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Abstract

cardiomyocytes.

Current methods to differentiate cardiomyocytes from human pluripotent stem cells (PSCs) inadequately
recapitulate complete development and result in PSC-derived cardiomyocytes (PSC-CMs) with an immature or fetal-
like phenotype. Embryonic and fetal development are highly dynamic periods during which the developing
embryo or fetus is exposed to changing nutrient, oxygen, and hormone levels until birth. It is becoming
increasingly apparent that these metabolic changes initiate developmental processes to mature cardiomyocytes.
Mitochondria are central to these changes, responding to these metabolic changes and transitioning from small,
fragmented mitochondria to large organelles capable of producing enough ATP to support the contractile function
of the heart. These changes in mitochondria may not simply be a response to cardiomyocyte maturation; the
metabolic signals that occur throughout development may actually be central to the maturation process in
cardiomyocytes. Here, we review methods to enhance maturation of PSC-CMs and highlight evidence from
development indicating the key roles that mitochondria play during cardiomyocyte maturation. We evaluate
metabolic transitions that occur during development and how these affect molecular nutrient sensors, discuss how
regulation of nutrient sensing pathways affect mitochondrial dynamics and function, and explore how changes in
mitochondrial function can affect metabolite production, the cell cycle, and epigenetics to influence maturation of

Keywords: Stem cells, Cardiomyocytes, Mitochondria, Maturation, Metabolic regulation

Introduction

Human pluripotent stem cells (PSCs) are capable of effi-
ciently differentiating into beating cardiomyocytes within
less than 2 weeks [1]. However, these PSC-derived cardi-
omyocytes (PSC-CMs) are immature, with characteris-
tics that more closely resemble fetal cardiomyocytes
than mature, adult cardiomyocytes [2]. Numerous strat-
egies have been proposed to enhance maturation of
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PSC-CMs including electrical stimulation, prolonged
time in culture, or use of patterned substrates with some
success [2]. New studies reveal that metabolic stimuli
such as glucose removal, fatty acids, or hormones can
improve PSC-CM maturation [3-7]. These interven-
tions recapitulate aspects of metabolic transitions that
occur during embryonic, fetal, and postnatal develop-
ment [8, 9]. In particular, birth itself triggers
innumerable molecular changes as the body transi-
tions from receiving all oxygen and nutrients from
the placenta to breathing and eating independently. It
is this window of time that cardiomyocytes transition
from a proliferative state to a quiescent state [10, 11].
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Common molecular mechanisms triggered by meta-
bolic shifts may contribute to both cardiomyocyte cell
cycle exit and maturation. In particular, mitochondria
are central to both sensing and regulating transitions in
nutrient availability [12]. Mitochondria also undergo
maturation during the perinatal window, transitioning
from small, fragmented organelles to large networks
with developed cristae capable of the high oxidative cap-
acity needed to produce enough ATP to support the
contractility required of the postnatal heart [12]. This
maturation process of mitochondria is likely not merely
a response to overall cardiomyocyte maturation; rather,
mitochondria may be mediators of the molecular pro-
cesses triggering maturation of cardiomyocytes. Thus,
understanding how metabolic transitions during devel-
opment might affect mitochondria and how mitochon-
dria can affect cardiomyocyte maturation is important to
develop strategies to improve and accelerate the matur-
ation process. In this review, we discuss the role that
normoxia, enteral feeding, and hormone changes during
the perinatal window can affect mitochondria; next, we
highlight features of mitochondria that can be regulated
by nutrient sensors; finally, we review how changes in
mitochondria can regulate cell cycle activity, metabolite
formation, epigenetic behavior, and electrophysiological
properties of cardiomyocytes.

Features of immature and mature cardiomyocytes
The features of immature, PSC-CMs compared to ma-
ture, adult cardiomyocytes have been reviewed exten-
sively [2, 13, 14]. In brief, immature PSC-CMs have less
organized and smaller sarcomeres (~1.65um), lower
maximum contractile force, slower upstroke velocity,
higher resting potential (around - 60mV), absent T-
tubules, and continued reliance on glycolysis as the pri-
mary energy source [14]. In contrast, mature, adult car-
diomyocytes have more organized and longer
sarcomeres (~ 2.2 um), exhibit a lower resting membrane
potential (around — 90 mV), and rely on oxidative phos-
phorylation for ATP production [2]. Mitochondria of
immature PSC-CMs are small and distributed through-
out the cytoplasm including many located in the peri-
nuclear space, while mature mitochondria are larger and
primarily intermyofibrillar or subsarcolemmal [2].
Prolonging culture time of PSC-CMs can increase mito-
chondrial content yet mitochondrial function and car-
diomyocyte phenotype remain immature [15]. This
raises a question reminiscent of the chicken and the egg
dilemma: which comes first—mitochondrial maturation
or cardiomyocyte maturation? Although both processes
are intertwined, we focus here on mitochondrial re-
sponses to metabolic stimuli and consider their potential
role as drivers of cardiomyocyte maturation.
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Overview of molecular sensors and mitochondrial
responses

Molecular sensors detect changes in oxygen, energy, or
nutrient levels to effect downstream transcriptional,
translational, post-translational, or epigenetic modifica-
tions to enable responses to the environmental stimuli
[16-19]. As one of the first organs to form during em-
bryonic development, the heart must be able to utilize a
variety of metabolic substrates in order to sustain its en-
ergy requirements throughout development. Cardiomyo-
cytes retain this flexibility to utilize different substrates
for ATP production, and shifts in the metabolic state
can exert downstream effects that alter phenotype dur-
ing development and disease states.

Major molecular metabolic/nutrient sensors in cardio-
myocytes include hypoxia-inducible factors (HIFs; acti-
vated with low oxygen tension) [18], AMP-activated
protein kinase (AMPK) (activated by low intracellular
ATP levels in starvation conditions [20]), the mechanis-
tic target of rapamycin (mTOR) (activated in nutrient-
rich conditions [21]), and fatty acid receptors (e.g.,
CD36) [16]. Each of these systems has a close relation-
ship with mitochondria, on whom they depend to trans-
mit their signals to downstream processes (Fig. 1). In
response to signals from these sensors, mitochondria
can respond by changing the balance of mitochondrial
fission and fusion, undergoing mitochondrial biogenesis,
and/or initiating mitophagy to remove dysfunctional
mitochondria. These  mitochondrial — morphologic
changes have effects downstream by changing the oxida-
tive capacity, mitochondrial membrane potential, and re-
active oxygen species (ROS) levels to control
cardiomyocyte phenotype [22]. We will discuss each of
these further in the context of the different metabolic
transitions below but briefly review their role in mito-
chondrial dynamics and function here.

Oxygen levels regulate activity of the HIF family of
transcription factors, which are degraded under nor-
moxic conditions and stabilized under hypoxic condi-
tions [18] or can be activated by mTOR signaling [23].
HIFs consist of an oxygen-sensitive a unit (HIF-la or
HIF-2a) which dimerizes with HIF-1f to enact transcrip-
tional changes aimed to promote cell survival in hypoxic
conditions [24]. HIF-1a/2a suppresses oxidative phos-
phorylation by downregulating enzymes involved in the
citric acid cycle to reduce acetyl-CoA formation and
suppress electron transport chain activity in mitochon-
dria, instead upregulating lactate dehydrogenase A
(LDHA) to support glucose and lactate-mediated ATP
production via glycolysis [24]. Interactions between HIFs
and mitochondria have been reviewed previously—
briefly, HIFs can downregulate mitochondrial biogenesis
via crosstalk with AMPK signaling, differentially alter
mitochondrial fission and fusion with acute or chronic
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Fig. 1 Metabolic sensors and mitochondria. Metabolic sensors detect changes in oxygen, nutrient, or hormone levels to induce or inhibit
mitochondrial biogenesis or removal by mitophagy. Crosstalk between the AMP-activated kinase (AMPK), hypoxia-inducible factor (HIF), and
mechanistic target of rapamycin (mTOR) signaling pathways can alter the balance of mitochondrial responses to nutrients or other

hypoxia, alter expression of microRNAs that regulate
mitochondrial function, and can upregulate antioxidant
defense systems to minimize damage from ROS [25].

Nutrient sensors respond to alterations in glucose, amino
acid, or fatty acid levels. AMPK is activated by increased levels
of AMP and ADP, and as an energy sensor, it detects low glu-
cose levels and initiates catabolic pathways to maintain energy
homeostasis [20]. AMPK stimulates mitochondrial biogenesis
and activates mitochondrial turnover via mitophagy by activat-
ing Unc-51-like kinase 1 (ULK1) [20]. The mTOR kinase acts
through mTOR complex 1 (mMTORC1) to increase protein
synthesis and fatty acid metabolism and decrease autophagy
or mTOR complex 2 (mMTORC2) to promote cell survival
[26]. mTOR signaling can be activated by glucose as well as
amino acids and growth factors such as insulin and is nega-
tively regulated by AMPK [16]. The fatty acid transporter,
CD36, senses long-chain fatty acids and can activate AMPK
[27]. In addition, it can modulate intracellular calcium levels
or associate with the outer mitochondria membrane to regu-
late oxidative phosphorylation [27]. It is evident that molecular
crosstalk between these metabolic sensors finely tunes the
phenotypic response of cardiomyocytes in response to differ-
ent substrates.

Major metabolic transitions from fetal to
postnatal life

Several excellent reviews have highlighted the many
transitions that mammals undergo from embryonic

formation to birth as they relate to cardiomyocyte mat-
uration [8, 9, 13, 28]. Here, we focus on how these tran-
sitions specifically affect molecular nutrient sensors and
how these sensors regulate mitochondria (Fig. 1). We
use examples from both stem cells and development to
underscore how mitochondria are much more than sim-
ply energy-producing organelles, acting to both listen to
metabolic signals and coordinate cellular changes in
response.

Spontaneous breathing

Fetal development occurs in a state of relative hypoxia
compared to the postnatal state, with fetal arterial pO,
of ~20-30 mmHg (versus adult alveolar arterioles pO,
of ~100 mmHg) [29]. At birth, there is a rapid increase
in oxygen tension after the baby’s first breath which de-
creases expression of HIF-la [18]. HIF-la activity is
mainly regulated by protein stability, with ubiquitination
and subsequent degradation occurring rapidly in states
of normoxia [30, 31]. In addition, lactate levels are rela-
tively high in the fetus (~ 0.5-2 mM in umbilical venous
blood at 17-21 weeks gestation [32]) due to high glyco-
Iytic activity of the placenta [33], which decreases rapidly
after birth (~0.5-1mM in umbilical venous blood at
term delivery [32]) after achieving independence from
placental circulation, with maternal arterial lactate levels
of 0.68+0.07mM at delivery [34]. Lactate can also
stabilize HIF-la in fibroblasts [35] and cancer cells
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independent of hypoxia [36]. HIF-1« is required during
embryonic development [29, 37], and deletion of HIF-1a
in mouse embryonic stem cells (ESCs) reduces cardio-
myocyte differentiation efficiency, with reduced expres-
sion of sarcomere proteins [38].

However, during later stages of differentiation, inhib-
ition of HIF-la has beneficial effects, enhancing con-
tractile, electrophysiologic, and metabolic maturation of
PSC-CMs and also leading to downregulation of LDH
[3, 39]. These differential effects during early and late
cardiomyocyte differentiation reflect the changing role of
HIFs at the time of birth and during the perinatal meta-
bolic switch. Because in vitro culture is usually per-
formed in atmospheric conditions, small molecules or
metabolic stimuli have been used to inhibit HIF-1a in
culture (rather than manipulating oxygen levels). Treat-
ment of human PSC-CMs with chetomin [3], FM19G11
[39, 40], or glucose-free, fatty acid-containing media [3]
reduces HIF-1a and LDH expression and improves mat-
uration of PSC-CMs. Hypoxia promotes a perinuclear
distribution of mitochondria to promote ROS-mediated
nuclear regulation [24]. Chronic hypoxia promotes mito-
chondrial fusion while acute hypoxia promotes mito-
chondrial fission [24]; thus, shifts in mitochondrial
dynamics initiated by HIF-la downregulation can alter
mitochondrial function.

Enteral nutrition and the metabolic switch

Initiation of enteral nutrition in the perinatal transition
initiates a metabolic switch from glycolysis to oxidative
phosphorylation [41]. This metabolic switch is not
merely a feature of mature cardiomyocytes, but a key
driver that initiates cardiomyocyte differentiation and
maturation [42, 43]. The high fatty acid composition
found in breastmilk likely facilitates this metabolic
switch [8]. In addition, Let-7 microRNA (miRNA),
which is also abundant in breastmilk [44], can induce a
metabolic switch from glycolysis to oxidative phosphor-
ylation and enhance PSC-CM maturation [45]. Here, we
describe how shifts in glucose and fatty acids affect mat-
uration of cardiomyocytes.

Glucose
The fetus depends primarily on glucose for energy, rely-
ing on the maternal-fetal glucose gradient for nutrient
transfer [46]. In the first 24 h after birth, glucose levels
are relatively low, with plasma glucose levels as low as
30 mg/dL (1.7 mM), and then glucose increases to levels
similar to adults (fasting levels ~ 100 mg/dL or 5.6 mM)
within the first few days of life after initiation of enteral
feeding [47].

Pregnant mice or postnatal pups injected with '®F-la-
beled FDG (glucose analog) demonstrated decreased up-
take of '®F-FDG in hearts at 1 and 7 days after birth
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compared to E10.5, suggesting that reduced glucose up-
take in the heart postnatally may facilitate cardiomyocyte
maturation in vivo [48]. During pregnancy, maternal
hyperglycemia can lead to fetal cardiomyopathy and in-
crease the risk of congenital heart disease [49]. Mice
born to hyperglycemic mothers have asymmetric cardiac
hypertrophy but with decreased cardiomyocyte size and
decreased expression of TNNT2, suggesting that hyper-
glycemia promotes excessive proliferation and delays
cardiomyocyte maturation during development [48].
PSC-CMs also demonstrate a decrease in “*F-FDG up-
take relative to '*’I-BMIPP (fatty acid analog) uptake at
~ 2 weeks of cardiomyocyte differentiation that increases
further to at least week 8 of differentiation, indicating
that PSC-CMs undergo a metabolic switch from using
glucose to fatty acids during differentiation [50]. Stand-
ard media used for culture of PSC-CMs in vitro often
has supraphysiologic levels of glucose (DMEM 4.5 g/L =
25 mM, DMEM/F12 31.5g/L=17.5mM, RPMI 2g/L =
11.1 mM glucose versus physiologic levels of ~ 5.5 mM).
High glucose levels impair cardiomyocyte differentiation
in both human [48] and mouse [51] ESCs, while upregu-
lating genes associated with the cell cycle [48]. Suppress-
ing glucose levels after cardiomyocyte specification
enhances differentiation and maturation of PSC-CMs [3,
6, 48] by reducing biosynthesis of nucleotides via the
pentose phosphate pathway [48]. Both AMPK and
mTOR systems are exquisitely sensitive to changes in
glucose levels, leading to downstream regulation of
mitochondrial dynamics, discussed further below.

Fatty acids
During gestation, fetuses receive nutrition that is low in
fatty acids from the placenta. In contrast, breastmilk has
a high fatty acid content, and the composition of the
fatty acids changes over time to match the developmen-
tal needs of the newborn [52]. There is an increase in
fatty acid serum content from ~20pM as a fetus to
300 uM as a newborn and 400 pM as an adult [53].
Sub-physiologic concentrations of fatty acids can en-
hance PSC-CM maturation, and PSC-CMs only uptake
about 1/3 of fatty acids provided when at near-
physiologic concentrations in culture [4]. Human PSC-
CMs treated with 115.5 uM fatty acids (palmitate-albu-
min (52.5 uM), oleic acid-albumin (40.5 uM), and lino-
leic acid-albumin (22.5 pM)) for 2 weeks had increased
size and force generation, increased mitochondrial re-
spiratory reserve capacity, and increased action potential
upstroke velocity compared to PSC-CMs not treated
with fatty acids [4]. Similarly, PSC-CMs treated in
glucose-free medium containing linoleic acid (9.4 pg/ml
or 33.5 uM), oleic acid (9.4 pg/ml or 33.3 uM), and albu-
min (1 mg/ml) solution for 1week exhibited more cell
elongation, increased mitochondrial content, and
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increased basal oxygen consumption rate compared to
control medium [54]. Palmitate (100 uM) alone in-
creased MLC2v expression and force of contraction, and
its effects were further increased in low-glucose (1 mM)
solutions [6]. Without glucose, however, PSC-CMs cul-
tured in fatty acid-rich medium experience lipotoxicity
likely due to intracellular accumulation of fatty acids;
addition of galactose (10 mM) can prevent lipotoxicity
while further improving oxidative capacity and cardio-
myocyte maturation [55]. By promoting oxidative phos-
phorylation by mitochondria, fatty acid availability
directly impacts mitochondrial function and downstream
metabolite formation.

Branched chain amino acids

The shift to enteral nutrition also changes the compos-
ition of plasma amino acids. The branched chain amino
acids (BCAAs), leucine, isoleucine, and valine, are ob-
tained through the diet and can activate mTOR signaling
to regulate insulin signaling [56]. Physiologic levels of
BCAAs may be facilitate cardiomyocyte maturation
through stimulation of mitochondrial biogenesis, but ex-
cessive levels of BCAA may be detrimental due to over-
activation of mTOR signaling. Hyperglycemia induces
cardiomyocyte death in diabetic rats, and this may be
due to abnormalities in metabolism of branched chain
amino acids [57]. Hyperglycemia downregulates enzymes
involved in catabolism of branched chain amino acids
via inhibition of Kriippel-like factor 15 (KLF15), leading
to intracellular accumulation of BCAAs, mTOR overac-
tivation, and cardiomyocyte hypertrophy [58]. Chronic
administration of water supplemented with branched
chain amino acids can stimulate mitochondrial biogen-
esis, increase sirtuin 1 expression, and decrease ROS
levels in cardiomyocytes while prolonging lifespan in
mice [59]. Similarly BCAA supplementation can protect
against doxorubicin-induced mitochondrial dysfunction
and ROS production in cardiomyocytes [60].

Hormone systems

Maturation of the endocrine system occurs simultan-
eously with cardiac development, leading to increases in
fetal serum concentrations of hormones such as thyroid
hormone or corticosteroids throughout fetal develop-
ment. In addition, withdrawal of maternal estrogen after
birth and alterations in retinoid signaling with enteral

feeding may also play roles in cardiomyocyte
maturation.
Insulin

Insulin levels are relatively high during the fetal state but
decrease in the newborn before stabilizing to adult levels
[53]. Insulin receptor and insulin-like growth factor 1
(IGF1) receptor facilitate cardiomyocyte proliferation
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starting at embryonic day ~ E10.5 [61]. In PSCs, early in-
sulin (10 mg/L) treatment at the start of differentiation
can inhibit cardiomyocyte formation, directing cells in-
stead toward a neuroectoderm phenotype [62]. However,
insulin does not inhibit cardiomyocyte differentiation in-
duced by Wnt signaling, due to counteractive effects of
B-catenin on insulin signaling [63]. Insulin/IGF1 treat-
ment after cardiomyocyte formation increases prolifera-
tion and vyield [64, 65], and combined IGF1 and
neuregulin-1 (NRG1) treatment of PSC-CMs improves
metabolic and contractile maturation [66]. Insulin acti-
vates mTOR signaling in the presence of glucose [67]
and can also inhibit cardiomyocyte apoptosis [68] and
promote mitochondrial fusion and enhance function by
upregulation of OPA1 [69].

Triiodothyronine

Human fetal serum levels of total and free tri-iodo-L-
thyronine (T3) and thyroxine (T4) and thyroxine-
binding globulin increase throughout gestation, with
total and free T4 and thyroxine-binding globulin levels
reaching that of adults by 36 weeks gestation [70]. T3
serum levels remain well below maternal levels through-
out gestation [70], with late fetal total T3 levels ~ 1-1.5
nM (65-98 ng/dL) and maternal levels ~2.5-3.5nM
(160-230 ng/dL), with mean non-pregnant adult levels
~2.1nM (137 ng/dL) [70]. Congenital hypothyroidism is
associated with cardiac defects, with 18.5% of congenital
hypothyroidism infants having congenital heart disease
in one study [71].

T3 has direct effects on cardiomyocyte development.
T3 accelerates terminal differentiation and maturation of
ovine fetal cardiomyocytes in vitro [72], and infusion of
T3 during late gestation in sheep fetuses enhances car-
diomyocyte binucleation, reduces cardiomyocyte prolif-
eration (with increased p21 and decreased cyclin D1
expression), increases expression of SERCA2a, and in-
creases cardiomyocyte size [73] via signaling through
thyroid hormone receptors (TR) located in the nucleus
[74]. Deletion of TRal in mice leads to bradycardia and
reduced contractility with decreased myosin heavy chain
a (MHCa) and SERCA2 expression, while deletion of
TRP1 in mice leads to tachycardia and no change in
contractility [75]. T3 activates AMP-activated protein
kinase (AMPK) leading to increased protein synthesis,
while AMPK attenuates T3-induced cardiomyocyte
hypertrophy in neonatal rat ventricular cardiomyocytes
[76]. T3 rapidly induces an increase in AMPK activators
(LKB1 (liver kinase B1) and CaMKK2p (calcium/cal-
modulin-dependent protein kinase kinase 2) and AMPK
suppressors (PP2C (protein phosphatase 2C)), suggesting
that narrow regulation of AMPK activity is required for
normal cardiomyocyte development [76]. T3 can also re-
duce ROS following ischemia/reperfusion injury in mice
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and reduce H,O,-induced mitochondrial dysfunction
and oxidative stress by increasing expression of the tran-
scription factor, Nrf2, which increases expression of an-
tioxidants such as HO-1, and activation of the PI3K/
AKT signaling pathway [77].

Treatment of PSC-CMs with supraphysiologic levels of
T3 (20 ng/ml = 2000 ng/dL = 30.7 nM) for 1 week start-
ing after 20 days of differentiation increased cardiomyo-
cyte size, increased expression of the cell cycle inhibitor
p21, enhanced contractility, and increased oxygen con-
sumption rate [5]. In another study, use of even higher
levels of T3 (100 nM) for 2 weeks did not increase T-
tubule formation unless combined with dexamethasone
[78], thus synergy with other metabolic systems is likely
necessary to observe maximal effects. Similarly, com-
bined treatment with glucose-free medium containing
T3 (10 nM) and fatty acids (linoleic and oleic acids) for
up to 9 days exhibit a higher upstroke velocity, increased
isoproterenol sensitivity, and decreased proliferation
[79].

Glucocorticoids

Glucocorticoids are steroid hormones that act via the
glucocorticoid receptor. Serum cortisol levels are low
during mid-gestation (4 ng/mL at 17.5-20 weeks) but in-
crease at term (45ng/mL by 40 weeks) and increase
sharply at delivery (mean 114 ng/mL in term infants at
delivery) [80] before declining to basal levels (mean ~ 65
ng/mL in healthy infants) [81]. Global glucocorticoid re-
ceptor deficiency also prevents maturation of the heart
in rats, with GR™~ rats having disorganized myofibrils,
reduced diastolic function, and fetal edema characteristic
of hydrops fetalis [82], while maternal glucocorticoid ad-
ministration prior to preterm piglet delivery enhances
cardiomyocyte maturation [83].

Several treatment strategies have demonstrated PSC-
CM maturation with dexamethasone. Dexamethasone
(1 pmol/L = 392 ng/mL, 24-72 h) promotes electrophysi-
ologic maturation of hESC-CMs with accelerated cal-
cium transient decay, enhanced function of the Na'-
Ca®* exchanger (NCX) and sarco-endoplasmic reticulum
calcium-ATPase (SERCA), and enhanced contractility
[84]. Similarly, treatment of PSC-CMs with a combin-
ation of dexamethasone (1 pM) and T3 (100 nM), with
[39, 85] or without [78] insulin-like growth factor 1
(IGF-1; 100 ng/mL) for 1-2 weeks promotes cardiomyo-
cyte maturation. While glucocorticoids are important in
normal cardiac development, they can also have detri-
mental effects in other models [86]—for example,
chronic, supraphysiologic doses of glucocorticoids can
increase the risk of cardiovascular disease in adults
[87]—thus, further work is necessary to understand the
optimal duration of treatment to maximize PSC-CM
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maturation without inducing deleterious effects of
glucocorticoids.

The mechanism by which dexamethasone acts may be
through mitochondrial maturation. Activation of the
glucocorticoid receptor upregulates expression of PPARy
(peroxisome proliferator-activated receptor y) coactiva-
tor la (PGC-1a) [88], a transcriptional coactivator that
induces mitochondrial biogenesis and maturation [89].
Furthermore, short-term (24h) dexamethasone treat-
ment promotes maturation and inhibits proliferation of
mouse ESC-CMs via mitochondrial aggregation of LC3
and induction of Parkin-mediated mitophagy [90].
Parkin-mediated mitophagy selectively degrades dys-
functional or depolarized mitochondria via autophagic
processes activating the ubiquitin-proteasome system
[91]. Thus, the combination of enhanced mitochondrial
biogenesis, mitochondrial maturation, and elimination of
dysfunctional mitochondria likely promotes
glucocorticoid-induced cardiomyocyte maturation.

Estrogen

Estrogen levels are relatively high during fetal develop-
ment due to maternal hormones, with estrogen with-
drawal occurring within the days after birth [92].
Signaling through estrogen-related receptors o and y
(ERRa/y) enhances maturation of cardiomyocytes during
development [93], and ERRYy is involved in regulation of
the metabolic switch to oxidative metabolism in the
heart [94]. Deletion of ERRa/y in mice leads to cardio-
myopathy with arrested maturation of mitochondria,
while ESRRA and ESRRA deletion in human PSC-CMs
downregulates expression of non-cardiac genes, includ-
ing those consistent with a fibroblast phenotype such as
TCF21, periostin, and collagen type III [93].

Retinoic acid

Retinoids are the family of compounds derived from
vitamin A [95]. The main biologically active metabolite,
all-trans retinoic acid (ATRA) (also known as tretinoin),
is formed by oxidation of retinol and signals via retinoic
acid receptors (RAR) located in the nucleus [95]. RAR
forms a heterodimer with retinoid X receptor (RXR) that
then binds to retinoic acid response elements (RAREs)
to regulate gene expression [96]. Serum ATRA concen-
tration is lower in human newborns (3.4 nmol/L) than
mothers immediately post-partum (5.8 nmol/L) and in
control (non-pregnant or post-partum) women (5.2
nmol/L) [97].

Isolated deletion of RARa [98], RARB [99], or RARy
[100] does not affect cardiac development, although
double knockout of RARa with either RARB or RARy
led to a high incidence of structural heart disease [101,
102]. Deletion of RXRa leads to ventricular failure dur-
ing embryonic development [103]. Interestingly,



Garbern and Lee Stem Cell Research & Therapy (2021) 12:177

excessive levels of vitamin A during development is
teratogenic and can also increase the risk of congenital
heart disease [104, 105]. RAR or RXR agonists prevent
cardiomyocyte apoptosis and cardiac fibrosis induced by
hyperglycemia in rat cardiomyocytes [106] via activating
liver kinase B1 (LKB1) signaling and inhibiting p70 ribo-
somal protein S6 kinase activity (p70S6K) [107]. LKB1 is
a key player in metabolic regulation through activation
of AMPK, which can in turn inhibit the mTOR signaling
pathway, and p70S6K is immediately downstream of
mTOR complex 1 (mTORC1) [108]. Thus, retinoid sig-
naling is closely tied to metabolic transitions that occur
after birth with a shift in nutrient type and availability.

Treatment of PSC-CMs with supraphysiologic levels of
ATRA (1 umol/L) during early differentiation (days 2—4,
mesoderm stage) increased expression of cardiac
markers TNNT2, NKX2.5, and MYH6 by day 10, while
treatment with retinoic acid from days 15-20 of differ-
entiation enhanced cardiomyocyte size, increased action
potential duration, and increased mitochondrial content
and maximal respiration capacity [109]. Duration and
dose of retinoic acid appear to be important factors in
directing cardiomyocytes toward their desired pheno-
type, as treatment with 500 nmol/L. ATRA from days 3—
12 of differentiation leads to specification of an atrial
cardiomyocyte phenotype rather than ventricular cardio-
myocyte maturation [110].

Angiotensin Il

Angiotensin II is a peptide hormone that regulates vaso-
motor tone and blood pressure and can enhance con-
tractility [111]. Circulating levels of angiotensin II
increase throughout fetal development and peak shortly
after birth [112, 113]. Autoantibodies to angiotensin type
1 receptor (AT1R) during fetal development have de-
creased cardiac function with unorganized myofibrils
and increased expression of proteins involved in glycoly-
sis [114]. Crosstalk between the renin-angiotensin sys-
tem and AMPK [115] may link angiotensin II to
metabolic transitions occurring during cardiomyocyte
development. Angiotensin II acts via the AT1R to pro-
mote differentiation of mouse ESC-CMs via c-Jun NH2-
terminal kinase (JNK) and activation of the mitogen-
activated protein kinase (MAPK) pathway leading to up-
regulation of sarcomere proteins and cardiomyocyte
hypertrophy [116, 117]. Angiotensin II upregulates glu-
cose uptake and mTOR signaling while downregulating
AMPK activation leading to cardiac hypertrophy, while
use of an AMPK activator increases fatty acid uptake
and prevents cardiomyocyte hypertrophy [118]. These
findings suggest that angiotensin II regulates early car-
diomyocyte development through upregulation of sarco-
mere proteins but may have detrimental effects later by
interruption of fatty acid metabolism.
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Noncoding RNAs
Noncoding RNAs, in particular microRNAs (miRNAs)
(~18-24 nucleotides) and long noncoding RNAs
(IncRNAs) (>200 nucleotides), can be affected by
changes in nutrient availability [119-121]. MicroRNAs
(miRNAs) (18-24 nucleotides) can also regulate mito-
chondrial function, cellular quiescence, and maturation
through  epigenetic mechanisms involving post-
transcriptional regulation of mRNA [25, 122]. A review
of all miRNAs is beyond the scope of this review, but we
highlight miR-1 as an example. Mice deficient in miR-1
have both structural and electrophysiological cardiac de-
fects [123]. During differentiation of mouse ESC-CMs,
miR-1 expression is upregulated, and overexpression of
miR-1 can promote formation of cardiac mesoderm dur-
ing early differentiation by suppression of WNT and
FGF pathways [124, 125]. However, overexpression of
miR-1 in adult rats increases the risk of ventricular ar-
rhythmias by downregulating Kir2.1 (encoded by
KCNJ2) and Cx43 leading to reduced conduction and
cardiomyocyte depolarization [126]. While miR-1 can
enhance ATP production in mitochondria, it is upregu-
lated during senescence [127]. MiR-1 expression is in-
creased in Hutchinson-Gilford progeria, a disease of
accelerated aging [128]. While low levels of ROS (30 uM
H,0, x 2 days) can decrease miR-1 expression via ERK
phosphorylation, high levels of ROS (200 uM x 6 h) can
increase miR-1 via JNK phosphorylation in neonatal rat
ventricular cardiomyocytes [129]. Furthermore, miR-1
exacerbates oxidative stress by reducing expression of
antioxidant proteins in cardiomyocytes [130]. In
addition, nutrient signals likely affect miR-1 expression,
as inhibition of mTOR signaling in skeletal muscle re-
presses miR-1 expression [131]. Hyperglycemia increases
expression of miR-1 via p38 MAPK, leading to mito-
chondrial dysfunction, downregulation of Cx43, and car-
diomyocyte apoptosis [132, 133], and these effects can
be ameliorated by upregulation of liver X receptor o
(LXRa) [134]. These studies demonstrate that fine tun-
ing of multiple miRNA levels through nutrient availabil-
ity is important to promote cardiomyocyte development.
In addition, long noncoding RNAs (> 200 nucleotides)
are involved in both the pathophysiology of cardiac dis-
eases [135] and cardiac development. For example, the
IncRNA, Hand2os1, regulates the transcription factor,
HAND?2, to control cardiac morphogenesis during early
development [136]. LncRNA expression is deregulated
during states of metabolic stress such as in diabetes and
altered expression patterns can be associated with devel-
opment of diabetic cardiomyopathy [137]. Conversely,
nutrient deprivation can acutely change expression levels
of IncRNAs in skeletal muscle [138]. There are dynamic
expression levels of IncRNAs in the heart, changing dur-
ing the first week of life, suggesting an important role
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for IncRNAs in postnatal cardiomyocyte matur-
ation [139].

O-GlcNAcylation

O-GlcNAcylation is a post-translational modification
analogous to phosphorylation that is regulated by nutri-
ent availability and cellular stress [140-142] O-linked N-
acetylglucosamine (O-GlcNAc) is a product of the hexo-
samine biosynthetic pathway that attaches to serine and
threonine protein residues by O-GlcNAc transferase
(OGT) and can be removed by O-GlcNAcase (OGA)
[140]. Dysregulation of O-GIcNAc glycosylation ad-
versely affects mitochondrial function [143]. Loss of
OGT during development leads to dilated cardiomyop-
athy and abnormal coronary artery formation in mice
[144]. OGT is required for maturation of postnatal car-
diomyocytes by maintaining homeostasis of the endo-
plasmic reticulum and mitochondria [145] and is
required for autophagy in cardiomyocytes [146]. How-
ever, excessive O-GlcNAcylation inhibits cardiomyocyte
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differentiation in ESCs [147]. Acutely increasing O-
GlcNAcylation can be cardioprotective during ischemia
in neonatal cardiomyocytes [148]; however, chronic ele-
vation of O-GlcNAcylation as seen in diabetes leads to
cardiac dysfunction and increase risk of arrhythmias via
activation of Ca®*/calmodulin-dependent protein kinase
II (CaMKII) [149, 150]. Thus, time-dependent or stage-
specific regulation of O-GIcNAcylation may have oppos-
ing effects in cardiomyocytes.

Metabolic regulation of mitochondria

Given their central role in maintaining the metabolic
phenotype, mitochondrial maturation may not simply be
a byproduct of overall cardiomyocyte maturation but
may actually drive cardiomyocyte maturation [151].
Metabolic shifts during fetal development and at birth
target mitochondrial molecular pathways such as mito-
chondrial biogenesis, fission/fusion, mitophagy, and the
mitochondrial permeability transition pore (Fig. 2).
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Mitochondrial biogenesis

Mitochondria in mature cardiomyocytes are large, occu-
pying ~ 1/3 of the cardiomyocyte volume, and are orga-
nized between myofibrils (intermyofibrillar), beneath the
sarcolemma (subsarcolemmal) or near the nucleus (peri-
nuclear) [152]. In contrast, fetal mitochondria are
smaller, have less well-defined cristae, and are poorly or-
ganized, distributed throughout the cytoplasm during
early development, although they begin to relocate be-
tween myofibrils during later fetal development [152,
153]. Mitochondrial biogenesis that occurs during late
fetal and early neonatal development is necessary to
drive cardiomyocyte maturation [154].

Peroxisome proliferator-activated receptor gamma
coactivators la (PGC-la) and 1p (PGC-1P) are tran-
scriptional coactivators that play key roles in mitochon-
drial biogenesis [154] and can be activated by AMPK
[49]. PGC-1a™'" or PGC—IB’/ ~ mice have mild cardiac
dysfunction, but double deletion of PGC-1aB™" leads to
neonatal death with bradycardia, heart block, and car-
diac dysfunction [154]. PSC-CMs upregulate PGC-la
during differentiation [155]. Activation of PGC-1a with
ZILNO005 improves maturation of PSC-CMs [89], while
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overexpression of PGC-1a in H9¢2 cells stimulates mito-
chondrial biogenesis and autophagy to protect against
lipopolysaccharide-induced apoptosis [156]. Contractile
work requires increased ATP levels and this may also
trigger enhanced mitochondrial biogenesis [157]. In
addition, elevated glucose levels inhibit AMPK signaling
which can adversely affect mitochondrial biogenesis and
dynamics; activation of AMPK with berberine can re-
verse hyperglycemia-induced effects, leading to en-
hanced mitochondrial function by stimulating biogenesis
and promoting mitophagy of dysfunctional mitochondria
[158]. MiR-144 is decreased in hyperglycemic condi-
tions, but overexpression of miR-144 can promote mito-
chondrial biogenesis and reduce apoptosis via AMPK
phosphorylation and PGCla deacetylation [159].

Mitochondrial fission and fusion

Mitochondria are dynamic organelles, undergoing pro-
cesses of fusion and fission to maintain cardiac function
(Fig. 3). Fission is regulated by PINK1/Parkin to signal
the GTPase dynamin-related protein, DRP1 (encoded by
DNMIL), to assemble into a constrictive ring to sever a
mitochondrion into two halves [160]. Fusion occurs in
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Fig. 3 Mitochondrial dynamics. Mitochondria undergo dynamic processes of biogenesis, fusion, fission, and mitophagy. Balance of fission and
fusion processes are needed to maintain normal mitochondrial function. An imbalance of fission/fusion leads mitochondrial dysfunction:
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two steps, first with fusion of the outer mitochondrial
membrane (OMM) via mitofusins 1 and 2 (MFN-1/2),
followed by fusion of the inner mitochondrial membrane
(IMM) via interactions between optic atrophy 1 (OPA1)
and cardiolipin [161]. In adult cardiomyocytes, mito-
chondrial dynamics are constrained by spatial limitations
imposed by myofibrils [162], but changes in mitochon-
drial morphology are important in regulating develop-
mental processes and in diseased states [163].

Isolated cardiomyocyte deletion of either Mful [164]
or Mfn2 [165] in mice promotes mitochondrial fragmen-
tation that actually has a cardioprotective effect under
stress conditions, but combined deletion of both Mfnl
and Mfn2 in cardiomyocytes is embryonic lethal by day
E9.5 [166]. Similarly, cardiomyocyte deletion of Dnmil
in mice is lethal by 6 weeks of age [167]. Postnatal car-
diomyocyte deletion of Mfnl/Mfn2 in mice leads to
mitochondrial fragmentation and hypertrophic cardio-
myopathy with left ventricular dilation leading to death
within ~ 2-3 months [166], while Drpl deletion leads to
mitochondrial hyperelongation, cardiomyocyte necrosis,
and a dilated cardiomyopathy phenotype with fulminant
heart failure within 3-6 weeks leading to death [167].
Triple knockout of Drpl/Mfnl/Mfn2 remarkably delays
the lethal effects of Drpl deletion alone or Mfnl/Mfnl
deletion alone, exhibiting a concentric cardiac hyper-
trophy eventually leading to death between 3 and 6
months after tamoxifen treatment [168]. These findings
demonstrate that an imbalance in fission and fusion pro-
cesses causes more harm than when both processes are
downregulated together.

OPA1l is a dynamin-like guanosine triphosphatase
(GTPase) located in the inner mitochondrial membrane.
Opal overexpression preserves mitochondrial function
and prevents cardiomyocyte apoptosis after hypoxic in-
jury through decreasing fission, increasing fusion, in-
creasing mitophagy, and increasing mitochondrial
biogenesis [169]. The full-length protein of OPA1 (long
OPA1, or L-OPA1) facilitates mitochondrial fusion and
is required during embryonic development [170]; how-
ever, OPA1 can be cleaved by two mitochondrial prote-
ases, OMA1 or YMEIL, to convert from L-OPA1l to a
short form (S-OPA1), which reduces mitochondrial fu-
sion and enhances fission [171].

During early differentiation, inhibition of fission and/
or promotion of fusion may enhance differentiation effi-
ciency, while promotion of fission may facilitate postna-
tal maturation. Mitochondrial elongation occurs during
mouse ESC-CM differentiation, and downregulation of
MEN2 or OPA1 prevents cardiomyocyte differentiation
with reduced expression of Nkx2.5, Gatad, and Mef2c2
[172]. Furthermore, mitochondrial elongation prevents
overactivation of calcineurin and Notchl signaling to
allow the transition from mesoderm to cardiomyocyte to
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occur normally, thus mitochondrial shape directly influ-
ences early cardiomyocyte development [172]. Promo-
tion of fusion during PSC-CM differentiation increases
the percentage of embryoid bodies that are beating and
increases expression of cardiac genes [173, 174]. How-
ever, mitochondrial fission may be important in cardio-
myocyte maturation during the neonatal period as mice
deficient in Drpl have disorganized myofibrils, reduced
mitochondrial respiration, and abnormal cardiac func-
tion postnatally [175]. Wild-type mice have high expres-
sion of Drpl in neonatal hearts at postnatal day 7 (P7)
that decreases until mice are 4 weeks of age [175]; thus,
a shift from a mitochondrial fusion to fission appears to
accompany the metabolic switch that occurs postnatally
and may be an important window for promoting cardio-
myocyte maturation.

Mitochondrial fission and fusion processes are sensi-
tive to intracellular and extracellular substrates; under-
standing how to fine tune the precise dynamics between
the two processes is not well understood. Nutrients such
as glucose or lipids can either activate or inhibit mito-
chondrial fission depending on context, and these pro-
cesses are also regulated by post-translational
modifications [176]. High glucose increases opening of
the mitochondrial permeability transition pore (mPTP),
ROS production, fission, and cell death [177-179]. How-
ever, removal of glucose of neonatal rat ventricular car-
diomyocytes in culture can also increase Drpl activation
via S616 phosphorylation leading to mitochondrial fis-
sion and enhanced mitophagy [180] and reduced cell
viability by 48 h [181]. While one interpretation of these
in vitro results is that DRP1 activation in low-glucose
conditions is detrimental to cardiomyocyte viability via
increased autophagic processes, it may be that mono-
layer culture conditions in vitro affect the balance of
mitochondrial dynamics, and Drpl activity is inad-
equately balanced by fusion processes in vitro. Homozy-
gous Drpl deletion in adult mice leads to accumulation
of elongated, dysfunctional mitochondria, reduced mito-
phagy, ventricular dysfunction, and death by ~ 3 months
[180]. DRP1 activation may actually be a beneficial re-
sponse under conditions of energy stress that is cardio-
protective in vivo when fission and fusion processes are
differently balanced compared to in vitro conditions.
However, in streptozotocin-induced diabetic mice, inhib-
ition of Drpl-mediated fission with melatonin improved
mitochondrial function and reduced O,  production in
the heart via upregulation of SIRT1 and PGCla [182].
Another theory is that DRP1 activation may be detri-
mental under conditions of chronic hyperglycemia while
it may be beneficial in periods of acute fasting, thus cul-
ture of cells in high glucose media prior to the start of
an experiment may affect the balance of mitochondrial
fission and fusion processes that is different from
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physiologic conditions. Besides glucose, insulin can pro-
mote fusion [69], while a high-fat diet or elevated intra-
cellular calcium levels increase fission [183, 184].
Nutrient shifts during the immediate postnatal period
may have profound impacts on mitochondrial shape,
which then can have downstream effects by altering
mitochondrial biogenesis, mitophagy, metabolite produc-
tion, and cell cycle regulation.

Mitochondrial permeability transition pore

The mPTP is a conductance channel found in the inner
mitochondrial membrane that permits equilibration of
solutes less than 1.5 kDa in size [185]. During early heart
development, mouse embryonic cardiomyocytes exhibit
mitochondrial maturation between embryonic days E9.5
and E13.5, with closure of the mPTP, increased
polarization of the mitochondrial membrane potential
(AY,,), decreased ROS levels, and development of more
mitochondrial cristae [186]. Pharmacologic closure of
the mPTP in E9.5 but not E11.5 or E13.5 myocytes using
cyclosporine A (500nM, 2h) triggers mitochondrial
maturation, resulting in mitochondrial elongation, in-
creased AW, and decreased ROS, as well as an in-
creased number of myocyte Z bands suggestive of
concomitant cardiomyocyte maturation [186]. Similarly,
treatment of neonatal mouse cardiomyocytes with cyclo-
sporine A to induce mPTP closure increased AY,,, de-
creased ROS levels, and increased cardiomyocyte size,
while treatment of neonatal mice from postnatal days 1-
5 with cyclosporine A increased left ventricular ejection
fraction [187], suggesting further maturation of cardio-
myocytes occurs postnatally through this mechanism.
Treatment of mouse or human ESC-CMs with cyclo-
sporine A (2 pg/mL, days 4.5-10.5 of differentiation) or
NIMS811 (3.6 pg/mL), which also closes the mPTP, in-
creased AY,,, increased RNA expression of genes associ-
ated  with  cardiomyocyte  differentiation  and
mitochondrial function, and increased the percent of
TNNT2+ cardiomyocytes produced [188].

The mPTP state can be affected by nutrient availabil-
ity, calcium and ROS, and can affect insulin sensitivity.
High calcium or ROS levels trigger mPTP opening, loss
of AY,, mitochondrial swelling, and subsequent cell
death [189]. Mitochondrial fusion proteins, MFN1 and
MEN2, can promote mPTP opening [164, 165]. In a
mouse model of ischemia reperfusion injury, inhibition
of the nutrient sensor AMPK leads to mPTP opening
during reperfusion, leading to increased ROS production
and necrosis [190]. In addition, Parkin, a key regulator
of mitochondrial mitophagy, can be upregulated by
AMPK [191] and can also inhibit mPTP opening and
prevent necrosis in cardiomyocytes by targeting cyclo-
philin D (CypD), a key component involved in opening
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of the mPTP [192]. Thus, targeted closure of the mPTP
may be important for PSC-CM maturation (Fig. 4).

Mitophagy
Autophagy of mitochondria, or mitophagy, is important
to maintain mitochondrial quality control mechanisms
through removal of dysfunctional mitochondria. The
PINK1/Parkin system is responsible for initiation of this
process: PINK1 accumulates in depolarized (dysfunc-
tional) mitochondria, which recruits Parkin to the mito-
chondrial surface [193]. Parkin is an E3 ubiquitin ligase
that ubiquitylates outer mitochondrial proteins to target
it for proteasome degradation [194]. Deletion of Parkin
between birth and weaning in mice prevents postnatal
cardiomyocyte maturation, with impaired mitochondrial
biogenesis and inhibition of fatty acid oxidation [195].
Mitophagy can be regulated by nutrient sensing sys-
tems such as Akt/mTOR signaling (upregulated in high
nutrient states) or AMPK signaling (upregulated in fast-
ing states) [196, 197]. Inhibition of mTOR signaling with
simvastatin increases mitochondrial fission and mito-
phagy in HL-1 cardiomyocytes and is cardioprotective
following myocardial infarction in wild-type mice [198].
Conversely, the AMPKa2 isoform phosphorylates PINK1
at Ser495 to remove dysfunctional mitochondria via en-
hanced mitophagy and protect against pressure overload
in the heart [199]. Mitochondrial depolarization and
subsequent mitophagy can also be caused by opening of
the mPTP, which can be regulated by AMPK [167]. Up-
regulating fatty acid oxidation through deletion of acetyl
coenzyme A carboxylase 2 (ACC2) promotes Parkin-
mediated mitophagy and prevents myocardial dysfunc-
tion caused by a high-fat diet [200]. Thus the metabolic
shift toward oxidative phosphorylation provides positive
feedback to further hone mitochondrial quality control
mechanisms through enhancing mitophagy. In contrast,
inhibition of mitophagy via chronic activation of
monoamine oxidase-A (MAQO-A) leads to accumulation
of cytosolic p53 and inhibition of Parkin, with subse-
quent reduction in mitophagy and retention of dysfunc-
tional mitochondria [201]. MAO-A activation also leads
to upregulation of cell cycle inhibitors, induction of the
ROS-induced DNA damage response, and increased ac-
tivity of senescence-associated [ galactosidase (SA-P-
gal), consistent with a senescent phenotype. Maintaining
mitophagy may inhibit senescence and promote cardio-
myocyte maturation.

Molecular consequences of mitochondrial
transformations

Reactive oxygen species

Reactive oxygen species (ROS), including superoxide
anion (O,7), hydrogen peroxide (H,O,), and hydroxy
radical («OH), are produced during oxidative
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phosphorylation and can have downstream signaling
effects in cardiomyocytes via redox effects [202]. At
physiologic levels, oxidation of selected proteins can
maintain normal cellular function, but in excess, non-
specific oxidation of cellular contents can be toxic
[203]. Oxidation of miRNAs such as miR-1 can lead
to their inactivation and subsequent dysregulation of
mRNA expression in the heart [204]. The role of
ROS signaling during cardiomyocyte differentiation
and maturation is context-dependent. During early
differentiation of mouse ESC-CMs, transient increases
in ROS with H,O, or menadione improves cardio-
myocyte differentiation with enhanced expression of
sarcomere genes and improved contractility [205,
206]. Similarly, elevated glucose levels (25 mM) in-
creases ROS formation in early PSC-CM differenti-
ation compared to physiological levels (5mM), and
high glucose and high ROS promote cardiomyocyte
differentiation, while low-glucose or early antioxidant
treatment prevents cardiomyocyte differentiation [206,

207]. Upregulation of PGCla during PSC-CM differ-
entiation increases mitochondrial size and respiratory
capacity while also increasing ROS production [208].
However, in mouse embryonic cardiomyocytes at em-
bryonic day E9.5, antioxidant treatment enhances
while oxidant treatment impairs cardiomyocyte differ-
entiation [186]; this developmental stage also coin-
cides with closure of the mPTP [186]. Furthermore,
while knockdown of PGCla impairs mitochondrial
function, the concomitant reduction in ROS actually
increases the action potential amplitude and duration
closer to those seen in mature adult cardiomyocytes
[208], possibly by preventing ROS-induced decreases
in Ca** influx [209] or increases in K* efflux [210].
Thus, the effects of ROS appear to be time-
dependent: early ROS production may facilitate initi-
ation of cardiomyocyte differentiation and sarcomere
formation, while reduction of ROS levels after cardio-
myocyte formation may be beneficial in maturing the
electrical properties of cardiomyocytes.
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Cell cycle arrest

Mitochondria play integral roles in regulation of the cell
cycle [211], while cell cycle state can control mitochon-
drial behavior [212]. Cardiomyocytes exit the cell cycle
shortly after birth coinciding with a period of cardio-
myocyte maturation [10]. The shift to oxidative phos-
phorylation increases ROS production by mitochondria
after birth, and ROS scavenging can prolong the prolifer-
ative potential by postnatal cardiomyocytes [213]. A
positive feedback loop exists between ROS levels, p38
MAPK and connexin 43 (Cx43), with increased ROS
promoting expression of p38 MAPK and Cx43, and
downregulation of p38 MAPK or mitochondrial Cx43
reducing ROS levels [213]. Increased ROS levels cause
oxidative DNA damage that initiates a DNA damage re-
sponse pathway that leads to cell cycle arrest in cardio-
myocytes, while antioxidant treatment prolongs
postnatal proliferation capacity [214]. Consumption of
milk low in fatty acids also prolongs the postnatal prolif-
erative capacity of cardiomyocytes, while deletion of
pyruvate dehydrogenase kinase 4 (PDK4) to enhance
glucose utilization and reduce fatty acid oxidation re-
duces DNA damage and cardiomyocyte size while also
increasing proliferation [215]. These results suggest that
the change to enteral consumption of breastmilk high in
fatty acids both facilitates cardiomyocyte cell cycle arrest
and maturation.

Additional regulators can affect both the cell cycle and
the metabolic switch in cardiomyocytes. MEIS1, a tran-
scription factor that stimulates cell cycle activity in car-
diomyocytes [216], also supports a less mature metabolic
phenotype in cardiomyocytes by promoting glycolysis,
while MEIS1 siRNA in fetal sheep cardiomyocytes trig-
gers a metabolic switch from glycolysis to oxidative
phosphorylation [217]. Deletion of endonuclease G, a
mitochondrial enzyme that promotes apoptosis during oxi-
dative stress, increases ROS levels, reduces proliferative
capacity of cardiomyocytes in mice, and increases cardio-
myocyte size, with cell cycle arrest in the G1 phase [218].
Cardiomyocyte-specific deletion of mitochondrial transcrip-
tion factor A, Tfam, leads to mitochondrial depolarization
which increases ROS production and impairs cardiomyo-
cyte proliferation via activation of the DNA damage re-
sponse pathway leading to a severe cardiomyopathy that is
embryonic lethal in mice [219]. Postnatal inactivation of
Tfam at postnatal day 0 (PO) leads to progressive ventricu-
lar dysfunction by 6 weeks of age that can be prevented by
treating with a ROS scavenger during the first postnatal
week but not after the first postnatal week [219]. This sug-
gests that there is a critical window of time in the perinatal
transition during which mitochondria regulate both the cell
cycle and cardiomyocyte maturation. Targeting this time
frame during PSC-CM differentiation may be key to achiev-
ing in vitro maturation.
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Quiescence versus senescence

Cell cycle arrest can be reversible (quiescent state) or ir-
reversible (senescent state). Although the majority of
adult cardiomyocytes do not re-enter the cell cycle, there
is evidence to suggest that they are capable of prolifera-
tion under certain conditions [220], suggesting that they
reside largely in a quiescent state. Features of quiescent
(Go) cells include low RNA content, lack of proliferation
markers, or increased expression of cell cycle inhibitor
p27, although characteristics vary by cell type [221]
(Fig. 5). In contrast, senescent cells can be arrested at
the G1/S or G2/M transition [222] and exhibit elevated
ROS and lipofuscin accumulation, increased SA-p-gal
activity, increased expression of cell cycle inhibitors p21
or pl6, senescence-associated heterochromatin foci, and
have a senescence-associated secretory phenotype
(SASP), secreting inflammatory factors such as
interleukin-6 (IL-6), IL-8, and matrix metalloproteinases
[223] (Fig. 5). Quiescence is considered a state of dor-
mancy that is physiologic, while senescence is character-
istic of aging caused by chronic damage to a cell, thus
understanding what external stimuli direct cells to one
or the other state may important for promote normal
development.

Stimuli that promote senescence in non-myocytes in-
clude glucose [224], ROS [225], or hyperinsulinemia
[226]. Therefore, standard culture conditions with supra-
physiologic concentrations of glucose or insulin may
promote cellular senescence in PSC-CMs. Extended cul-
ture times of PSC-CMs can improve some aspects of
maturation [227], but can also increase an aging pheno-
type, with increased SA-B-gal activity, increased lipofus-
cin accumulation, and reduced mitochondrial membrane
potential, which can be reversed with treatment with the
antioxidant, ascorbic acid [228]. When human PSC-CMs
are cultured with young, adult, or aged extracellular
matrix proteins from mice, young ECM increases PSC-
CM proliferation, adult ECM enhances PSC-CM func-
tion, and aged ECM produces an aging phenotype with
reduced PSC-CM function and lipofuscin accumulation,
increased SA-B-gal activity, and increased ROS levels
[229], suggesting that extracellular factors control transi-
tions between proliferative, quiescent, and senescent
phenotypes.

We recently identified that inhibition of mTOR signal-
ing with Torinl can promote cardiomyocyte maturation
in two-dimensional culture through induction of p53-
mediated cellular quiescence and suppression of a senes-
cent state [230]. In fibroblasts and other cell types, cell
cycle arrest with p53 and mTOR activation induces sen-
escence, while p53 upregulation with mTOR inhibition
leads to quiescence [231]. Stimulators of mTOR include
glucose and insulin, thus methods that demonstrate en-
hanced maturation of PSC-CMs with low-glucose,
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Fig. 5 Quiescence and senescence in cardiomyocytes. Cardiomyocytes are proliferative during the fetal state but exit the cell cycle shortly after

birth to enter a quiescent state. Stimuli including excessive glucose, insulin, or reactive oxygen species can induce a pathological senescent state.
Cell cycle arrest with p53 upregulation leads to quiescence with inhibition of mTOR signaling but senescence with activation of mTOR signaling.
In vitro culture conditions using high glucose or high insulin may also induce a senescent state and inhibition of these processes and promotion

of quiescence may be important to promote cardiomyocyte maturation

insulin-free media likely also inhibit mTOR activity.
These pathways will need to be further tested in three-
dimensional cultures as a 3D spheroid geometry can inhibit
mTOR signaling alone through contact inhibition [232].

Mitochondria maintain quiescence in other cell types
by suppressing glycolysis and ROS production [233]. As
mentioned above, suppression of ROS may facilitate
postnatal cardiomyocyte maturation, which would be
supported by quiescence of postnatal cardiomyocytes.
Mitochondrial morphology also changes upon transition
from a proliferative to a quiescent state in other cell
types [234, 235], which likely is accompanied by changes
in mitochondrial function. Lysosomes also play an im-
portant role in maintaining quiescence depth and regu-
lating mitochondrial degradation [236]. Cell culture
conditions may accelerate senescence and prevent mat-
uration; therefore, understanding what conditions pro-
mote quiescence rather than senescence may improve
PSC-CM maturation.

Epigenetics

Epigenetic regulation of gene expression via DNA
methylation, histone acetylation, or microRNAs plays an
important role during cardiomyocyte development [237,
238] and can influence PSC-CM differentiation and

maturation [239]. DNA methylation is dynamically regu-
lated throughout cardiomyocyte development and mat-
uration, with increased gene expression of cardiac genes
occurring with demethylation during early development
and methylation occurring later to silence fetal genes
[237]. Interestingly, maternal diets rich in methyl group
donors (such as folate) can affect the epigenetic state of
the offspring via altered DNA methylation status [240].
Population-based data have associated abnormal mater-
nal DNA methylation with congenital heart disease in
offspring, although a causal association between diet and
cardiac defects has not been established [240, 241]. Epi-
genetic priming of differentiating PSC-CMs during the
mesoderm stage promotes histone H3 lysine 9 acetyl-
ation (H3K9ac) of Notch-related genes, accelerating
PSC-CM maturation [242]. Increased expression of
DNA methyltransferase and increased global methyla-
tion during postnatal rat heart development suggests
that decreased chromatin accessibility accompanies car-
diomyocyte maturation [243]. For instance, reducing his-
tone H3 acetylation and increasing H3 lysine 9
trimethylation (H3K9me3) downregulates expression of
the fetal isoform of troponin I (ssTNI) [238]. As dis-
cussed above, microRNAs can also regulate the epigen-
etic state by post-transcriptional regulation of gene
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expression [122]. MiRNAs are involved in cardiomyocyte
differentiation and maturation [244, 245]. For example,
miR-1 can promote cardiomyocyte differentiation [124],
while overexpression of miR-200c impairs differentiation
and maturation of PSC-CMs [246]. Mitochondrial miR-
NAs (mitomiRs) can also regulate metabolism, energy
status, and mitochondrial dynamics [247, 248].

Mitochondria play central roles in regulating the epi-
genetic state by producing metabolites such as acetyl-
CoA and a-ketoglutarate (a-KG) that can regulate his-
tone acetylation or DNA methylation [249, 250] and has
been reviewed previously [251, 252]. Bromodomain-
containing protein 4 (BRD4) is an epigenetic reader pro-
tein that recognizes acetylated chromatin sites that was
recently identified to promote mitochondrial homeosta-
sis in cardiomyocytes through GATA4-mediated upreg-
ulation of PGC-1a and PGC-1p [253, 254]. The sirtuin
family of class III histone deacetylases can be activated
by AMPK during low energy states to upregulate genes
associated with mitochondrial biogenesis and can pro-
tect against damage from oxidative stress [255].

Mitochondrial regulation of electrophysiological
maturation

Automaticity of immature PSC-CMs is a major barrier
to clinical translation due to the increased risk of ven-
tricular arrhythmias seen when PSC-CMs are injected
into large animal models of myocardial ischemia [256—
258]. Imbalance of the inward rectifier K+ current (f)
due to reduced expression of KCNJ2 and the funny
current (Iy) due to a relative increase in the
hyperpolarization-activated ~ cyclic  nucleotide-gated
(HCN) ion channels may be responsible for automaticity
of PSC-CMs [259, 260]. Time-dependent changes in ex-
pression of miR-1 may be important in regulating elec-
trophysiological maturation, as miR-1 levels are
normally rise after birth, but premature overexpression
of miR-1 leads to underdevelopment of the cardiac con-
duction system [261]. The risk of arrhythmias decreases
over the first few weeks after cell delivery as PSC-CMs
undergo further maturation in vivo, although the mecha-
nisms for this remain unclear [256-258]. It is possible
that changes in mitochondrial dynamics regulate this
transition following exposure to the in vivo environment.
Oscillations in the redox state of a cell due to dynamic
nutrient metabolism can affect membrane current in
cardiomyocytes [262, 263]. Neonatal rat ventricular car-
diomyocytes reprogrammed into cardiac pacemaker cells
with TBX18 transduction displayed automaticity, exhib-
ited a lower metabolic demand, had smaller and more
globular mitochondria, and had increased mitochondrial
fission due to Opal downregulation compared to ven-
tricular cardiomyocytes [264]. In addition, deletion of
cyclophilin D leading to closure of the mPTP reduces
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the risk of ventricular arrhythmias [265]. Mutations in
hydratase subunit A (HADHA) can cause sudden infant
death syndrome due to cardiac arrhythmias after initi-
ation of enteral feeds; PSC-CMs with deletion of
HADHA have an immature cardiomyocyte phenotype,
fragmented mitochondria with accumulation of long-
chain fatty acids, and an increase in action potential dur-
ation although no change in resting membrane potential
[266]. Elevated ROS can lead to mitochondrial mem-
brane depolarization, leading to arrhythmia risk after is-
chemic injury [267]. Not only can mitochondria affect
electrical maturation, electrical stimulation of neonatal
rat ventricular cardiomyocytes can also regulate mito-
chondrial function via upregulation of nuclear respira-
tory factor 1 (NRF-1), cytochrome oxidase, and carnitine
palmitoyltransferase I (CPT-I) [268].

Connexin 43

Connexin 43 (Cx43; encoded by GJA1) is best known as
a gap junction protein that permits intercellular commu-
nication between cardiomyocytes; however, it also plays
an important role during heart development [269, 270].
Global Cx43 deletion leads to right ventricular outflow
tract obstruction and increased arrhythmia risk [271,
272], while cardiomyocyte-specific deletion of Cx43
leads to myocardial hypertrophy, prolongation of the
QRS interval, ventricular tachyarrhythmias, and juvenile
death [270, 273]. Cx43 expression is decreased in heart
failure [274], while restoring Cx43 expression following
myocardial infarction reduces the risk of ventricular
tachycardia in animal models [275]. While the heart has
high expression of the full-length, 43kDa isoform of
Cx43, it is actually the smaller, 20 kDa isoform (GJA1l-
20k) formed by alternative translation that is the most
abundant isoform in the heart [276]. Poorly trafficked
full-length Cx43 is degraded without GJA1-20k, leading
to sudden cardiac death despite normal contractile func-
tion in mice [277]. GJA1-20k also associates with mito-
chondria to stimulate mitochondrial biogenesis via
upregulation of PGC-1la and support a quiescent state
with reduced ROS production [278]. In PSC-CMs, over-
expression of Cx43 improves intercellular communica-
tion and improves function of the voltage-gated Na+
channels (Na,1.5) to increase the action potential up-
stroke velocity and Iy, current [279].

Nutrient availability can affect Cx43 expression, and
Cx43 expression can affect both mitochondrial function
and senescence. Hyperglycemic conditions downregulate
expression of Cx43 while activation of AMPK increases
Cx43 expression [280]. Inhibition of mTOR signaling in-
creases expression of GJA1-20k via inhibition of cap-
dependent protein translation to facilitate trafficking of
the full-length isoform to the cell membrane [276].
GJA1-20k overexpression increases formation of Cx43
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gap junctions, enhances mitochondrial biogenesis, and
reduces ROS levels despite increased mitochondrial
membrane potential and increased oxygen consumption
in angiotensin II-induced cardiomyocyte hypertrophy
[281]. Mitochondrial Cx43 can inhibit mPTP opening,
which reduces ROS release [282]. GJA1-20k has a pro-
tective effect during oxidative stress to limit mitochon-
drial fragmentation in non-myocytes [283], while

excessive oxidative stress and excessive mitochondrial
fission can lead to degradation of Cx43 in cardiomyo-
cytes [284].

Reduced Cx43 is considered a marker for senescence
in fibroblasts [285], glomerular mesangial cells [286],
and hematopoietic stem cells (HSCs) [287], although up-
regulation of Cx43 increases senescence of chondrocytes
[288]. Cx43 prevents senescence in HSCs by forming
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gap junctions between HSCs and adjacent bone marrow
stromal cells to transfer ROS and prevent redox damage
to the HSCs [287]. Whether a similar bodyguard effect
occurs between cardiomyocytes and other cell types is
unclear but may also explain how ROS levels are de-
creased in cardiomyocytes with high Cx43 expression
despite increased oxygen consumption rate.

Resting membrane potential

Mitochondrial dysfunction can also impair activity of the
inward rectifying K* ion channel, Kir2.1 (encoded by
KCNJ2). Kir2.1 is largely responsible for the I; current
which maintains the resting membrane potential of car-
diomyocytes [289]. Skeletal myoblasts with depletion of
mitochondrial DNA or inhibition of mitochondrial com-
plex III with antimycin A had reduced expression of
Kir2.1 leading to membrane depolarization, suggesting
that impaired oxidative phosphorylation can have direct
adverse effects on resting membrane potential [290].
AMPK activation downregulates Kir2.1 [291], and we re-
cently found that sustained activation can enhance mat-
uration of contractile and metabolic features of PSC-
CMs but also reduces expression of KCNJ2 [292]. In
contrast, in neurons, mTOR signaling increases expres-
sion of HCN channels [293]. Dysregulation of AMPK
and mTOR signaling may affect expression levels of
Kir2.1 and HCN4 in cardiomyocytes, leading to cardio-
myocyte membrane depolarization.

Summary

Metabolic signals can alter mitochondrial dynamics and
function, and this may precede downstream regulation
of cardiomyocyte maturation. Crosstalk between key nu-
trient sensing systems including mTOR and AMPK can
control mitochondrial behavior leading to alterations in
ROS levels, cell cycle arrest, and epigenetic changes.
Mimicking key developmental transitions that directly
involve mitochondria such as at ~E9.5 in mice with
closure of the mPTP or at birth with transition to en-
teral nutrition may be critical to enhance PSC-CM mat-
uration in vitro. Interplay between multiple metabolic
factors affects mitochondrial dynamics and cardiomyo-
cyte maturation in a time-dependent manner throughout
development (Fig. 6). Mitochondria may be the conduc-
tors that drive cardiomyocyte maturation by responding
to nutrient signals, dynamically altering respiratory cap-
acity and ROS production, and initiating transcriptional
and epigenetic changes guiding cardiomyocyte
maturation.
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