38]

Genetic correlations between cannabis and sleep phenotypes were calculated 

using LD score regression.

Bold values represent *p < 0.05.
#Italic values represent p = 0.06.
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CI = 1.02,1.17; p = 0.019). Eveningness chronotype significantly 
predicted lifetime cannabis use (OR = 1.21; 95% CI = 1.01,1.45; 
p = 0.042). Table 6 displays the regression betas for the sleep PRS 
predicting cannabis use measures in our target data controlling 

for age, sex, PCS 1–10, current depression, and past 180-day al-
cohol and tobacco use. The insomnia PRS significantly predicted 
earlier age of first cannabis use (OR = 0.92; 95% CI = 0.85,0.99; 
p = 0.036) and increased lifetime CUD symptom count (OR = 1.09; 

Table 2. Regression betas and 95% confidence intervals of sleep traits predicting cannabis use behaviors amongst a high-risk and twin/family 
community-based sample controlling for sex, age, depression, and past 180-day substance using both linear and logistic regression

Sleep trait

Lifetime cannabis use
(No lifetime cannabis use 
as the reference group)

Number 
of lifetime 
uses

Age of first 
cannabis use

Past 180-day 
cannabis 
use

CUD 
symptom 
count

How often do you feel tired or sleepy when you 
get up in the morning?

0.02  
[−0.19,0.23]

0.03  
[−0.14,0.19]

−0.03  
[−0.12,0.05]

−0.06#  
[−0.13,0.01]

0.06#  
[−0.01,0.14]

How often do you feel tired or just low in energy 
during the day?

0.14  
[−0.09,0.37]

0.17#  
[−0.01,0.36]

−0.14*  
[−0.22, −0.05]

0.00  
[−0.08,0.08]

0.11*  
[0.02,0.19]

How often do you take a nap during the  
daytime?

0.15  
[−0.11,0.42]

0.18#  
[−0.03,0.38]

−0.12*  
[−0.20, −0.03]

0.08#  
[−0.01,0.16]

0.03  
[−0.05,0.12]

Short sleep duration on the weekday (<7 h) 
(7–8 h sleep duration as the reference group)

0.07  
[−0.38,0.54]

0.10  
[−0.16,0.45]

−0.06**  
[−0.10, −0.02]

−0.03  
[−0.18,0.12]

0.06  
[−0.10,0.22]

Short sleep duration on the weekend (<7 h)  
(7–8 h sleep duration as the reference group)

0.70*  
[0.12,1.32]

0.24**  
[0.08,0.40]

−0.06**  
[−0.11, −0.02]

0.16#  
[−0.02,0.33]

0.11  
[−0.6,0.30]

Responses for the first three sleep measures included “Almost never,” “Once a week or so,” “2 or 3 times a week,” “Nearly every day,” and “would rather not answer,” 

while both the weekday and weekend sleep short sleep duration are binary measures.

Bold values represent *p < 0.05; **p < 0.01.
#Italic values represent p = 0.06–0.09.

Figure 1. Genetic correlations between cannabis and sleep phenotypes. Genetic correlations were calculated with LDSC. Error bars are 95% confidence intervals.
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95% CI = 1.02,1.17; p = 0.012). Both the short sleep duration and 
eveningness chronotype PRS did not significantly predict any of 
our cannabis measures.

Discussion
We set out to examine the potential shared genetic liability 
of sleep deficits and cannabis use behaviors using multiple 
genomic methods. We found significant positive genetic cor-
relations between lifetime cannabis use and an  eveningness 
chronotype as well as between CUD and both short sleep dur-
ation and insomnia. Additionally, we found that an insomnia 
PRS generated from a large scale sleep GWAS predicted earlier 
age of first cannabis use and increased number of lifetime CUD 
symptoms controlling for sex, age, PCs 1–10, current depres-
sion, and past 180-day alcohol and tobacco, suggesting that the 

genetic risk attributed to insomnia can predict several cannabis 
use behaviors. This study presents the first genomic-based evi-
dence (using PRS and LDSC) of shared genetic influence for can-
nabis use behaviors with both sleep traits and chronotype. The 
direction of these correlations and regressions implies a shared 
genetic relationship between increased cannabis use behaviors 
and both sleep deficits and an eveningness chronotype.

Our LD score derived genetic correlations are the first such 
report of a genetic relationship between sleep deficits and can-
nabis use behaviors, and are similar to prior studies that have 
shown genetic associations of sleep deficits and other substance 
use behaviors such as alcohol and tobacco [55–57]. These results 
and analyses imply that there is a positive genetic correlation 
between sleep deficits (short sleep duration, insomnia, and an 
eveningness chronotype) and lifetime cannabis use/CUD, such 
that the genetic influences on cannabis use also have an influ-
ence on sleep deficits or vice versa. While a prior twin study 

Table 3. Odds ratios and 95% confidence intervals for sleep PRS (p < 1) predicting sleep factors amongst a high-risk and twin/family community-
based sample controlling for age, sex, and ancestral principal components (PCs 1–10)

Sleep trait

Short sleep duration (<7 h) PRS  
(7–8 h sleep duration as the 
reference group)

Eveningness chronotype PRS  
(Morningness chronotype as 
the reference group)

Insomnia PRS  
(Never/rare 
insomnia symptoms 
as the reference 
group)

How often do you feel tired or sleepy when 
you get up in the morning?

1.01 [0.94,1.10] 0.99 [0.92,1.06] 1.03 [0.96,1.11]

How often do you feel tired or just low in 
energy during the day?

1.03 [0.96,1.10] 1.04 [0.97,1.11] 1.05 [0.99,1.13]

How often do you take a nap during the 
daytime?

1.10** [1.04,1.17] 0.97 [0.92,1.03] 1.04 [0.98,1.09]

Short sleep duration on the weekday (<7 h)  
(7–8 h sleep duration as the reference group)

1.37** [1.16,1.64] 1.02 [0.86,1.19] 1.20* [1.02,1.42]

Short sleep duration on the weekend (<7 h)  
(7–8 h sleep duration as the reference group)

1.43** [1.15,1.77] 1.10 [0.91,1.33] 1.05 [0.86,1.27]

Responses for the first three sleep measures included “Almost never,” “Once a week or so,” “2 or 3 times a week,” “Nearly every day,” and “would rather not answer” 

while both the weekday and weekend sleep short sleep duration are binary measures.

Bold values represent *p < 0.05; **p < 0.01.

Table 4. Odds ratios and 95% confidence intervals for sleep PRS (p < 1) predicting sleep factors amongst a high-risk and twin/family community-
based sample controlling for sex, age, depression, past 180-day substance use, and ancestral principal components (PCs 1–10)

Sleep trait

Short sleep duration (<7 h) PRS  
(7–8 h sleep duration as the 
reference group)

Eveningness chronotype PRS  
(Morningness chronotype as 
the reference group)

Insomnia PRS  
(Never/rare 
insomnia symptoms 
as the reference 
group)

How often do you feel tired or sleepy when 
you get up in the morning?

1.02 [0.95,1.10] 0.99 [0.92,1.06] 1.04 [0.97,1.12]

How often do you feel tired or just low in 
energy during the day?

1.03 [0.97,1.11] 1.05 [0.99,1.12] 1.06# [0.99,1.13]

How often do you take a nap during the 
daytime?

1.10** [1.04,1.17] 0.69 [0.92,1.03] 1.04 [0.98,1.10]

Short sleep on the weekday (<7 h)  
(7–8 h sleep duration as the reference group)

1.38** [1.16,1.66] 1.03 [0.87,1.22] 1.22* [1.03,1.45]

Short sleep on the weekend (<7 h)  
(7–8 h sleep duration as the reference group)

1.52** [1.22,1.90] 1.09 [0.89,1.32] 1.06 [0.87,1.30]

Responses for the first three sleep measures included “Almost never,” “Once a week or so,” “2 or 3 times a week,” “Nearly every day,” and “would rather not answer” 

while both the weekday and weekend sleep short sleep duration are binary measures.

Bold values represent *p < 0.05; **p < 0.01.
#Italic values represent p = 0.07.
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found a genetic correlation between eveningness chronotype 
and both increased alcohol quantity and binge drinking [52], to 
our knowledge this is the first report of chronotype being genet-
ically correlated with cannabis use. These results would imply 
that the genetic influences for being an “evening type” person 
also have an influence on lifetime cannabis use. Additionally, 
our PRS analysis findings present the first report of genetic risk 
for a sleep behavior predicting a substance use behavior, sug-
gesting that the genetic risk for insomnia is associated with 
cannabis use behaviors such as earlier age of first cannabis use 
and increased number of lifetime CUD symptoms.

Our sleep duration PRS was validated on phenotypes of sleep 
behaviors in our target sample. Specifically, our short sleep 
duration PRS predicted short sleep duration on the weekday/
weekend and how often one takes naps during the daytime. The 
insomnia PRS predicted short sleep duration on the weekday 
and was trending in its association with how often one feels 
tired or low in energy during the day. Unfortunately, our target 
sample did not have a direct measure of insomnia (which was 
measured in the GWAS as have trouble falling asleep at night 
or waking up in the middle of the night) nor did our target data 
sleep trait measures include questions regarding trouble falling 
asleep or waking up at night. Furthermore, the insomnia GWAS 
phenotype was defined as severe insomnia, excluding those who 
had insomnia symptoms “sometimes” and only including those 
with “usual/always” insomnia symptoms. This exclusion could 
have led the PRS to predict only extreme cases and this could 

have influenced the potential variance explained in our regres-
sion analysis regarding the sleep outcomes. The eveningness 
chorotype PRS did not predict any of the sleep measures in our 
target sample. Similar to our insomnia PRS, our target sample 
did not have a direct measure of chronotype, and the only 
chronotype-like measure was restricted to a question regarding 
how often one feels tired or sleepy in the morning, which dif-
fered from the morning person/night person question of the 
chronotype GWAS. This could explain the lack of significant re-
lationships between the eveningness chronotype PRS and the 
sleep outcomes in our target data

It is worth noting that we included cannabis measures from 
differential time points with the goal of not only analyzing the 
genetic relationship between sleep and various cannabis behav-
iors across life, but also to look at the phenotypic associations of 
early cannabis use and later sleep in our target data. We found 
that several measures of recent sleep characteristics were asso-
ciated with earlier cannabis use measures in our target data; for 
example, short sleep duration on the weekend was associated 
with earlier age of first cannabis use as well as increased number 
of lifetime cannabis uses, and that short sleep duration on the 
weekday, how often one feels tired or low in energy during the 
day, and how often one takes a nap during the daytime were as-
sociated with earlier age of first cannabis use. Additionally, we 
found that increased lifetime CUD symptom count was associ-
ated with how often one feels tired or low in energy during the 
day. These results support prior findings of potentially earlier or 

Table 6. Odds ratios and 95% confidence intervals for sleep PRS (p < 1) predicting cannabis behaviors amongst a high-risk and twin/family 
community-based sample controlling for sex, age, depression, past 180-day substance use, and ancestral principal components (PCs 1–10)

Cannabis trait

Short sleep duration (<7 h) 
PRS  
(7–8 h sleep duration as the 
reference group)

Eveningness chronotype PRS  
(Morningness chronotype as 
the reference group)

Insomnia PRS  
(Never/rare insomnia symptoms as 
the reference group)

Lifetime cannabis use  
(No lifetime cannabis use as the 

reference group)

1.02 [−0.19,0.23] 1.19#[0.97,1.46] 1.17 [0.95,1.44]

Number of lifetime uses 0.99 [0.92,1.05] 1.04 [0.98,1.11] 1.04 [0.98,1.11]
Age of first cannabis use 0.96 [0.89,1.04] 0.99 [0.91,1.07] 0.92* [0.85,0.99]
Past 180-day cannabis use 1.02 [0.96,1.10] 1.03[0.96,1.10] 1.12 [0.95,1.09]
CUD symptom count 1.01 [0.94,1.09] 1.05 [0.98,1.012] 1.09*[1.02,1.17]

Bold values represent *p < 0.05.

#Italic values represent p = 0.09.

Table 5. Odds ratios and 95% confidence intervals for sleep PRS (p < 1) predicting cannabis behaviors amongst a high-risk and twin/family 
community-based sample controlling for sex, age, and ancestral principal components (PCs 1–10)

Sleep trait

Short sleep duration (<7 h) PRS  
(7–8 h sleep duration as the 
reference group)

Eveningness chronotype PRS  
(Morningness Chronotype as the 
reference group)

Insomnia PRS  
(Never/rare insomnia symptoms as 
the reference group)

Lifetime Cannabis Use  
(No lifetime cannabis use as 

the reference group)

1.04 [0.86,1.26] 1.21* [1.01,1.45] 1.09 [0.91,1.32]

Number of lifetime cannabis 
uses

0.99 [0.93,1.07] 1.07# [0.99,1.15] 1.04 [0.97,1.12]

Age of first cannabis use 0.95 [0.88,1.04] 0.97 [0.89,1.05] 0.91** [0.84,0.99]
Past 180-day cannabis use 1.02 [0.95,1.10] 1.05 [0.98,1.13] 1.02 [0.96,1.09]
CUD symptom count 1.02 [0.95,1.11] 1.07# [0.99,1.14] 1.09* [1.02,1.17]

Bold values represent *p < 0.05; **p < 0.01.
#Italic values represent p = 0.07–0.09.
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preceding cannabis use behaviors being associated with later 
sleep factors.

While some of the results from our LDSC analysis align with 
our PRS analysis (e.g. findings of shared genetics between in-
somnia and CUD) several of our findings were not replicated 
between the two analyses. For instance, we found a genetic 
correlation between short sleep duration and CUD, yet our PRS 
for short sleep duration did not predict any cannabis behaviors. 
Additionally, we found a significant genetic association between 
an eveningness chronotype and lifetime cannabis use, yet the 
eveningness chronotype PRS did not significantly predict any 
cannabis behaviors in our full models (although there was a 
significant association between the eveningness chronotype 
PRS and lifetime cannabis use in our simple model but this as-
sociation was trending in the full model). Reasons for the lack 
of convergent results could include population differences be-
tween the GWAS and target data in terms of both environmental 
and genetic differences of the samples. Different locations of 
the samples will have different environmental influences that 
can influence phenotype expression and there are both racial 
and regional differences in terms of common and rare variants, 
minor allele frequencies, and linkage disequilibrium that can 
influence results and the variance explained [115]. Additionally, 
differences in the methodological aspects of the analyses (PRS 
vs LDSC) could be responsible. While both analyses focused on 
the effects across all available SNPs, LDSC looks at the overall 
direction of effect of all SNPs and PRS looks whether the genetic 
risk for a certain trait predicts a phenotype. Lastly, the differ-
ence in sample sizes between the two methods could explain 
the dissimilarities in results, provided the genetic correlations 
were between large-sample GWAS and were better powered 
than the PRS regression which has a much smaller sample size. 
Overall, our results imply shared genetics between cannabis use 
and sleep deficits, and the differences seen in the results may 
be due to population and methodological differences between 
these analyses.

Our findings complement a small collection of research fo-
cused on the genetics of cannabis use and sleep behaviors. Two 
prior studies by our group have used the classical twin design 
to show that shared genetics played a role in the etiology of the 
relationship between early cannabis use and shorter adult sleep 
duration, insomnia, and insomnia with short sleep [16, 23] and a 
recent study found clock gene polymorphisms that were signifi-
cant risk factors for cannabis addiction [58]. One possible explan-
ation for this genetic relationship could be that disturbances of 
circadian rhythm genes might interrupt the reward processing 
system, which could influence substance use [50, 51]. Another 
supported explanation could be that the endocannabinoid 
system is involved in the circadian sleep–wake cycle, such that 
endocannabinoids influence sleep behaviors and their levels 
can vary with the time of day and other circadian-related fac-
tors [47–49, 116]. Along these lines, several of the genes and gen-
etic pathways found to be significant in sleep-related variable 
GWAS [57, 59–62] have been associated with cannabis use and 
cannabinoid activity [63–66, 68, 69, 117–120]. Likewise, GWAS for 
lifetime cannabis use and CUD [66, 67, 70, 71] have found genes 
that have been linked to sleep behaviors and circadian rhythm 
[72–75, 121].

This study demonstrates a genetic relationship between 
both sleep factors and chronotype with cannabis use behaviors, 
implying shared genetic liability between these domains, specif-
ically common genetics between short sleep duration, insomnia, 

and an eveningness chronotype with increased cannabis use be-
haviors. Future studies should use more novel genetic methods 
to examine the exact mechanisms for this genetic relationship 
such as gene set enrichment pathway analysis [122]. While a re-
cent study has made causal inferences between these domains 
using Mendelian randomization [123], there are mechanisms 
both genetic and outside of genetics that could be responsible 
for the associations between these traits and future research 
should use methods that can make causal inferences like 
epigenome-wide association studies [124] and experimental-
based cannabis administration studies to analyze the relation-
ship between cannabis use and sleep deficits.

Limitation
There are several limitations to this study, which point to im-
portant lines of future research. First, our cannabis, sleep, and 
covariate variables in our target sample were self-report and 
could be prone to response bias or report error. Second, while 
both the short sleep duration and insomnia PRS were signifi-
cantly associated with sleep duration outcomes and other sleep 
behaviors, the eveningness chronotype PRS was not significantly 
associated with any of our target data sleep measures. The co-
hort study lacked a valid insomnia or chronotype measure to 
validate the usefulness of the respective evening chronotype 
and insomnia PRS measures. The inclusion of such measures 
would have ideally been associated with these PRS measures. 
Third, population differences in environmental factors between 
target and base data can influence the variance predicted in the 
models. Our GWAS data for our PRS was gathered from the UK 
in a cohort known for being older and overtly healthy [125]. Our 
target sample was from the US, younger, mostly male, and a com-
bination of community-based and high-risk subjects. Fourth, 
genetic differences due to the regional make-up our samples 
could influence the variance. While both our GWAS base and 
target data were from European ancestry, there could still be 
genetic differences between the samples that could have influ-
enced the predictive ability of the PRS to explain the variance of 
the outcomes. Fifth, we reported the effects of all SNPs (p < 1) in 
our results, and while using this threshold method captures the 
additive effect of additional SNPs often removed by the stringent 
threshold of genome-wide significance [92–94], it is also suscep-
tible to false positives or noise. Still, studies have shown that 
the whole-genome approach of using all SNPs captures more 
signal than it does noise and that this method can outperform 
PRS generated from using only top hits [126, 127]. Sixth, while 
LDSC is robust to population stratification/relatedness, there are 
limitations to consider such as biases in the estimates due to 
rare copy variants and capturing genetic variation tagged only 
by common SNPs [111]. Lastly, several of our genetic-based re-
sults regarding the relationship between cannabis use and sleep 
deficits were trending in significance (such as the eveningness 
chronotype PRS predicting lifetime cannabis use and the genetic 
correlation between eveningness chronotype and CUD) and it is 
possible that similar studies with considerably larger samples 
would yield clearer results.

Summary
Our findings are consistent with the theory that both sleep 
deficits (such as short sleep duration and insomnia) and 
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an  eveningness chronotype share genetic liability with can-
nabis use behaviors, and that this genetic relationship con-
tributes to the associations between sleep and cannabis. 
These results extend the current body of research focused on 
the relationship of sleep and cannabis behaviors to include 
the first instance of genomic evidence (LDSC and PRS pre-
diction) as well as the first evidence of a genetic relationship 
between an eveningness chronotype and cannabis use behav-
iors. Future studies should consider novel genomic methods 
to examine potential genes as well as specific genetic causal 
pathways for these relationships.
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