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Abstract

Machine Learning (ML) has been increasingly used within cardiology, particularly in the domain 

of cardiovascular imaging. Due to the inherent complexity and flexibility of ML algorithms, 

inconsistencies in the model performance and interpretation may occur. Several review articles 

have been recently published that introduce the fundamental principles and clinical application of 

ML for cardiologists. This paper builds on these introductory principles and outlines a more 

comprehensive list of crucial responsibilities that need to be completed when developing ML 

models. This paper aims to serve as a scientific foundation to aid investigators, data scientists, 

authors, editors, and reviewers involved in machine learning research with the intent of uniform 

reporting of ML investigations. An independent multidisciplinary panel of ML experts, clinicians, 

and statisticians worked together to review the theoretical rationale underlying 7 sets of 

requirements that may reduce algorithmic errors and biases. Finally, the paper summarizes a list of 

reporting items as an itemized checklist that highlights steps for ensuring correct application of 

ML models and the consistent reporting of model specifications and results. It is expected that the 

rapid pace of research and development and the increased availability of real-world evidence may 

require periodic updates to the checklist.
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In 2016, the American College of Cardiology’s Executive Committee and Cardiovascular 

Imaging Section Leadership Council initiated a discussion regarding the future of 

cardiovascular imaging among thought leaders in the field (1). One of the goals was focused 

on machine learning (ML) tools and methods that embrace data-driven approaches for 

scientific inquiry. The 2016 paper stressed the creation and adoption of standards, the 

development of registries, and the use of new techniques in bioinformatics. Furthermore, the 

imaging community’s unfamiliarity with the approach was cited as a potential barrier to 

widespread adoption. Recently, the field of cardiac imaging has seen a remarkable burst of 

innovation with the use of ML, demonstrating powerful algorithms that start impacting the 

ways clinical and translational research is designed and executed (2-15).

ML is a subfield of artificial intelligence (AI) where an algorithm automatically discovers 

patterns of data in the datasets without using explicit instructions. Several recent state-of-

the-art review articles have focused on providing introductory concepts regarding ML 

algorithm applications for cardiologists (3,8,16,17). Although ML is creating headlines in 

medical journals, congress, and on the Web, considerable uncertainty and debate have arisen 

around topics such as problems with real-world data sources, the inconsistent availability of 
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labeled data and outcome information, bias injection, inaccurate measurements, 

reproducibility, lack of external validation, and insufficient reporting, which hinder the 

reliable assessment of prediction model studies and reliable interpretations of the results by 

clinicians. This Proposed Recommendations for Cardiovascular Imaging-Related Machine 

Learning Evaluation (PRIME) checklist aims to provide a general framework as a reference 

in guiding scientific work for investigators, data scientists, authors, editors, and reviewers 

involved in machine learning research in cardiovascular imaging (Central Illustration). The 

goal of the PRIME checklist paper was to standardize the application of AI and ML, 

including data preparation, model selection, and performance assessment. The paper 

provides a set of strategic steps toward developing a pragmatic checklist (Table 1) which 

allows consistent reporting of ML models in cardiovascular imaging studies. To further 

determine its ease of use and applicability, the application of the checklist was developed in 

a PRIME checklist for 2 recent articles that developed ML models in cardiovascular imaging 

(Supplemental Table 1).

1. DESIGNING THE STUDY PLAN

Defining the goal of the analysis is a key first step that informs many downstream decisions 

whether to use ML at all, including the presence or absence of labeled data for supervised or 

unsupervised learning. These informed decisions can alter the approach to model training, 

model selection, development, and tuning.

DETERMINING THE APPROPRIATENESS OF MACHINE LEARNING TO THE DATASET.

The first question researchers should address is whether the ML approach would be 

applicable and beneficial to their study. There is an overlap between conventional statistics 

and ML, but they differ regarding the extent of the assumptions and the formulation of the 

methods to either predict or make inferences. If the dataset is relatively small (i.e., fewer 

than hundreds of sample per class for “average” modeling problems), then overfitting 

becomes a much bigger concern, resulting in models that fail to generalize well for unseen 

instances (18). Similarly, if variables that are important to modeling the data are missing or 

if the model is too simple, the resulting ML model may underfit the data, thus producing less 

than optimal results (18). Statistical analyses rely on simpler models that are not necessarily 

optimized to the specific data under observation and are therefore less prone to overfitting at 

the price of lower performance if the problem is complex (19). In contrast, datasets with 

large numbers of features, on the order of thousands or those having many irrelevant or 

redundant features with regard to a given task may just as easily lean toward overfitting. ML 

is especially useful when the data are unstructured, feature selection, or exploratory analyses 

are preferred to identify meaningful insights. As such, the learning algorithm may find 

patterns in the data to generate a homogenous fraction and identify relationships in a data-

driven manner, beyond the a priori knowledge or existing hypotheses (3). Although the use 

of advanced ML algorithms may be better suited for handling big or heterogeneous datasets, 

that comes at the cost of the interpretability, complexity, and the ability to draw a causal 

inference. Caution should be taken against causally interpreting results derived from models 

designed primarily for prediction. For tasks where the goal is to establish causality, the 

techniques that are commonly used in “conventional” biostatistics, including statistical 
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analyses methods such as propensity score matching or Bayesian inference, may be better 

suited; however, newer methods involving ML algorithms are being developed for causal 

inferences (20,21).

UNDERSTANDING AND DESCRIBING THE DATA.

Regardless of whether ML tools or statistical analysis methods are used, it is crucial to 

understand and describe the data available for analysis to draw appropriate conclusions, 

whether data are tabular, images, time-series data, or a combination. Important 

considerations about the data include the availability of data that is representative of the 

target population, the method used to obtain data, and the resultant biases that may influence 

the conclusions that can be drawn from the data. Describing the data can also help 

understand the relevance to the target population. The method of data collection, including 

the sampling method, is also important, as bias may be introduced from systematic error, 

coverage error, or selection. Various guidelines and associated checklists for medical 

research have been established to aid in the reporting of relevant details about the data, 

depending on the study design (22). Clearly describing the data preprocessing or data 

cleaning methods used is essential to enable reproducibility.

It should be acknowledged that all ML or statistical algorithms are guided by basic data 

assumptions. An independent and identical distribution is an important assumption where 

the random variables are mutually independent and have the same statistical distribution and 

properties. Methods to check for the model assumptions, such as learning curves (23) and 

diagnosis of bias and variance (24) or error analyses, may be required.

DEFINING THE PROCESS.

When building ML models, it is crucial to specify the inputs (e.g., pixels in images, a set of 

parameter values, and patient information) and desired outputs (e.g., object categories and 

the presence or absence of disease, an integer representing each category, the probability for 

each category, the prediction of a continuous outcome measurement, transformed pixel data) 

that are required. Although defining outputs is essential for supervised learning approaches, 

unsupervised learning approaches may also benefit from defining the output that is desired 

for the task to select an appropriate model. Some tasks, once well defined, can only be 

achieved using certain types of algorithms. For example, image recognition tasks from raw 

pixel/image data may require the extraction of the optimal features from the data, which is 

intrinsically performed by deep neural networks and goes beyond the use of hand-crafted 

features as input. At the conceptual level, deep learning works by breaking a complex task 

(e.g., identifying a tumor or other abnormalities in organs or tissue) into simple fewer 

abstract tasks. For example, if the task is to identify a square from other geometric shapes in 

an image, this task can be divided further into smaller, nested substeps (e.g., by first 

checking if there are 4 lines associated with a shape or not. Alternatively, one could check if 

lines are interconnected and perpendicular to each other and whether they are closed or not 

and so on in a step-by-step hierarchical fashion. After the consecutive hierarchical 

identification of complex task, deep-learning approaches automatically find out the features 

that are important for solving the problem. It is generally preferable to start by defining the 

overall broader analysis necessary to accomplish the task of interest and dividing it into 
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several subtasks. Defining the problem or task as precisely as possible can also help guide 

the data annotation strategy and model selection. Once the data analysis objective has been 

identified and the inputs/outputs have been defined for each task, it is easier to determine the 

appropriate models for the analysis pipeline (Figure 1).

Strategic steps for developing the checklist:

• Identify and assess if machine learning could be appropriate.

• Define the objectives of machine learning to achieve the overall goal.

• Understand and describe the data.

• Identify input and target variables.

• Describe the baseline data and understand biases that may exist

2. DATA STANDARDIZATION, FEATURE ENGINEERING, AND LEARNING

Data preparation, standardization, and feature extraction are keys to the success of model 

development. They ensure that the data format is appropriate for ML, the variables used 

carry relevant information for solving the problem at hand, and the learning system is not 

biased toward a subset of the variables or categories in the database.

DATA FORMAT.

To analyze the data of N patients (also called “observations”), each with M different 

measurements (also called “variables” or “dimensions”), for example, ejection fraction, 

body mass index, and image pixels or voxels, using an ML algorithm, a data matrix X 

should first be constructed such that the rows of this data matrix correspond to the 

observations and that the columns correspond to the variables (Figure 2). Depending on the 

database and the problem at hand, X can be either a “wide” (Figure 2A) or a “tall” (Figure 

2B) data matrix. In the former, the number of observations is much smaller than the number 

of variables (Figure 2C) (N << M), whereas in the latter, there is a large group of 

observations, but each observation has only a few variables (Figure 2D) (N >> M).

Generating a data matrix from cardiac images can be performed either on entire images or 

on selected regions of the images, depending on the learning purpose. When the goal is to 

use a learning algorithm for modeling the global characteristics of the images, hand-crafted 

features (e.g., radiomics) extracted based on all the pixels of selected regions of a given 

image are considered the variables of 1 observation (Figure 2C), which typically leads to a 

wide data matrix. On the contrary, to model regional image characteristics, however, a 

region of interest (ROI) or patch consisting of a small group of pixels, thus more easily 

yielding a tall data matrix (Figure 2D). Furthermore, a series of techniques (e.g., maximum 

pooling, or patch-based methods) can further be applied in reducing the size of the image-

data matrix to highly informative elements, which often results in a tall, thin matrix, either 

for classification or for a pattern recognition task to identify key regions of interest (7,25). 

For example, a data matrix generated by using a single frame from longitudinal, 4-chamber 

or short-axis view of the heart that is 512 × 512 pixels in size for a total of N patients would 

result in creating an N × [5122] sized matrix for input into deep learning algorithms.
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DATA PREPARATION.

To analyze cardiac images in an ML framework, some preprocessing stages are usually 

carried out. The irrelevant areas of the images can be removed in a “cropping” stage to focus 

on learning from useful regions and to prevent learning from extraneous regions (which can 

also contribute to leakage, as discussed below). If the images that are acquired from a group 

of subjects have different sizes, they typically should be “resized” first (26) to a reference 

image size to construct a data matrix with the same number of variables. More advanced 

techniques from computational atlases are also necessary to align the anatomy-based data of 

each subject to a common geometry and temporal dynamics, as spatiotemporal 

misalignment of input images will increase variance in the input of neurons of a neural 

network thereby slowing its ability to learn relevant features (27,28). Another common pre-

processing stage is “noise removal,” which helps a learning algorithm to better model the 

essential characteristics of the images. When the acquired images have poor contrast, a 

“histogram equalization” (26) technique can be used to adjust the intensities of the pixels 

and to increase the contrast of a low-contrast region, thus facilitating its interpretation and 

analysis. The pixel intensities can also be manually adjusted during image acquisition. An 

example is the changing of the dynamic range of echocardiographic images by an operator. 

Techniques may also be applied to correct the differences in slice thickness, gray level 

distribution or even image resolution and different imaging protocols (contrast vs. 

noncontrast; low dose vs. high dose). Deep learning techniques, which are robust with 

regard to image quality may need to be used. For computed tomography and cardiac 

magnetic resonance images, a particular window and level setting may be applied before the 

deep learning training and normalized to the full intensity ranges.

In cardiovascular imaging, data samples are often represented in 3-dimensional (3D) and 4D 

formats, which currently may present challenges for the deep learning techniques due to the 

constraints posed by computing resources related to image sampling as well as large number 

of input variables. Nevertheless, efficient deep learning techniques have been developed for 

video analysis, and these can be potentially adapted to the direct interrogation of 3D or 4D 

data often seen in echocardiography, nuclear cardiology, or computed tomography (29). An 

alternative approach to deal with complex multidimensional data is to provide an 

intermediate simplified image representation. In cardiac imaging, often a bull’s eye 

representation (aka “polar map”) is used for the projection of 3D or 4D image data into a 

simple 2D (or 2D + time) format. For example, a bull’s eye representation approach has 

successfully been implemented for deep learning of nuclear cardiology studies (6, 30, 31). It 

allows data normalization from multiple scans and disparate sources such as motion/

thickening, perfusion or flow. Such approaches could also be applied to other cardiovascular 

modalities.

Thus, the data preparation step aids in normalizing and compressing image, with respect to 

their intensities, anatomic representation, viewpoint, and so forth, across a given study prior 

to their entry into the ML framework. This process ensures that the algorithm spends more 

time and capacity learning the features that are important, rather than trying to rectify issues 

related to intensities or noise levels in the image data. Size of the images can also be reduced 

in order decrease memory requirements.
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FEATURE ENGINEERING AND LEARNING.

The next stage after data preparation is extracting a set of “features” from the data matrix to 

be used later as the input to the learning methods. Feature extraction helps to overcome the 

following 2 main problems that can limit the efficient performance of a learning framework:

(i) Curse of dimensionality.—When the data matrix is wide, the variable or feature 

space of the data can be referred to as “high dimensional.” This may lead to an algorithm 

which fails to learn essential characteristics of the data due to its complexity and poor 

generalization power when dealing with unseen data, a phenomenon referred to as the “curse 

of dimensionality” (32, 33). To tackle these problems, the number of observations should 

increase significantly with the data dimensionality. For example, in pattern recognition, a 

typical rule of thumb is that there should be at least 5 training examples for each 

uncorrelated dimension in the representation (34). Moreover, it has been previously 

suggested that the sample-to-feature ratio should be between 5 and 10 depending upon the 

complexity of the classifier (35,36). However, a significant increase in the number of 

observations is not always possible, especially for medical data or studies, given that it 

necessitates the collection of data from a large group of patients. This curse of 

dimensionality is one of the main reasons why having a large database is desirable to build 

an efficient learning algorithm.

(ii) Correlated variables.—When a database includes correlated variables, a subset of 

the variables that are mutually uncorrelated may be sufficient to learn the data characteristics 

effectively (32). Indeed, adding correlated variables to a database will only bring redundant 

information and does not help the learning algorithm to achieve a better understanding of the 

data. For the imaging data for example, neighboring pixels typically have similar values and 

are highly correlated (37).

Given the curse of dimensionality, the learning process of algorithms cannot work 

effectively in data with too many features. Techniques to reduce the number of variables 

while retaining the most relevant information are critically important, a process called 

“feature extraction” and “dimensionality reduction.” Feature extraction can be performed 

either manually, using expert knowledge, or by algorithms such as principal component 

analysis (PCA) or multifactor dimensionality reduction (32-34). The result of the feature 

extraction process should be a compact set of (ideally uncorrelated) features or variables in 

the form of a tall matrix that encodes the essential characteristics of the data.

The approaches available for extracting features from the image data can be divided into the 

following 3 broad categories (Figure 3): 1) handcrafted methods (e.g., local binary patterns) 

(38) and scale-invariant feature transform (39); 2) classical ML methods for dimensionality 

reduction (e.g., PCA) (40), independent component analysis (41), or ISOMAP (42); and 3) 

deep learning methods (43). The methods in the first 2 categories are manually designed to 

extract specific types of features from the data, whereas in the last one, the features are 

learned from the database itself. Moreover, in the case of deep learning, techniques such as 

sub-sampling provide effective ways of down-sampling the image size in each layer, 

eliminating the need for feature extraction and improving overall training performance (25). 
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Nevertheless, the classical feature learning algorithms have some limitations in the data 

modeling approaches such as linearity, sparsity, or lack of hierarchical representation. The 

deep learning techniques, on the other hand, can learn complex features from the data at 

multiple levels and do not have the limitations of the classical algorithms. However, they 

need a large-scale database to achieve efficient learning of the data characteristics. To train a 

deep learning algorithm with a smaller database, the following 2 main strategies can be 

used: 1) data augmentation (e.g., by using different types of data/image transformations) 

(44); and 2) transfer learning, which works by fine-tuning a deep network that has been 

pretrained with a different large database (e.g., natural images) (44,45). However, the field of 

transfer learning for medical imaging data is currently in its early stages, and more critical 

insights into its actual relevance will be known in the coming years.

VARIABLE NORMALIZATION.

For a database composed of several variables of different nature (e.g., anthropometric or 

image-derived measurements), the values of the variables lie in different ranges. Direct use 

of these variables may bias the learning system toward the characteristics of the variables 

with larger values, despite the usefulness of the variables with smaller values in solving a 

given problem. To deal with such challenges a “variable normalization” approach can be 

used to transform the variables such that they all lie in the same range prior to entering the 

learning phase (33,34). Variable normalization is especially helpful for a deep learning 

algorithm, as it helps achieve faster convergence of a deep neural network (46).

MISSING VARIABLE ESTIMATION.

ML algorithms often need complete datasets. If data are missing, the options are to exclude 

those subjects, to encode them as missing, or to impute missing values (45,47,48). In 

cardiovascular imaging, 2D images are normally collected from multiple views, for example, 

images can also be acquired throughout the cardiac cycle. When some of the 2D views are 

not accessible or when a group of 2D images at some points during the cardiac cycle or in a 

3D volume are artifactual or missing, an imputation technique can estimate these images or 

the parameters extracted from them (48). Thanks to development of the new deep learning 

algorithms, such as generative adversarial networks (GAN) (49), missing images can often 

be estimated (50) based on the available data, although the physiological relevance of their 

content is not fully guaranteed. However, it should be acknowledged that most of the 

imputation methods assume that the missing observations occur at random, are missing 

completely at random, or are missing not at random (51).

Researchers should consider whether the missing observations carry any specific biases 

(e.g., selection bias or immortal time bias). Although there is no clear guidance or cutoff for 

what proportion of missing data warrants the use of data imputation techniques (52), and 

given that this answer depends on the complexity of the addressed problem, missing value 

imputation is best used whenever possible as it provides evidence about the robustness of the 

learned models regardless of its impact on model performance (53).
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FEATURE SELECTION.

An important phase in designing a classical ML system is to determine the optimal number 

of preserved features. This determination can be performed by using a “feature selection” 

technique, where a set of features that is larger than required is first extracted and then a 

subset with discriminative information is selected (34,54). When a deep learning algorithm 

is used, the optimal features are automatically learned during the end-to-end training of the 

algorithm, and use of an independent feature selection method is often not required (43,55).

OUTLIERS.

An observation is considered an outlier if its values deviate substantially (or significantly, if 

looked through a statistical test) from the average values of a database, which may be 

attributed to measurement error, variability in the measurement, or abnormalities due to 

disease (33,34). Even though outliers can negatively influence and mislead the training 

process, resulting in less accurate models, they may carry relevant information related to the 

given task. Thus, outliers should be carefully examined to see if this comes from improper 

measurements that should be repeated, or not. With the existence of outliers, learning 

algorithms and/or a performance metrics that are robust to outliers can be useful alternatives. 

Methods robust to outliers including but not limited to decision trees and k-nearest neighbor 

(KNN) should be used as much as possible (33). If no other solution exits, the removal of 

outliers, using an outlier detection approach (56), may be considered and the selection 

criterion along with the proportion of samples removed should be reported.

CLASS IMBALANCE.

A significant imbalance in data classes (e.g., healthy vs. diseased) is quite common in 

medical datasets because, on the one hand, most subjects in a database are usually healthy, 

and on the other hand, because collecting patient data for some rare diseases is difficult and 

is not always possible. As a result, the performance of the learning algorithm may be 

skewed, as it only learns the characteristics of the larger sized categories. This problem is 

referred to as “class imbalance” and can be dealt with in the following 3 established ways: 1) 

rebalancing the categories using “under sampling” or “over sampling” (i.e., making the 

different classes similarly sized by omitting samples from the larger class or by up-sampling 

the data in the smaller class); 2) giving more importance (i.e., weight) to the samples of 

smaller categories during the learning process (34); or 3) using synthetic data generation 

methods, such as the synthetic minority over-sampling technique (SMOTE) (57). While the 

random over-sampling generates new data by duplicating some of the original samples of the 

minority class or category, SMOTE interpolates values using a k-nearest neighbor technique 

to synthesize new data instances (58). Recent advances in deep generative techniques, such 

as GAN or variational autoencoders or the use of loss functions that are robust to data 

imbalance (59), have made it possible to tackle complicated imbalanced data based on the 

learning strategies.

DATA SHIFT.

Data shift is a common problem that afflicts the ML models in cardiovascular imaging in 

which the distribution of the database used for testing the performance of the learning 
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models or systems may differ from the distribution of the training data. This may occur 

when the data acquisition conditions or the systems that are used for collecting the test data 

change from when the training dataset was acquired, and could induce: 1) a covariate shift, 

that is, a shift in the distribution in the covariates; 2) a prior probability shift, that is, a 

difference in the distribution of the target variable; or 3) a domain shift, that is, a change in 

measurement systems or methods. It is imperative to assess and treat the shifts that may 

occur in the dataset prior to evaluating a model (60).

DATA LEAKAGE.

Data leakage is a major problem in ML, in which data outside of the training set seeps into 

the model while building the model. This event could lead to an error-prone or invalid ML 

model. Data leakage could occur if the same patient’s data are used in the training and 

testing sets and is generally a problem in complex datasets, such as time series, audio, and 

images, or graph problems.

Strategic steps for developing the checklist:

• The data format for training a machine learning algorithm should be large and 

the ratio of the observations/measurements (i.e., N/M) should be at least 5.

• When the data matrix is wide, a feature extraction/learning algorithm or 

dimensionality reduction technique should be used.

• Redundant features should be removed, and variables should be normalized.

• Outliers should be addressed/removed

• Missing features should be imputed using relevant methods.

• Testing data should never be used for preprocessing or training.

• Duplicate data should be removed and ensured that the same data is not shared in 

the testing and training sets.

3. SELECTION OF MACHINE LEARNING MODELS

Model selection is the process of identifying the model that yields the best resolution and 

generalizability for the project and can be defined at multiple levels (i.e., learning methods, 

algorithms, and tuning hyperparameters). Learning methods include supervised, 

unsupervised, and reinforcement learning. Importantly, supervised learning is a method that 

learns from labeled data (i.e., data with outcome information to develop a prediction model), 

whereas unsupervised learning aims to find patterns and association rules in data that do not 

have labels (Figure 4).

Common algorithms, such as regression or instance-based learning, often handle high-

dimensional data well and tend to perform better or equivalent to complex algorithms on 

small datasets while retaining the interpretability of the model. To achieve better 

performance, simple algorithms or weak learners may be combined in various ways using 

ensemble methods, such as boosting, bagging, and stacking, which sacrifice the 

interpretability. More complex algorithms that are also difficult to interpret, including neural 
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networks, can outperform simpler models given an adequate amount of data. A subset of 

neural networks, known as deep convolutional neural networks (7,25), are particularly useful 

for finding patterns in image data without the need for feature extraction (61-64). The 

implementation of an algorithm can vary significantly in terms of the size and complexity 

(e.g., the size and number of features in a random forest decision tree, the number and 

complexity of kernels applied in a support vector machine, and the number and type of 

nodes and layers in a neural network) of the algorithms.

Regardless of the choice of the algorithm, it is imperative to perform hyperparameter tuning 

and model regularization to produce the optimal performance (65,66). These processes may 

be more important than selecting the types of algorithms that could impact the 

interpretability, simplicity, and accuracy. When performing model selection (especially 

involving large-scale data and/or deep learning methods), hardware constraints (e.g., 

memory size, cache, parallelism, and so forth) are often a key limiting factor beyond model 

performance. However, recent advances toward developing hardware accelerators (e.g., 

graphic processing units, tensor processing units) and growing convenience or abstraction by 

cloud computing could improve the overall process of model training, selection, and 

optimization. Moreover, selecting the best model often involves the relative comparison of 

performance between different models. Therefore, the purposeful selection of loss function 

and the metric that represents it (e.g., absolute error, mean-squared error etc.), which in turn 

is heavily influenced by the model choice, dataset, and particular problem/task to solve, 

becomes fundamental in selecting an appropriate model.

The size and complexity of algorithms should be chosen carefully to minimize the bias, the 

model error on the training dataset, and the variance, the model error on the validation 

dataset. Simpler models may underfit the data; they may generalize better (lower variance) at 

the cost of lower accuracy (higher bias). Furthermore, overfitting (high variance and low 

bias) may come from a model that is too complex or from insufficient representative training 

samples. Several considerations including size, complexity and dimensionality, number of 

features, and nonlinear relationships among variables in the dataset guides the choice of the 

initial algorithm and its complexity, but the final algorithm design (including the choice of 

hyperparameters) is determined empirically or by specific optimization and cross-validation.

Finally, an essential factor in algorithm selection is the need for the interpretability of the 

model’s decisions (i.e., an understanding of which input features caused the model to make 

the decision it made). Interpretability may be extremely important for certain learning tasks 

and less important for others. Regression, decision trees, and instance-based learning 

methods are generally highly interpretable, whereas methods to interpret the function of 

deep neural networks are still evolving; saliency mapping, class activation, and attention 

mapping are some examples for neural network interpretation and visualization (67,68). 

New mechanisms for understanding the workings of ML models (69-72), and approaches for 

probabilistic deep learning (73,74) further provide an opportunity to develop models to 

balance between both inference and prediction.

Strategic steps for developing the checklist:
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• For the initial model development, always select the simplest algorithm that is 

appropriate for the available data.

• The size of the dataset and the complexity of the used algorithm should be 

considered to achieve a good compromise between ‘bias’ and ‘variance’ in the 

estimations.

• Complex algorithms must be benchmarked to the performance of the initial 

simple model across several metrics.

• Tune the hyperparameters to optimize the models and to increase performance.

4. MODEL ASSESSMENT

The next step after selecting a learning model is to evaluate the generalizability by applying 

it to new data (i.e., assessment of its performance on unseen data). Ideally, model assessment 

should be performed by randomly dividing the dataset into a “training set” for learning the 

data characteristics, a “validation set” for tuning the hyperparameters of the learning model, 

and a “test set” for estimating its generalization error, where all 3 sets have the same 

probability distribution (i.e., the statistical characteristics of the data in these 3 sets are 

identical). However, in many domains, including cardiovascular imaging, having access to a 

large dataset is often difficult, thus preventing model assessment using 3 independent data 

subsets. As mentioned in the previous section, the ratio of the training samples to the 

number of measured variables should be at least 5:10 (34,35), depending on the dataset and 

complexity of the classifier (75), to learn the data characteristics properly. If this criterion is 

not met, the data are called scarce. In this situation, the data may be divided into 2 subsets 

for training and final validation of the learning algorithm. However, the results may depend 

on the random selection of the samples. Therefore, the training set can then be further 

partitioned into 2 subsets, but this process is repeated several times by selecting different 

training and testing subjects to obtain a good estimate of the generalization performance of 

the learning algorithm (33). This method of model assessment can be performed by “cross-

validation” or “bootstrapping,” as explained further below. These techniques ensure that: 1) 

the learning model is trained properly given that the majority of the data samples can be 

used in the training process; 2) the learning model is not biased toward the characteristics of 

a subset of the data; and 3) the optimal values of the hyperparameters of the learning model 

(e.g., the number of layers in a neural network and the neurons in each layer) can be 

determined (33).

CROSS-VALIDATION.

This technique works by dividing the data into multiple nonoverlapping training and testing 

subsets (also called folds) and using most of the folds for training a learning model and the 

remaining folds for evaluating its performance (32-34). The cross-validation process can be 

implemented in one of the following ways.

k-fold cross-validation.—Data are randomly partitioned into k folds of roughly equal 

sizes, and in each round of the cross-validation process, 1 of the folds is used for testing the 

learning algorithm, and the rest of the folds are used for its training (Figure 5). This process 
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is repeated k times such that all folds are used in the testing phase and the average 

performance on the testing folds is computed as an unbiased estimate of the overall 

performance of the algorithm (32,33).

Leave-one-out cross-validation.—In this technique, the number of the folds is equal to 

the number of the observations in the database, and in each round, only one observation is 

used for testing the learning algorithm.

Monte Carlo cross-validation.—In this method of cross-validation, there is no limit to 

the number of the folds, and a database can be randomly partitioned into multiple training 

and testing sets. The training samples are randomly selected “without replacement,” and the 

remaining samples are used for the testing group (Figure 6I) (76).

BOOTSTRAPPING.

This method works by randomly sampling observations from a database “with replacement” 

to form a training set whose size is equal to the original database. As a result, some of the 

observations can appear several times in the training set, while some may never be selected. 

The latter observations are called “out-of-bag” and are used to test the learning algorithm. 

This process is repeated multiple times to estimate the learning method’s generalization 

performance (Figure 6 II) (33,76). Although bootstrapping tends to drastically reduce the 

variance, it often tends to provide more biased results, more importantly when dealing with 

small sample sizes.

Strategic steps for developing the checklist:

• Model assessment should be performed by randomly dividing the dataset into 

training, validation and testing data when applicable.

• When data is inadequate or scarce, model assessments using cross-validation 

and/or bootstrapping techniques should be performed to obtain a good estimate 

of the generalization performance of the learning algorithm.

• Typical numbers for k in a k-fold cross-validation should be 5 and 10.

• Consider using leave-one-out cross validation as an appropriate choice when the 

data is small.

5. MODEL EVALUATION

The reporting of accuracy in ML is closely linked to the reporting of summary statistics, and 

the same background and assumptions apply. Although a review of statistical theory is out of 

scope for the PRIME Checklist, we encourage the readers to obtain a clear understanding of 

the statistics for classification and prediction (77-83). Most of the following section applies 

to supervised learning algorithms, for which labels are used in the definition of the 

performance measures. Unsupervised learning is more difficult to evaluate but should also 

evaluate the relevance of the output data representation and the stability of the results against 

the data and model parameters.
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For classification tasks, the accuracy is the percentage of data that is correctly classified by 

the model, which could be influenced by the quality of the expert annotations. The balance 

of classes in the training data is also a known source of bias. As such, a prerequisite for 

reporting accuracy measures is to provide a clear description of the data material used for 

training and validation. We further suggest balancing the class data according to prevalence 

when possible or that balanced accuracy measures are reported (84).

The model parameters (e.g., initialization scheme, number of feature maps, and loss 

function), regularization strategies (e.g., smoothness and dropouts), and hyperparameters 

(e.g., optimizer, learning rate, and stopping criterion) also play a part in the model 

performance. A second prerequisite, therefore, is to provide a clear description of how the 

ML model was generated. It is suggested, furthermore, that the certainty of the accuracy 

measure is reported where applicable, for instance, by estimating the ensemble average and 

variance from several models generated with random initialization. Additionally, cross-

validation analysis should be added to underline the robustness of the model, especially for 

limited training and test data (see the previous section). Furthermore, to assess the 

generalizability of the algorithm, it is necessary to report the accuracy of the model by 

testing the data from different geographic locations with similar statistical properties and 

distributions (85).

A report of the accuracy for ML algorithms in cardiovascular imaging will depend on the 

method and problem. For instance, the classification of disease from image features differs 

from the classification of image pixels in semantic segmentation, both in terms of the 

measures reported and of the risk in use.

For multiclass and label classification, it is suggested to use a statistical language close to 

the clinical standard. For instance, the report sensitivity, specificity, and odds ratio should be 

used instead of the precision, recall, and F1 score. This will also ensure that true negative 

outcomes are considered (86). Nonetheless, for classification tasks, the confusion matrix 

should normally be included but could be Supplemental Appendix. For image segmentation 

problems, we suggest reporting several measures to summarize both the global and local 

deviations, such as the mean absolute error, the Dice score to summarize the average 

performance, and the Hausdorff distance metric to capture local outliers.

When the output of the regression or segmentation algorithms is linked to clinical 

measurements (e.g., ejection fraction), the Bland-Altman plot is suggested for conventional 

evaluation of the image measurements, and the importance of comparing the performance 

with several expert observers for both intraexpert and interexpert variability is stressed.

For the classification of disease from image features, the cost of misclassification should be 

clearly conveyed (e.g., rare diseases may not be properly represented in the dataset). The 

balance of classes should reflect the prevalence of the disease of interest, and scoring rules 

based on estimated probability distributions should be used for the accuracy reporting when 

possible, instead of direct classification. The choice of the scoring rule used for the decision 

(e.g., mean squared error, Brier score, and log-loss) should be rationalized. The common 

classification scores (sensitivity, specificity, and positive and negative predictive values) 
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should include a full receiver-operating characteristic curve analysis to provide a more in-

depth evaluation of the detection performance. It is also relevant to include benchmark 

results from alternative ML methods as well as more conventional techniques, such as 

logistic regression.

Strategic steps for developing the checklist:

• Use a statistical language close to the clinical standard and introduce new 

measures only when needed.

• Balance the classes according to prevalence where available or report balanced 

accuracy measures.

• Estimate the accuracy certainty, e.g., from an ensemble of models, to strengthen 

the confidence in the values reported.

• Include Bland-Altman plots when machine learning is linked to clinical 

measurements.

• Include an inter-observer/intraobserver variability measures as a reference where 

possible.

• The risk of misclassification should be conveyed, and appropriate scoring rules 

for decisions may be needed for the classification of a disease.

6. BEST PRACTICES FOR MODEL REPLICABILITY

The reproducibility of scientific results is essential to make progress in cardiac medicine. 

The ability to reproduce findings helps to ensure the validity and correctness, as well as 

enabling others to translate the results into clinical practice. However, there are several 

complementary definitions of reproducibility. The focus here is primarily on technical 

replicability (87) (i.e., the ability to independently confirm published results of a model by 

inspecting and executing data and code under identical conditions. Technical replicability is 

especially important in ML projects, which often involve customized software scripts, the 

use of external libraries, and intensive or expensive computations. Actions taken at any point 

in an ML workflow, from quality control and data preparation into suitable data structures to 

algorithm development to the visualization of results, are often based upon heuristic 

judgments, and there are potentially numerous justifiable analytical options. Ultimately, 

these selections may significantly alter the results and conclusions.

The first step for making ML projects reproducible could be the release of all the original 

code written for a project. There are several options for the publication of code. Uploading 

source code with software and software application version information is recommended as 

Supplemental Appendix alongside the manuscript. Other options include permanent archive 

on a laboratory Website or per-project archive on open source and public source code 

repositories if permitted by the investigator’s institution. Manuscripts should explicitly state 

where and how the code may be downloaded and under what license.

Although there are numerous open source licenses available, in most cases, either of 2 

following licenses will suffice: the Massachusetts Institute of Technology/Berkeley Software 
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Distribution (MIT/BSD) licenses (https://opensource.org/licenses/MIT; the MIT and BSD 

licenses are essentially equivalent) and the GNU General Public License (GNU GPLv3). 

The MIT/BSD licenses allow published code to be distributed, modified, and executed freely 

without liability or warranty; the GNU GPLv3 license allows the same with the additional 

restriction that all software-based upon the original code must also be freely available under 

the GNU GPLv3 license, meaning others cannot reuse the original code in a closed-source 

product.

Although the availability of code is required for technical replicability, equally important is 

the availability of the data used in the project (86). Clinical data should be anonymized, or if 

anonymization is not possible (as in the case of some genetic data), then data should be 

made available to other researchers with appropriate institutional review board approval. 

Other options include the generation of synthetic datasets with the same statistical properties 

as the original dataset, a field of study called differential privacy. Manuscripts must state 

where both the raw and manipulated or transformed data may be obtained and justify any 

restrictions to data availability. All data should also be accompanied by a codebook (also 

known as a data dictionary) containing clear and succinct explanations of all variables and 

class labels along with detailed description of their data types and dimensions.

Finally, even in the case of freely available data and open-source code, it can be difficult to 

reproduce the results of published work due to the complexities of software versions and 

interactions between different computing environments. Thus, it is suggested that authors 

make the entire analyses automatically reproducible through the use of software 

environments (e.g., Docker containers; https://www.docker.com/). Analyses in software 

containers may be freely downloaded and run from beginning to end by other scientists, 

greatly improving the technical replicability. Moreover, documentation generation tools 

(e.g., Sphinx; https://www.sphinx-doc.org/en/master/) or easy-to-launch demonstrations 

(e.g., through Jupiter python notebooks) should be used.

Strategic steps for developing the checklist:

• Release the code and upload data as supplementary information alongside the 

manuscript when possible for non-commercial use; otherwise, consider making 

the code and data available via an academic website for non-commercial use as 

permissible.

• Use the MIT/BSD or GPLv3 license to release open-source code.

• Release a codebook (data dictionary) with clear and succinct explanations of all 

variables.

• Document the exact version of all external libraries and software environments.

• Consider the use of Docker containers or similar packaging environments such as 

Sphinx for straightforward technical reproducibility and to generate reliable 

code/software manuals.
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7. REPORTING LIMITATIONS, BIASES, AND ALTERNATIVES

“All models are wrong, but some are useful” is a well-known statistical aphorism attributed 

to George Box. Accurate reporting and acknowledgement of limitations are required for 

manuscripts incorporating ML. Any statistical model or ML algorithm incorporates some 

assumptions regarding the data. All model assumptions should be affirmatively identified 

and checked with the dataset used in the manuscript, and the results should be reported in 

the manuscript or the Supplemental Appendix. The algorithms used in computational 

research efforts span a large spectrum of complexity. Generally, more basic models and 

algorithms should first be investigated before additional complexity is incorporated into 

models or different algorithms are selected. Deep learning models should be benchmarked 

against simpler models whenever possible, especially when applied to tabular data. 

Statistical or ML models incorporating large numbers of variables (e.g., polygenic risk score 

models) should be benchmarked against standard clinical risk prediction models using more 

conventional clinical variables.

Concordant findings from multiple, independent datasets dramatically increase the scientific 

value of manuscripts, because they decrease the likelihood that the algorithms have been 

erroneously overfitted to the idiosyncratic features of a certain dataset. Deep learning models 

are especially notorious for harnessing spurious or confounding features of the dataset to 

perform well. For example, Zech et al. (88) reported a case where a convolutional neural 

network trained on a health system’s chest radiography used the presence of a “PORTable” 

label on radiographic images to predict cardiomegaly with high accuracy. Furthermore, in 

the case of supervised ML involving human-annotated variables or outcomes, it should be 

noted that ML algorithms will recapitulate the underlying biases of the humans who 

constructed the dataset.

Strategic steps for developing the checklist:

• Affirmatively identify and check relevant model assumptions and report the 

findings.

• Benchmark complex algorithms against simpler algorithms and justify the use of 

more complex models.

• Benchmark algorithms, incorporating high-dimensional data or novel data 

sources, against standard clinical risk prediction models

SUMMARY AND FUTURE DIRECTIONS

As AI and ML technologies continue to grow, 3 specific areas of opportunities will need 

further consideration for future standardization. First, there has been growing enthusiasm for 

the use of automated ML (auto-ML) platforms that democratize ML strategies. Second, 

using the “multiomics” approach, clinical and other data, such as smart-phone-based health 

data could be integrated with imaging variables to provide more algorithmic sophistication 

and objectivity to the existing taxonomy of risk factors and cardiac diseases (89-91). Finally, 

sophisticated algorithms and variations of GAN will be increasingly used to synthesize data 

that closely resemble the distribution of the input data (92-94). This approach may be 
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particularly fruitful for the field of simulation and in silico clinical trials, which were 

recently recognized by the U.S. Food and Drug Administration (FDA) as key new directions 

to validate novel devices and therapies (95). In that context, recent studies have combined 

computational modeling with ML for synthetic data generation or tracking a disease course 

(96). Moreover, the ML research presents unprecedented opportunities for restructuring the 

industry, research, and medical alliance. This fact is well recognized by the FDA, which has 

mandated the standardization and applications of ML software as medical devices (97). With 

the advancement of organizations and cardiac medicine and imaging toward the 

actualization of precision medicine, the PRIME checklist would need to be updated 

continuously as ML algorithms continue to transform cardiovascular imaging practice over 

the next decade.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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HIGHLIGHTS

• Algorithm complexity and flexibiLity of ML techniques can result in 

inconsistencies in model reporting and interpretations.

• The PRIME checklist provides 7 items to be reported for reducing algorithmic 

errors and biases.

• The checklist aims to standardize reporting on model design, data, selection, 

assessment, evaluation, replicability, and limitations.

• As artificial intelligence and ML technologies continue to grow, the checklist 

will need periodic updates.

Sengupta et al. Page 24

JACC Cardiovasc Imaging. Author manuscript; available in PMC 2021 March 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIGURE 1. Machine Learning Pipeline
Schematic diagram of a general machine learning pipeline. The data section consists of 

project planning, data collection, cleaning, and exploration. The modelling section describes 

the model building, in which hyperparameter tuning and the dimensionality reduction 

process, such as feature selection and engineering, model optimization and selection, and 

evaluation, are included. Finally, the reporting segment consists of the reporting mechanisms 

of the analysis, including reproducibility and maintenance, and a description of the 

limitations and alternatives.
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FIGURE 2. Schematic Demonstration of Short/Wide and Tall/Thin Data Matrices and the Way 
They Can Be Created From Image Data
In a short and wide data matrix (A), the number of observations is much smaller than the 

number of variables (N << M). Considering different regions of interest (ROI) on the whole 

image of a given patient, the extraction of hand-crafted features (e.g., radiomics features) 

may lead to a short and wide data matrix, as the number of features extracted for each ROI 

per image is typically larger than the number of samples or patients (C). To make a tall and 

thin data matrix from the image data (B), an image can be divided to many (overlapping) 

ROIs or patches, each with a small number of pixels (D). The extraction of pixel data as 

features from each patch per patient may be much smaller in size than the total number of 

patients.

Sengupta et al. Page 26

JACC Cardiovasc Imaging. Author manuscript; available in PMC 2021 March 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIGURE 3. Main Approaches for Feature Engineering and Learning
The manually engineered approaches are manually designed to extract certain types of 

features from the data. For example, local binary pattern and scale-invariant feature 

transform derive the properties from the image such as object recognition or edge detection. 

The classic learning techniques use data samples to learn their characteristics for 

dimensionality reduction, but they have limitations in their data modeling techniques, such 

as linearity, sparsity, and lack of hierarchical representation. Principal component analysis 

(PCA) applies orthogonal transformation to produce linear combination of uncorrelated 

variables that best explains the variability of the data, whereas independent component 

analysis transforms the dataset into independent components to reduce dimensionality. Deep 

learning methods, however, can learn complex features from the data at multiple levels in 

various hidden layers.
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FIGURE 4. Model Selection Process
Illustration of the model selection process, which consists of identifying the 2 classes of ML. 

(A) In supervised learning method, after the hyperparameter tuning, data can be applied to 2 

different tasks: classification or regression, depending on the type of the outcome. If the 

outcome is a category, then classification can be performed, whereas if the outcome variable 

is a numeric value, regression may be applied for prediction. (B) Unsupervised learning, the 

data in which the data are either used for clustering, topical modeling, or representing the 

data distribution while reducing the dimensionality of the data according to the problem to 

be solved. ML = machine learning.
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FIGURE 5. Schematic Illustration of the K-Fold Cross-Validation Process
Data are randomly partitioned into k distinct folds, and in each round (k-1) folds are used for 

training the learning algorithm, and the kth fold is used for testing its performance. This 

process is repeated k times such that all folds are used in the testing phase.
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FIGURE 6. Schematic Illustration of the Monte Carlo and Bootstrap Resampling Methods
(I) Monte Carlo cross-validation performed in k rounds. In each round, the training and 

testing samples are randomly selected without replacement from the original data. (II) The 

bootstrapping process can be performed in B rounds. In each round, the training data are 

generated by randomly sampling from the original data with replacement. The samples that 

are not included in the training dataset (i.e., out-of-bag samples) form the testing dataset.

Sengupta et al. Page 30

JACC Cardiovasc Imaging. Author manuscript; available in PMC 2021 March 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



CENTRAL ILLUSTRATION. Steps for Building a Machine Learning Pipeline and the 
Reporting Items in a Checklist
This illustration provides the principal requirements for building a checklist (at every step of 

the model building process) to enable the precise application of predictive modeling, 

consistent reporting of model specifications, and results in the field of cardiovascular 

imaging. CV = cross validation; GPL = general public license; LOOCV = leave 1 out cross 

validation; ML = machine learning; S/W = software.
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