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Abstract

Objective: Seizure detection is a major facet of electroencephalography (EEG) analysis in 

neurocritical care, epilepsy diagnosis and management, and the instantiation of novel therapies 

such as closed-loop stimulation or optogenetic control of seizures. It is also of increased 

importance in high-throughput, robust, and reproducible pre-clinical research. However, seizure 

detectors are not widely relied upon in either clinical or research settings due to limited validation. 

In this study, we create a high-performance seizure-detection approach, validated in multiple data 

sets, with the intention that such a system could be available to users for multiple purposes.

Methods: We introduce a generalized linear model trained on 141 EEG signal features for 

classification of seizures in continuous EEG for two data sets. In the first (Focal Epilepsy) data set 

consisting of 16 rats with focal epilepsy, we collected 1012 spontaneous seizures over 3 months of 

24/7 recording. We trained a generalized linear model on the 141 features representing 20 feature 

classes, including univariate and multivariate, linear and nonlinear, time, and frequency domains. 

We tested performance on multiple hold-out test data sets. We then used the trained model in a 
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second (Multifocal Epilepsy) data set consisting of 96 rats with 2883 spontaneous multifocal 

seizures.

Results: From the Focal Epilepsy data set, we built a pooled classifier with an Area Under the 

Receiver Operating Characteristic (AUROC) of 0.995 and leave-one-out classifiers with an 

AUROC of 0.962. We validated our method within the independently constructed Multifocal 

Epilepsy data set, resulting in a pooled AUROC of 0.963. We separately validated a model trained 

exclusively on the Focal Epilepsy data set and tested on the held-out Multifocal Epilepsy data set 

with an AUROC of 0.890. Latency to detection was under 5 seconds for over 80% of seizures and 

under 12 seconds for over 99% of seizures.

Significance: This method achieves the highest performance published for seizure detection on 

multiple independent data sets. This method of seizure detection can be applied to automated EEG 

analysis pipelines as well as closed loop interventional approaches, and can be especially useful in 

the setting of research using animals in which there is an increased need for standardization and 

high-throughput analysis of large number of seizures.
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1 | INTRODUCTION

Epilepsy as a disease presents a unique challenge to patients, physicians, and researchers: 

Seizure, the key pathological brain state of interest, occurs only a small fraction of the time. 

For the ~30% of patients whose seizures remain refractory to antiepileptic medications, 

automatically identifying their seizures on EEG may be a crucial task in developing 

therapies.1 This is particularly true as the field moves toward high-throughput multicenter 

pre-clinical animal trials with large numbers of animals and even larger numbers of seizures.

Considerable work has been done toward a reliable and fast seizure detector, but challenges 

remain, namely: (a) maintaining a low rate of false positives; (b) achieving low-latency 

detection; and perhaps most importantly, (c) generalizing to new patients or other data sets 

with different recording modalities.2–5 To address these challenges, we introduce a general 

purpose seizure-detection model and assess its validity by applying it to two discrete large 

EEG data sets. Our objective is to formulate a uniform approach that performs well for a 

range of seizure-detection applications.

We aimed to record over 1000 labeled seizures to ensure that the test performance is a 

reflection of the general detection power of the algorithm and not of overfitting to a small 

data set.2 In clinical data sets, each subject rarely has more than 10 seizures recorded, 

resulting in models failing to validate when applied to external data sets.3,4 We created our 

own data set using the kainic acid unilateral focal epilepsy model in rats, which reliably 

models mesial temporal lobe epilepsy (mTLE).6–8 In these rats, we could record 24/7 for 

months to collect 1012 seizures, with an average of 54.0 ± 81.6 seizures per animal, an order 

of magnitude higher than existing public human EEG data sets.2 Invasive recordings in 

animals also allow for a more information-rich dataset: depth recordings better approximate 
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responsive neurostimulation (RNS) paradigms, wherein an implanted device records 

neuronal activity and delivers stimulation.1

Several seizure detection methods use a single feature type, such as a power spectrogram, as 

feature input.9–11 In our approach, we utilize twenty distinct feature classes in the time and 

frequency domains. Basic single-channel features such as root mean square and coastline 

computed in the time domain are broadly descriptive of seizures and other hyperexcitation 

events.12,13 Time domain features such as Hjorth parameters capture changes particular to 

EEG signals that may be pertinent to seizure detection.14 Additional frequency domain 

features including band powers and spectral edge frequency are effective due to their 

characteristic spectrographic signatures during a seizure.9,10 Finally, multichannel features 

such as cross-correlation and phase synchronization index can specifically represent 

ictogenic synchronization.15,16 (See Table 1 in Methods for a complete summary of all 

features used.)

Classification algorithms have ranged from thresholding on a principal component analysis 

(PCA) of the features to neural networks with complex architectures.9,17–19 In previous 

studies, performance has not been reported uniformly, and many data sets are proprietary, 

precluding precise performance comparisons. Nevertheless, we have identified performance 

benchmarks in recent seizure-detection studies on EEG data, each reporting an Area Under 

the Receiver Operating Characteristic (AUROC) in the range of 0.990 to 0.995. One study 

used a convolutional neural network (CNN) trained on a two-dimensional (2D) image of raw 

EEG waveforms in a mouse model, yielding an AUROC of 0.993.20 Another used a random 

forest classifier trained on envelopes of wavelet coefficients to produce the highest 

performing AUROC of 0.995.21 Table S1 has a summary of performance in other recent 

seizure-detection studies.

We aim to study whether one high-performing detector can be trained to perform well on 

independent EEG data sets representing different epilepsies. Using the highest performing 

features identified in past studies (see Table 1), we trained a generalized linear model (GLM) 

with a logit link function, a highly interpretable statistical method that performs well with 

regularization for feature-rich data; this approach allows an assumption of a Bernoulli 

distribution for the response variable, which is well-suited for a binary response (ictal versus 

nonictal).22,23 We sought to test the validity of this model and approach on held-out test data 

of two separately constructed data sets modeling epilepsy in rats.

2 | METHODS

2.1 | Data acquisition

All procedures were performed in accordance with institutional and national guidelines for 

animal care and use for research purposes, and the study protocol was approved by the 

Massachusetts General Hospital Institutional Animal Care and Use Committee (IACUC). 

We implanted young (age 2–3 months, n = 15) wild-type male Sprague-Dawley rats with 

surface electrodes, electromyography (EMG) pads, and intrahippocampal depth electrodes 

bilaterally. We induced anesthesia for surgery via nebulized isoflurane (1%−3%) and drilled 

burr hole craniotomies for implantation of electrocorticography (ECoG) and local field 
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potential (LFP) electrodes. We implanted the rats with standard electrodes for recording 

neural activity from the One Channel Electrode System (PlasticsOne, Inc). In each animal, 

we placed a screw electrode for ECoG overlying left parietal cortex (anteroposterior [AP] = 

−3 mm, mediolateral [ML] = −3 mm) and depth monopolar electrodes for LFP bilaterally 

into hippocampal CA3 (AP = −5.3 mm, ML = ±4.5 mm, dorsoventral [DV] = 6 mm). We 

also placed a guide cannula made from a 23G needle alongside the left hippocampal depth 

electrode. We inserted an EMG pad electrode underneath the trapezius muscular plane of the 

neck. Finally, we placed our reference electrode in the frontal bone and the ground electrode 

in the occipital bone.

Following complete recovery from the surgery (after a minimum of 3 days), microinjections 

of kainic acid (400 nL of 2.0 g/L in 0.9% saline) were administered into left hippocampal 

CA3 via the guide cannulas. The microinjection was done through a custom injector made of 

fused silica tubing fitted to the cannula. These kainic acid microinjections induced 

behavioral status epilepticus ~15 minutes after infusion, which was always self-limited 

within 3 hours, without the need for benzodiazepine rescue. Following recovery, rats 

developed spontaneous recurrent seizures an average of 23.1 ± 7.5 days post-SE (status 

epilepticus). We developed a rodent epilepsy monitoring unit (EMU) to monitor the 

physiology and behavior of our subjects. We recorded EEG and video from these subjects 

24/7 for 3 months, with 99.8% uptime overall (animals had to be occasionally removed from 

the EMU for monitoring and care). We developed a custom set of hardware and software 

tools to acquire and analyze video and EEG data. We used the OpBox system 

(KimchiLab.org/opbox) for EEG recording, and a script using the OpenCV and skvideo 

Python libraries for video recording. We acquired EEG signals at 1 kS/s and video at 30 fps. 

The resultant data set from these experiments is henceforth referred to as the Focal Epilepsy 

data set.

We obtained an additional, larger and more varied rodent seizure data set from the contract 

site of the National Institute of Neurological Disorders and Stroke funded Epilepsy Therapy 

Screening Program (ETSP) at the University of Utah, which allowed us to test this approach 

in a dataset with a distinct seizure etiology.24,25 This data set (Multifocal Epilepsy) includes 

EEG data from rats with multifocal epilepsy as induced by systemic injections of kainic 

acid. The procedures pertaining to animal use and care for this data set have been outlined 

previously.24 These rats were recorded continuously with single channel EEG and video for 

weeks at a time. Because these animals were receiving antiepileptic drugs as part of ETSP, 

the EEG data used from these animals for this analysis included only the treatment-free 

periods, with baseline levels of seizure activity. Data were acquired using a custom setup 

using a Biopac MP150 at 500 Hz, band-pass filtered between 1 to 100 Hz, as described 

previously.26

2.2 | Data labeling

We identified events of interest including seizures, epileptiform discharges, and interictal 

spikes by thresholding line length of the left parietal ECoG at two standard deviations above 

mean. For the Focal Epilepsy data set, authors AK, SE, and SSC, trained in EEG pattern 

labeling, reviewed the output from this nonspecific event detector, and labeled specific 
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events according to EEG morphology, including seizures. For these ground truth labels, we 

used the clinical definition of a seizure as an evolving, rhythmic, high-amplitude signal 

across multiple EEG channels, lasting at least 10 seconds.27,28 We established a censorship 

criterion that if a subject had five or fewer seizures and met early end point criteria with less 

than 1 month of recording, we would exclude it from the analysis. For the Multifocal 

Epilepsy data set, the seizures were manually annotated by expert reviewers (authors KET 

and TGN) by the same process and definitions described earlier.

We validated selected seizures by observing the corresponding video on an as-needed basis 

for EEG traces that were potentially representative of a new seizure type for each animal. 

We observed multiple convulsive seizures for every subject on video. To fully capture the 

distribution of seizures needing detection, we included seizures rated Racine 0–5, with 

Racine 0 being those seizures that did not produce tonic-clonic activity of any kind. 

However, in order to ensure reproducibility, we did not include spike-wave discharges or 

other epileptiform events that are interrupted with mild sensory stimulus; these events are 

morphological correlates of nonseizure interictal discharges.29

2.3 | Feature extraction

Once the seizure segment was identified, we extracted the data and processed it by 

detrending and applying notch filters at 60, 120, and 180 Hz. In the nonictal data, we 

included the entire hour of data preceding every seizure, with a 30 second buffer. We also 

included 1 hour of data selected from 10 randomly chosen interictal segments (to maintain a 

reasonable computational load while sampling representative nonictal data), each of which 

was at least 2 hours away from a seizure. Thus, our sampled data were representative of all 

relevant nonictal states. For our pooled data set, we used 3054 ictal windows from 1012 

seizures and 995 588 nonictal windows from the nonictal (interictal and preictal) segments. 

For both data sets, we computed the features shown in Table 1 on these segments, divided 

into 10-second windows, which is the minimum duration for a seizure. We computed 141 

features using three channels (ECoG, left hippocampal LFP, and right hippocampal LFP) 

and seven frequency bands. These bands were as follows: 0.5–4 Hz (delta), 4–8 Hz (theta), 

8–12 Hz (alpha), 12–16 Hz (spindle), 16–25 Hz (beta), 25–50 Hz (gamma), and 70–100 Hz 

(high gamma). Feature values for all windows were standardized within 1-hour periods.

2.4 | Classification

In the Focal Epilepsy data set, we assess three different models of seizure detectors: (a) 

pooled, (b) continuous, and (c) extrapolated. (a) In the pooled model, we include data from 

all subjects equally weighted in the training data, and measure performance on the test data 

(held-out data), also drawn from all subjects; this approach aligns with best practices for 

algorithm performance comparison in the field.5 (b) We then trained a model while holding 

out for the test set the last 24 hours leading up to and including the final seizure for each 

subject. This approach approximates the clinical scenario of simultaneously recording 

seizure data from many patients and analyzing them in aggregate to detect future seizures for 

all patients and then applying the resulting detector to new data. (c) The extrapolated model 

is a leave-one-out test in which we train on data from all subjects except one, and test on this 

subject. This approximates the clinical application in which new patient data are analyzed 
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with a detector trained on other patients (which can later be tuned by incorporating weighted 

data from the new patient).

Our machine learning approach is outlined in Figure 1E. We first randomly split each data 

set into 80% training data and 20% hold-out test data. When splitting the feature windows 

into the train and test sets, we grouped all data from within the same ictal or nonictal 

segments, thus avoiding any correlation between the sets that could cause overfitting. We 

then implemented fivefold cross-validation, using grid search to identify the optimal 

hyperparameters. The loss function employed for hyperparameter tuning was (1-AUROC) to 

equally weight sensitivity and specificity. We utilized PCA for dimensionality reduction and 

visualization of the feature space. Final performance was determined by the loss computed 

on the hold-out 20% of the data. We used this paradigm to train GLMs with a ridge penalty, 

with an assumption of a binomial distribution, due to the fixed number of independent 

binary classification events in our system. The hyperparameters in the grid search were the 

number of principal components used for classification and the ridge coefficient. We also 

sought to assess the ability of this approach to yield low-latency detection. To obtain a finer 

1-second resolution of latency in the Focal Epilepsy data set, we recapitulated the same 

analysis on 5-second feature windows, this time using an 80% overlap. To validate our 

method, we applied the same methods for the pooled model to the Multifocal Epilepsy data 

set. To assess the external validity of the Focal Epilepsy model itself, we tested a GLM 

trained on the single ECoG channel of Focal Epilepsy data on the Multifocal Epilepsy data 

set.

3. | RESULTS

Labeling seizures with these predefined criteria led to the Focal Epilepsy data set consisting 

of 1012 labeled seizures from 16 rats, and the Multifocal Epilepsy data set comprising 2883 

seizures from 96 rats. We show representative examples of ictal and nonictal data as 

captured by our experimental paradigm in Figure 1. Our machine learning approach to train 

classifiers on these data is outlined Figure 1E.

We first trained the classifier on data pooled among all subjects. As shown in Figure 2A, the 

pooled classifier achieved an AUROC of 0.995 on test data. At a sensitivity of 0.99, the 

classifier rendered a specificity of 0.911. Operating at this threshold with the mean seizure 

frequency of 13.5 seizures per week renders a mean positive predictive value (PPV) of 

0.0074 for any positive 10-second window. The mean PPV for whether any positive minute 

contains a seizure is 0.015, and PPV for a positive hour is 0.49, calculated with the 

assumption that each seizure falls within a single minute or hour. Per Figure 2B, given 

multiple sensitivities in the range between 0.9 and 0.99 on the 95% confidence interval (CI) 

of prevalence in our data set, the weekly false discovery rate (FDR) is bounded between 6.2 

and 487 false-detection events per week, based on the prevalence 95% confidence interval 

(CI). This weekly FDR yields the equivalent of an hourly FDR in the range between 0.0369 

and 2.89 events/hour. The optimal hyperparameters from the grid search for the pooled 

classifier were lambda of 0.01 and 50 feature principal components (PCs). Figure 2C with an 

AUROC of 0.983 demonstrates comparable high performance for 24 hours of continuous 

testing data that is held out from and chronologically preceded by all the training data. As 
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can be seen in Figure 2D, the mean AUROC of our extrapolated classifier, in which no data 

from the test subject were included in training, was 0.962. The optimal hyperparameters 

from a grid search conducted for each extrapolated classifier were a lambda in the range of 

0.01 to 1 and retention in the range of 5 to 50 feature PCs with this regularization.

To visualize the class separability of ictal vs nonictal EEG in our highly correlated feature 

space, we applied a PCA to all features on a representative sample of the data. Figure 3A,B 

shows the data plotted on the first three PCs, with similar results for ground truth and for our 

classifier label, shown as a probability without thresholding. These PCA visualizations 

reflect the high degree of separability of ictal and nonictal EEG data along the axes 

constructed, both in the ground truth label and the classifier probabilistic label. This 

visualization validates the effective nature of the feature space in separating ictal and 

nonictal EEG data. Figure 3C plots the loadings of each feature in each of the first three 

PCs. The first PC highlights the importance of multi-channel features, that is, coherence and 

phase synchronization index, in explaining the variance of the data set. PC2 appears to 

correlate with features describing the amplitude of the signal, whereas PC3 corresponds 

generally to higher frequency features as well as other measures of the signal, such as 

entropies, Hjorth parameters, and fractal dimension.

We sought to determine whether our model, in which the temporal order of ictal windows is 

indeterminate, continues to exhibit high levels of performance as an early seizure detector, 

such that it might be used for therapeutic interventions. The mean latency at the resolution of 

5- second windows was under 5 seconds, as over 80% of seizures were detected within the 

first 5 seconds. For the representative sample seizure shown in Figure 4A, the overall seizure 

probability clearly increases specifically within the first 10 seconds of the labeled seizure, as 

indicated in Figure 4C. As observed in Figure 4B, certain PC features are specifically 

predictive of this particular seizure; the model combines them to detect the seizure with high 

probability per Figure 4C. As shown in Figure 4D, when thresholding for a seizure 

probability of 0.5, over 80% of seizures are detected within the first 5 seconds, and over 

99% in the first 12 seconds.

Having established the performance of the GLM on the Focal Epilepsy data set, we then 

sought to validate our method by applying it to the Multifocal Epilepsy data set, with related 

but distinct characteristics as reflected in Figure 5A,B. The mean and variance of seizure 

frequency was not significantly different by a t test (P = .089) and a Brown-Forsythe test (P 
= .12), respectively. Because the Multifocal Epilepsy data set contains only a single channel, 

we calculated the univariate subset of features from Table 1 (ie, excluding bivariate features 

like coherence and cross-correlation). We then applied the same grid search of 

hyperparameters to train multiple GLMs and obtain the highest performing one. The 

performance is displayed as an AUROC of 0.963 in Figure 5C. To assess the validity of 

individual models between data sets, we used the single ECoG channel data from the Focal 

Epilepsy data set to train a GLM using the univariate feature subset. We then tested the 

performance of that model in classifying the Multifocal Epilepsy data set, rendering an 

AUROC of 0.890 (Figure 5D).
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4 | DISCUSSION

Our results suggest that a GLM trained on the features enumerated in Table 1 constitutes a 

robust method for the detection of seizures with low latency. Our pooled classifier performs 

at the current state of the art. As explored previously, Bose and colleagues reported an 

AUROC of 0.995 for a pooled classifier using a random forest method, which is a 

benchmark for the current state of the art.21 We have matched this performance with our 

pooled classifier AUROC of 0.995, as shown in Figure 2A, using a simpler method with 

more interpretable features and reduced computational complexity. Our model’s FDR is 

comparable to those of previous detectors being studied for clinical applications.30,31 One 

caveat for our results is that the considerable variability between seizure patterns in human 

mTLE patients, let alone other etiologies, may differ from that in rodent models of focal 

epilepsy.7,32 The continuous model demonstrates high performance also suitable for 

applications in both research and clinical settings. We hypothesize that the countinous model 

AUROC of 0.983 is lower than that of the pooled classifier due to additional variability in 

seizure phenotype as epilepsy progresses over time in a given animal.

In comparison to previous studies reliant on complex feature calculations, successful 

training of our model was contingent on the large number of labeled seizures. Although we 

optimized a pooled generalized model with 50 PCs computed from 141 features, these 

features are easily computable.

We anticipate that performance of the extrapolated classifier, in particular, may be further 

improved by inclusion of additional animals to fully exemplify focal seizure patterns. Data 

sets with hundreds of subjects consistently train classifiers with high performance for both 

pooled and extrapolated classifiers11,21,33–35 using both human and rodent EEG data. We 

observed lower performance for the GLM in the single-channel Multifocal Epilepsy data set 

(AUROC of 0.963), which we ascribe to less stereotyped seizure patterns than those found in 

unilateral focal seizures. We also hypothesize that using multiple channels to record those 

seizures would yield additional multichannel features that will improve performance to make 

it comparable to our pooled classifier. Therefore, our analyses of both the Focal Epilepsy 

and Multifocal Epilepsy data sets lend credence to the importance of bivariate features in 

seizure detection.

We have demonstrated the separability of ictal and nonictal classes via PCA to further 

illustrate the robust nature of the feature space. Being formulated in an unsupervised fashion 

without class labels, the first three principal components demonstrate the utility of the 

feature space itself. Just as the separability of ictal and nonictal segments is readily apparent 

in the visual representation of Figure 3, the GLM we trained can readily classify seizures 

with the high degree of accuracy reflected in Figure 2. As shown in Figure 4, our assessment 

of seizure detection latency rendered a distribution comparable to the state of the art, 

operating at higher specificity than the sub-second latency of clinical RNS systems.1,9,31 

Finally, we found that external validation of models between data sets is limited, as 

evidenced by the AUROC of 0.890 when training on Focal Epilepsy data, and testing on 

Multifocal Epilepsy data (Figure 5D). This limited performance suggests the relevance of 

the seizure type to highly accurate detection, particularly for multifocal seizures with data 
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recorded on a single EEG channel. Nevertheless, such an externally trained model remains a 

viable starting point for automated preliminary seizure detection on a previously unanalyzed 

EEG data set.

Artifacts inherent in EEG data have often been cited as a significant barrier to classifier 

performance for seizure detection, as well as other machine learning applications.4,18,36,37 In 

this study, intended to develop and test a method for seizure detection with real-world 

applications, we did not exclude EEG segments with artifact in either ictal or nonictal 

segments. Thus, our classifier will be robust to a real-world closed-loop application in which 

artifact will regularly be superimposed on both ictal and nonictal EEG data.

Ultimately, it remains to be seen whether the performance we observed in our data set will 

extrapolate to data from human patients with various epilepsies. Although we aimed to 

model mTLE with the intrahippocampal kainic acid rat model, which we selected for its low 

phenotypic variability, we recognize that many other human epilepsies are not as easily 

modeled in rats.8 However, the same approach described here could be used with a 

sufficiently large human data set to train a new model on human data with similar 

performance. One additional challenge in the clinical setting is the collection of sufficient 

high-quality recordings of seizures from each subject. Although we utilized 54.0 ± 81.6 

seizures per subject in the Focal Epilepsy data set and 30.0 ± 48.4 seizures per subject in the 

Multifocal Epilepsy data set, in human patients, it is difficult to collect data from such a 

large number of seizures per subject with restrictive inpatient monitoring. With the increased 

availability of longer-term ambulatory recordings from implanted systems leading to larger 

sample sizes per patient, the clinical impact of seizure detection software such as ours will 

continue to grow.38,39

An additional caveat is that we used all seizures, including and Racine 0 nonconvulsive 

electrographic seizures. Electrographic subclinical seizures were included to reduce bias for 

detector performance by maximizing variability of seizures represented, despite the 

attendant reduction in interrater agreement regarding the definition of a Racine 0 

(nonconvulsive) electrographic seizure.40 Detection of subclinical nonconvulsive seizures 

has clinical utility as well because of long-term effects on morbidity and mortality.41 

However, this poses challenging questions as to the definition of the ground truth seizure for 

a detector to classify, particularly in the rat model, where immobile “seizure-like” states 

correlate with spike-wave discharges.42 These spike-wave discharges were frequently 

observed in our subjects. Because we were able to interrupt these events using tactile or 

auditory stimuli, they fell outside the scope of our definition of seizure, and thus we 

classified them as nonictal.43

We envision multiple possible directions to build upon this analysis. First, this classifier can 

be used to implement a closed-loop interventional paradigm to assess seizure control. With 

an appropriate stimulatory paradigm, a significant reduction in seizure burden is expected.44 

Second, the classifier can be altered to be applied to data sets with different seizure 

characteristics, for example, extremely infrequent seizures, which requires more heavily 

weighting the seizure class. Finally, we foresee the use of this model as a broadly useful tool 

to label large data sets efficiently to rapidly enable other analyses, including for seizure 
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prediction, seizure clustering, and investigating mechanisms of initiation. Such was the 

intention of testing the system on the Multifocal Epilepsy data set generated as part of the 

Epilepsy Therapy Screening Program (ETSP). We aim to eventually integrate this classifier 

into a fully automated seizure-prediction pipeline, wherein seizures are first automatically 

labeled, and then a predictive model is trained using those generated labels as ground truth.

In summary, our method automatically detected seizures in a preclinical epilepsy model with 

a high degree of sensitivity and specificity, with performance exceeding the current state of 

the art. This detection algorithm will significantly reduce the need to manually review EEG 

data to identify seizures, allowing the field to leverage larger EEG data sets from subjects 

with epilepsy to analyze seizure dynamics. In addition, it opens the door to a 

computationally simple method for low-power real-time detection of seizures for 

neuromodulatory intervention or for seizure forecasting and warning systems.
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ACKNOWLEDGMENTS

This work was supported by the National Institutes of Health (NIH) (F31NS105161, K24NS088568, 
T32MH020017, T32GM007753, and R01NS062092), HHSN271201600048C (KSW), the Harvard Medical 
Scientist Training Program (SE), the Paul & Daisy Soros Fellowship (SE), and the Bertarelli Fellowship (NFF). The 
content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH. 
The Multifocal Epilepsy data set was obtained from the contract site of the Epilepsy Therapy Screening Program 
(ETSP) at the University of Utah. The authors express their gratitude to Angelique Paulk, Pariya Salami, Constantin 
Krempp, Lynde Folsom, and Sergio Arroyo for technical assistance and manuscript review.

Funding information

Fondation Bertarelli; Harvard Medical Scientist Training Program; National Institute of Neurological Disorders and 
Stroke, Grant/Award Number: F31NS105161, K24NS088568, R01NS062092, T32GM007753 and T32MH020017; 
DHHS Office of the Secretary, Grant/Award Number: HHSN271201600048C ; Paul and Daisy Soros Fellowships 
for New Americans

REFERENCES

1. Schulze-Bonhage A. Long-term outcome in neurostimulation of epilepsy. Epilepsy Behav. 
2019;91:25–9. [PubMed: 30929666] 

2. Shah V, von Weltin E, Lopez S, McHugh JR, Veloso L, Golmohammadi M, et al. The Temple 
University Hospital seizure detection corpus. Front Neuroinform. 2018;12:83. [PubMed: 30487743] 

3. Shoeb A, Guttag J. Application of machine learning to epileptic seizure detection. International 
Conf on Mach. Learn. 2010.

4. Golmohammadi M, Ziyabari S, Shah V, de Diego SL, Obeid I, Picone J. Deep architectures for 
automated seizure detection in scalp EEGs. arXiv [csLG]. 2017.1712(09776):1–8.

5. Baldassano SN, Brinkmann BH, Ung H, Blevins T, Conrad EC, Leyde K, et al. Crowdsourcing 
seizure detection: algorithm development and validation on human implanted device recordings. 
Brain. 2017;140:1680–91. [PubMed: 28459961] 

6. Tauck DL, Nadler JV. Evidence of functional mossy fiber sprouting in hippocampal formation of 
kainic acid-treated rats. J Neurosci. 1985;5:1016–22. [PubMed: 3981241] 

7. Fisher RS. Animal models of the epilepsies. Brain Res Brain Res Rev. 1989;14:245–78. [PubMed: 
2679941] 

Fumeaux et al. Page 10

Epilepsia. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



8. Bragin A, Azizyan A, Almajano J, Wilson CL, Engel J Jr. Analysis of chronic seizure onsets after 
intrahippocampal kainic acid injection in freely moving rats. Epilepsia. 2005;46:1592–8. [PubMed: 
16190929] 

9. Lee J, Park J, Yang S, Kim H, Choi YS, Kim HJ, et al. Early seizure detection by applying 
frequency-based algorithm derived from the principal component analysis. Front Neuroinform. 
2017;11:52. [PubMed: 28860984] 

10. Birjandtalab J, Baran Pouyan M, Cogan D, Nourani M, Harvey J. Automated seizure detection 
using limited-channel EEG and non-linear dimension reduction. Comput Biol Med. 2017;82:49–
58. [PubMed: 28161592] 

11. Yan P, Wang F, Grinspan Z. Spectrographic seizure detection using deep learning with 
convolutional neural networks (S19.004). Neurology. 2018;90(S19):15–16.

12. Baumgartner C, Koren JP. Seizure detection using scalp-EEG. Epilepsia. 2018;59:14–22. 
[PubMed: 29873826] 

13. Turner JT, Page A, Mohsenin T, Oates T. Deep belief networks used on high resolution 
multichannel electroencephalography data for seizure detection. AAAI Spring Symposium Series. 
2014: aaai.org; 2014..

14. Hjorth B. EEG analysis based on time domain properties. Electroencephalogr Clin Neurophysiol. 
1970;29:306–10. [PubMed: 4195653] 

15. Junfeng S, Xiangfei H, Shanbao T. Phase synchronization analysis of EEG signals: an evaluation 
based on surrogate tests. IEEE Trans Biomed Eng. 2012;2012:2254–63.

16. Medeiros DDC, Moraes MFD. Focus on desynchronization rather than excitability: a new strategy 
for intraencephalic electrical stimulation. Epilepsy Behav. 2014;38:32–6. [PubMed: 24472684] 

17. Ansari AH, Cherian PJ, Caicedo A, Naulaers G, De Vos M, Van Huffel S. Neonatal seizure 
detection using deep convolutional neural networks. Int J Neural Syst. 2018;29(4):1850011.

18. Acharya UR, Oh SL, Hagiwara Y, Tan JH, Adeli H. Deep convolutional neural network for the 
automated detection and diagnosis of seizure using EEG signals. Comput Biol Med. 
2017;100:270–278. [PubMed: 28974302] 

19. Kharbouch A, Shoeb A, Guttag J, Cash SS. An algorithm for seizure onset detection using 
intracranial EEG. Epilepsy Behav. 2011;22(Suppl 1):S29–35. [PubMed: 22078515] 

20. Cho K-O, Jang H-J. Comparison of different input modalities and network structures for deep 
learning-based seizure detection. Sci Rep. 2020;10:122.

21. Bose S, Rama V, Warangal N, Rao CBR. EEG signal analysis for seizure detection using discrete 
wavelet transform and random forest. International Conference on Computer and Applications 
(ICCA). 2017;2017:369–78.

22. Latimer K, Rieke F, Pillow JW. Inferring synaptic inputs from spikes with a conductance-based 
neural encoding model. bioRxiv. 2018;8:47012.

23. Dadgar-Kiani E, Alkan C, Shameli A. Applying machine learning for human seizure prediction. 
Stanford University, Tech Rep; 2016.

24. Vargas JR, Takahashi DK, Thomson KE, Wilcox KS. The expression of kainate receptor subunits 
in hippocampal astrocytes after experimentally induced status epilepticus. J Neuropathol Exp 
Neurol. 2013;72:919–32. [PubMed: 24042195] 

25. Goffin K, Nissinen J, Van Laere K, Pitkänen A. Cyclicity of spontaneous recurrent seizures in 
pilocarpine model of temporal lobe epilepsy in rat. Exp Neurol. 2007;205:501–5. [PubMed: 
17442304] 

26. Thomson KE, White HS. A novel open-source drug-delivery system that allows for first-of-kind 
simulation of nonadherence to pharmacological interventions in animal disease models. J Neurosci 
Methods. 2014;238:105–11. [PubMed: 25256646] 

27. Abend NS, Wusthoff CJ, Goldberg EM, Dlugos DJ. Electrographic seizures and status epilepticus 
in critically ill children and neonates with encephalopathy. Lancet Neurol. 2013;12:1170–9. 
[PubMed: 24229615] 

28. Pisani F, Spagnoli C. Chapter 7 - Diagnosis and Management of Acute Seizures in Neonates. In: 
Perlman JM, Cilio MR eds. Neurology (3rd Edn). Amsterdam, Netherlands: Elsevier, 2019. p. 
111–129.

Fumeaux et al. Page 11

Epilepsia. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



29. Seneviratne U, Cook MJ, D’Souza WJ. Electroencephalography in the diagnosis of genetic 
generalized epilepsy syndromes. Front Neurol. 2017;8:499. [PubMed: 28993753] 

30. Yuan QI, Zhou W, Zhang L, Zhang F, Xu F, Leng Y, et al. Epileptic seizure detection based on 
imbalanced classification and wavelet packet transform. Seizure. 2017;50:99–108. [PubMed: 
28649016] 

31. Vidyaratne LS, Iftekharuddin KM. Real-time epileptic seizure detection using EEG. IEEE Trans 
Neural Syst Rehabil Eng. 2017;25:2146–56. [PubMed: 28459693] 

32. Sharma AK, Reams RY, Jordan WH, Miller MA, Thacker HL, Snyder PW. Mesial temporal lobe 
epilepsy: pathogenesis, induced rodent models and lesions. Toxicol Pathol. 2007;35:984–99. 
[PubMed: 18098044] 

33. Li Q, Ye M, Song J-L, Zhang R. Epileptic seizure detection using EEGs based on kernel radius of 
intrinsic mode functions. Health Information Science; 2017: Springer International Publishing; 
2017. p. 11–21.

34. Tieng QM, Anbazhagan A, Chen M, Reutens DC. Mouse epileptic seizure detection with multiple 
EEG features and simple thresholding technique. J Neural Eng. 2017;14:66006.

35. Tzimourta KD, Tzallas AT, Giannakeas N, Astrakas LG, Tsalikakis DG, Tsipouras MG. Epileptic 
seizures classification based on long-term EEG signal wavelet analysis. In: Precision Medicine 
Powered by Phealth and Connected Health. 166 Singapore City, Singapore: Springer, 2018. p. 
165–169.

36. White PF, Tang J, Romero GF, Wender RH, Naruse R, Sloninsky A, et al. A comparison of state 
and response entropy versus bispectral index values during the perioperative period. Anesth Analg. 
2006;102:160–7. [PubMed: 16368823] 

37. Martinez-del-Rincon J, Santofimia MJ, del Toro X, Barba J, Romero F, Navas P, et al. Non-linear 
classifiers applied to EEG analysis for epilepsy seizure detection. Expert Syst Appl. 2017;86:99–
112.

38. Do Valle BG, Cash SS, Sodini CG. Low-Power, 8-Channel EEG recorder and seizure detector 
ASIC for a subdermal implantable system. IEEE Trans Biomed Circuits Syst. 2016;2016:1058–67.

39. Debener S, Emkes R, De Vos M, Bleichner M. Unobtrusive ambulatory EEG using a smartphone 
and flexible printed electrodes around the ear. Sci Rep. 2015;5:16743. [PubMed: 26572314] 

40. Koren JP, Herta J, Fürbass F, Pirker S, Reiner-Deitemyer V, Riederer F, et al. Automated long-term 
EEG review: Fast and precise analysis in critical care patients. Front Neurol. 2018;9:454. 
[PubMed: 29973906] 

41. Shneker BF, Fountain NB. Assessment of acute morbidity and mortality in nonconvulsive status 
epilepticus. Neurology. 2003;61:1066–73. [PubMed: 14581666] 

42. Marescaux C, Vergnes M, Depaulis A. Genetic absence epilepsy in rats from Strasbourg–a review. 
J Neural Transm Suppl. 1992;35:37–69. [PubMed: 1512594] 

43. Wiest MC, Nicolelis MAL. Behavioral detection of tactile stimuli during 7–12 Hz cortical 
oscillations in awake rats. Nat Neurosci. 2003;6:913–4. [PubMed: 12897789] 

44. Krook-Magnuson E, Armstrong C, Oijala M, Soltesz I. On-demand optogenetic control of 
spontaneous seizures in temporal lobe epilepsy. Nat Commun. 2013;4:1376. [PubMed: 23340416] 

45. Mormann F, Andrzejak RG, Elger CE, Lehnertz K. Seizure prediction: the long and winding road. 
Brain. 2007;130:314–33. [PubMed: 17008335] 

46. Mukhopadhyay S, Ray GC. A new interpretation of nonlinear energy operator and its efficacy in 
spike detection. IEEE Trans Biomed Eng. 1998;45:180–7. [PubMed: 9473841] 

47. Feltane A, Bartels GFB, Gaitanis J, Boudria Y, Besio W. Human seizure detection using quadratic 
Rényi entropy. 2013 6th International IEEE/EMBS Conf on Neural Eng (NER); 2013. p. 815–8.

48. Al-Nuaimi AH, Jammeh E, Sun L, Ifeachor E. Higuchi fractal dimension of the 
electroencephalogram as a biomarker for early detection of Alzheimer’s disease. Conf Proc IEEE 
Eng Med Biol Soc. 2017;2017:2320–4.

49. Viertio-Oja H, Maja V, Sarkela M, Talja P, Tenkanen N, Tolvanen-Laakso H, et al. Description of 
the Entropy algorithm as applied in the Datex-Ohmeda S/5 Entropy Module. Acta Anaesthesiol 
Scand. 2004;48:154–61. [PubMed: 14995936] 

Fumeaux et al. Page 12

Epilepsia. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



50. Navarrete M, Pyrzowski J, Corlier J, Valderrama M, Le Van QM. Automated detection of high-
frequency oscillations in electrophysiological signals: Methodological advances. J Physiol Paris. 
2016;110:316–26. [PubMed: 28235667] 

Fumeaux et al. Page 13

Epilepsia. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Key Points

• Seizures can be automatically detected on electroencephalography (EEG) 

using a generalized linear model trained on a descriptive feature space

• Two independently constructed EEG data sets yielded models with high 

sensitivity and specificity, demonstrating the general validity of the method

• Latency to detection using this method is under 5 seconds for 80% of seizures

• This approach can be utilized to create large, accurately labeled EEG data sets 

for a seizure-prediction pipeline
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FIGURE 1. 
A seizure-detection paradigm for training ictal vs nonictal electroencephalography (EEG) 

classifier. A, An electrographic recording of a spontaneous seizure in a subject from the 

Focal Epilepsy data set, corresponding to Racine 5 behavior observed on video. EMG, 

electromyography channel; R Hip, right hippocampal depth local field potential (LFP) 

channel; L Hip, left hippocampal depth LFP channel; ECoG, left parietal 

electrocorticography channel. B, The ECoG spectrogram corresponding to this seizure. 

(C,D) Analogous to A and B but for an interictal (nonictal) period of EEG for the same 
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subject. E, Flowchart of machine learning approach employed for training a generalized 

linear model
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FIGURE 2. 
Automated seizure-detection performance for the generalized linear model. For this analysis, 

3054 ictal windows from 1012 seizures and 995 588 nonictal windows from the nonictal 

(interictal and preictal) segments were selected from 16 rats and pooled for this analysis. A, 

Method performance by receiver operating characteristic (ROC) curve for a pooled 

generalized linear model with ridge penalty, trained on 80% of all subject data pooled, and 

tested on the remaining hold-out 20% (test area under the curve [AUC] = 0.995). B, 

Performance visualized as false-positive seizures detected per week, at three sensitivity 

levels chosen for clinical relevance. Vertical red lines indicate boundaries of 95% confidence 

interval for seizure prevalence based on the Focal Epilepsy data set. C, Method performance 

by ROC for a pooled generalized linear model with ridge penalty, trained on 80% of all 

subject data, and tested on the held-out continuous last 24 h before the last recorded seizure, 

including the last seizure (test AUC = 0.983). D, Method performance by ROC for a 

generalized linear model with ridge penalty, trained on all data from all subjects except one, 

and tested on all data from the hold-out animal. ROC for each animal is shown in gray; 

mean ROC is shown in blue (mean test AUC = 0.962)
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FIGURE 3. 
Ictal and nonictal electroencephalography (EEG) are highly separable in the principal 

component (PC) space. Principal component analysis (PCA) was performed on the EEG 

features described above for data pooled from four randomly selected animals. The EEG 

segments are then plotted in the space of the first three principal components. A, True 

classes of each data point in the testing set, where nonictal windows are represented by a 

blue cross and ictal windows by a red circle. B, Posterior probabilities superimposed as 

colors on crosses for nonictal windows, and circles for ictal windows. C, Loadings of each 

feature in the first three PCs, grouped by labeled feature class
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FIGURE 4. 
A generalized linear model classifier detects seizures with high specificity and low latency. 

The pooled classifier shows performance with latency under 5 seconds for over 80% of 

seizures, one representative sample of which is shown here. A, The electrographic plotted in 

time with the sample seizure segment highlighted in gray; x-axis matches (C). B, 

Standardized values for all PC features plotted in time with the sample seizure segment 

highlighted in gray; x-axis matches (C). C, Seizure probability computed by the model 

plotted in time. D, Cumulative latency histogram of sensitivity with a probability threshold 

of 0.5. Plotted is the cumulative proportion of events detected for 5-second windows (shown 

in orange on the timeline). Zero on the time axis represents the earliest timepoint labeled as 

seizure. This distribution is composed of 5-second windows overlapped by 80% to achieve 

1-second resolution
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FIGURE 5. 
Application of detection method to large single-channel Multifocal Epilepsy data set. A, 

Seizure distribution of the Focal Epilepsy data set (1012 seizures from 16 rats, four-channel 

EEG). There was a mean of 54.0 ± 81.6 seizures per subject in the Focal Epilepsy data set. 

B, Seizure distribution of the Multifocal Epilepsy data set (2883 seizures from 96 rats, 

single-channel EEG). There was a mean of 30.0 ± 48.4 seizures per subject in the Multifocal 

Epilepsy data set. C, External validation of method with performance by ROC for a newly 

trained GLM with ridge penalty for the Multifocal Epilepsy data set. D, External validation 

of model with performance by ROC for GLM model trained on Focal Epilepsy data set, 

tested on the Multifocal Epilepsy data set
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