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Abstract

Deep learning methods exhibit promising performance for predictive modeling in healthcare, but 

two important challenges remain:

• Data insufficiency: Often in healthcare predictive modeling, the sample size is 

insufficient for deep learning methods to achieve satisfactory results.

• Interpretation: The representations learned by deep learning methods should align with 

medical knowledge.

To address these challenges, we propose GRaph-based Attention Model (GRAM) that 

supplements electronic health records (EHR) with hierarchical information inherent to medical 

ontologies. Based on the data volume and the ontology structure, GRAM represents a medical 

concept as a combination of its ancestors in the ontology via an attention mechanism.

We compared predictive performance (i.e. accuracy, data needs, interpretability) of GRAM to 

various methods including the recurrent neural network (RNN) in two sequential diagnoses 

prediction tasks and one heart failure prediction task. Compared to the basic RNN, GRAM 

achieved 10% higher accuracy for predicting diseases rarely observed in the training data and 3% 

improved area under the ROC curve for predicting heart failure using an order of magnitude less 

training data. Additionally, unlike other methods, the medical concept representations learned by 

GRAM are well aligned with the medical ontology. Finally, GRAM exhibits intuitive attention 

behaviors by adaptively generalizing to higher level concepts when facing data insufficiency at the 

lower level concepts.
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1 INTRODUCTION

The rapid growth in volume and diversity of healthcare data from electronic health records 

(EHR) and other sources is motivating the use of predictive modeling to improve care for 

individual patients. In particular, novel applications are emerging that use deep learning 

methods such as word embedding [11, 13], recurrent neural networks (RNN) [7, 9, 10, 25], 

convolutional neural networks (CNN) [30] or stacked denoising autoencoders (SDA) [6, 29], 

demonstrating signihcant performance enhancement for diverse prediction tasks. Deep 

learning models appear to perform signihcantly better than logistic regression or multilayer 

perceptron (MLP) models that depend, to some degree, on expert feature construction [24, 

34].

Training deep learning models typically requires large amounts of data that often cannot be 

met by a single health system or provider organization. Sub-optimal model performance can 

be particularly challenging when the focus of interest is predicting onset of a rare disease. 

For example, using Doctor AI [9], we discovered that RNN alone was ineffective at 

predicting the onset of diseases such as cerebral degenerations (e.g. Leukodystrophy, 

Cerebral lipidoses) or developmental disorders (e.g. autistic disorder, Heller’s syndrome). In 

part, the low incidence of these diseases in the training data provided little learning 

opportunity to the flexible models like RNN.

Deep learning models require high volumes of data because of the exponential number of 

feature combinations that must be assessed for the model to learn. The demand for high 

volume can be reduced by exploiting medical ontologies to encode hierarchical clinical 

constructs and relationships among medical concepts, effectively reducing the search space 

without loss of information. Fortunately, there are many well-organized ontologies in 

healthcare such as the International Classification of Diseases (ICD), Clinical Classifications 

Software (CCS) [36] or Systematized Nomenclature of Medicine-Clinical Terms 

(SNOMED-CT) [33]. Nodes (i.e. medical concepts) close to one another in medical 

ontologies are likely to be associated with similar patients, allowing us to transfer 

knowledge among them. Use of medical ontologies are likely to be helpful when data 

volume is insufficient to train deep learning models, and possibly even when data volume is 

sufficient as a means to improve model parsimony without loss of information and by 

learning more interpretable representations that are consistent with the ontology structure.

In this work, we propose GRAM, a method that infuses information from medical ontologies 

into deep learning models via neural attention. Considering the frequency of a medical 

concept in the EHR data and its ancestors in the ontology, GRAM optimizes the medical 

concept by adaptively combining its ancestors via attention mechanism (i.e. weighted sum of 

the representations of ancestors). The attention mechanism is trained in an end-to-end 

fashion with the neural network model that predicts the onset of disease(s). We also propose 

an effective initialization technique to better guide the representation learning process.

We compare predictive performance (i.e. accuracy, data needs, interpretability) of GRAM to 

various models including the recurrent neural network (RNN) in two sequential diagnoses 

prediction tasks and one heart failure (HF) prediction task. We demonstrate that GRAM is 
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up to 10% more accurate than the basic RNN for predicting diseases less observed in the 

training data. After discussing GRAM’s scalability, we visualize the representations learned 

from various models, where GRAM provides more intuitive representations by grouping 

similar medical concepts close to one another. Finally, we show GRAM’s attention 

mechanism can be interpreted to understand how it assigns the right amount of attention to 

the ancestors of each medical concept by considering the data availability and the ontology 

structure.

2 METHODOLOGY

We first define the notations describing EHR data and medical ontologies, followed by a 

description of GRAM (Section 2.2), the end-to-end training of the attention generation and 

predictive modeling (Section 2.3), and the efficient initialization scheme (Section 2.4).

2.1 Basic Notation

We denote the set of entire medical codes from the EHR as c1, c2, …, c C ∈ C with the 

vocabulary size C . The clinical record of each patient can be viewed as a sequence of visits 

V 1, …, V T  where each visit contains a subset of medical codes V t ⊆ C V t can be represented 

as a binary vector xt ∈ {0, 1} C  where the i-th element is 1 only if Vt contains the code ci. To 

avoid clutter, all algorithms will be presented for a single patient.

We assume that a given medical ontology G typically expresses the hierarchy of various 

medical concepts in the form of a parent-child relationship, where the medical codes C form 

the leaf nodes. Ontology G is represented as a directed acyclic graph (DAG) whosenodes 

form a set D = C + C′. The set C′ = {c C + 1, c C + 2, …, c C + C′ } consists of all non-leaf 

nodes {i.e. ancestors of the leaf nodes), where C′  represents the number of all non-leaf 

nodes. We use knowledge DAG to refer to G. A parent in the knowledge DAG G represents a 

related but more general concept over its children. Therefore, G provides a multi-resolution 

view of medical concepts with different degrees of specificity. While some ontologies are 

exclusively expressed as parent-child hierarchies (e.g. ICD-9, CCS), others are not. For 

example, in some instances SNOMED-CT also links medical concepts to causal or treatment 

relationships, but a majority of the relationships in SNOMED-CT are still parent-child. 

Therefore, we focus on the parent-child relationships in this work.

2.2 Knowledge DAG and the Attention Mechanism

GRAM leverages the parent-child relationship of G to learn robust representations when data 

volume is constrained. GRAM balances the use of ontology information in relation to data 

volume in determining the level of specificity for a medical concept. When a medical 

concept is less frequent in the data, more weight is given to its ancestors as they can be 

learned more accurately and offer general (coarse-grained) information about their children. 

The process of resorting to the parent concepts can be automated via the attention 

mechanism and the end-to-end training as described in Figure 1.
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In the knowledge DAG, each node ci is assigned a basic embedding vector ei ∈ ℝm, where m 

represents the dimensionality. Then e1, …, e C  are the basic embeddings of the codes 

c1, …, c C  while e C + 1, …, ℯ C + C′  represent the basic embeddings of the internal nodes 

c C + 1, …, c C + C′ . The initialization of these basic embeddings is described in Section 2.4. 

We formulate a leaf node’s final representation as a convex combination of the basic 

embeddings of itself and its ancestors:

gi = ∑
j ∈ A(i)

αijej, ∑
j ∈ A(i)

αij = 1, αij ≥ 0 for j ∈ A(i), (1)

where gi ∈ ℝm denotes the final representation of the code ci, A(i) the indices of the code ci 

and ci’s ancestors, ej, the basic embedding of the code cj and αij ∈ ℝ+ the attention weight 

on the embedding ej when calculating gi. The attention weight αij in Eq. (1) is calculated by 

the following Softmax function,

αij = exp(f(ei, ej))
∑k ∈ A(i) exp(f(ei, ek)) (2)

f(ei, ej) is a scalar value representing the compatibility between the basic embeddings of ei 

and ek. We compute f(ei, ej) via the following feed-forward network with a single hidden 

layer (MLP),

f(ei, ej) = ua
⊺ tanh(Wa

ei
ej

+ ba) (3)

where Wa ∈ ℝl × 2m is the weight matrix for the concatenation of ei and ej, b ∈ ℝl the bias 

vector, and ua ∈ ℝl the weight vector for generating the scalar value. The constant l 

represents the dimension size of the hidden layer of f(·, ·). We concatenate ei and ej in the 

child-ancestor order. Note that the compatibility function f is an MLP, because MLP is well 

known to be a sufficient approximator for an arbitrary function, and we empirically found 

that our formulation performed better in our use cases than alternatives such as inner product 

and Bahdanau et al.’s [2].

Remarks: The example in Figure 1 is derived based on a single path from ci to ca. However, 

the same mechanism can be applicable to multiple paths as well. For example, code ck has 

two paths to the root ca, containing hve ancestors in total. Another scenario is where the 

EHR data contain both leaf codes and some ancestor codes. We can move those ancestors 

present in EHR data from the set C′ to C and apply the same process as Eq. (1) to obtain the 

final representations for them.

2.3 End-to-End Training with a Predictive Model

We train the attention mechanism together with a predictive model such that the attention 

mechanism improves the predictive performance. By concatenating final representation 

g1, g2, …, g C  of all medical codes, we have the embedding matrix G ∈ ℛm × C  where gi is 
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the i-th column of G. As shown in the right side of Figure 1, we can convert a visit Vt to a 

visit representation vt by multiplying the embedding matrix G with a multi-hot (i.e. multi-

label binary) vector xt indicating the clinical events in the visit Vt, followed by a nonlinear 

activation via tanh. Finally the visit representation vt will be used as an input to the neural 

network model for predicting the target label yt. In this work, we use RNN as the choice of 

the NN model to perform sequential diagnoses prediction [9, 10]. That is, we are interested 

in predicting the disease codes of the next visit Vt+1 given the visit records up to the current 

timestep V1, V2, …, Vt, which can be expressed as follows,

v1, v2, …, vt = tanh(G[x1, x2, …, xt]),
h1, h2, …, ht = RNN(v1, v2, …, vt, θr),
yt = xt + 1 = Softmax(Wht + b),

(4)

where xt ∈ ℝ C  denotes the multi-hot vector for the t-th visit; vt ∈ ℝm the t-th visit 

representation; ht ∈ ℝr the RNN’s hidden layer at the t-th time step (i.e. t-th visit); θr RNN’s 

parameters; W ∈ ℝ C × r and b ∈ ℝ C  the weight matrices and the bias vector of the final 

Softmax function (r denotes the dimension size of the hidden layer). Note that we use 

Softmax instead of dimension-wise sigmoid for predicting multiple disease codes in the next 

visit Vt+1 because it showed better performance. Here we use “RNN” to denote any 

recurrent neural network variants that can cope with the vanishing gradient problem [3], 

such as LSTM [18], GRU [8], and IRNN [21]. The prediction loss for all time steps is 

calculated using the binary cross entropy as follows, ***

ℒ(x1, x2, …, xT) = − 1
T − 1 ∑

t = 1

T − 1
yt⊺ log(yt) + (1 − yt)⊺ log(1 − yt) (5)

where we sum the cross entropy errors from all timestamps of yt, T denotes the number of 

timestamps of the visit sequence. Note that the above loss is dehned for a single patient. In 

actual implementation, we will take the average of the individual loss for multiple patients. 

Algorithm 1 describes the overall GRAM training procedure assuming that we are 

performing the sequential diagnoses prediction task using an RNN. Note that Algorithm 1 

describes stochastic gradient update to avoid clutter, but it can be easily extended to other 

gradient based optimization such as mini-batch gradient update.

Algorithm 1

GRAM Optimization

 Randomly initialize basic embedding matrix E, attention parameters ua, Wa, ba, RNN parameter θr, softmax 
parameters W, b.

 repeat

  Update E with GloVe objective function (see Section 2.4)

 until convergence

 repeat

  X ← random patient from dataset
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  for visit Vt in X do

   for code ci in Vt do

    Refer G to find ci’s ancestors C′

    for code cj in C′ do

     Calculate attention weight αij using Eq. (2).

    end for

    Obtain final representation gi; using Eq. (1).

   end for

   vt ← tanh(∑i:ci∈Vt gi)

   Make prediction yt using Eq. (4)

  end for

  Calculate prediction loss ℒ using Eq. (5)

  Update parameters according to the gradient of ℒ
 until convergence

2.4 Initializing Basic Embeddings

The attention generation mechanism in Section 2.2 requires basic embeddings ei of each 

node in the knowledge DAG. The basic embeddings of ancestors, however, are not usually 

observed in the data. To properly initialize them, we use co-occurrence information to learn 

the basic embeddings of medical codes and their ancestors. Co-occurrence has proven to be 

an important source of information when learning representations of words or medical 

concepts [11, 13, 27]. To train the basic embeddings, we employ GloVe [31], which uses the 

global co-occurrence matrix of words to learn their representations. In our case, the co-

occurrence matrix of the codes and the ancestors was generated by counting co-occurrences 

within each visit Vt, where we then augment each visit with the ancestors of the codes in the 

visit. We describe the initialization algorithm with an example knowledge DAG of Figure 1. 

Given a visit Vt,

V t = {cd, ci, ck}

we augment the leaf codes with their ancestors to obtain the augmented visit V t′,

V t′ = {cd, cb, ca, ci, cg, cc, ca, ck, cj, cf, cc, cb, ca}

where the augmented ancestors are underlined. Note that a single ancestor can appear 

multiple times in V t′. In fact, the higher the ancestor is in the knowledge DAG, the more 

times it is likely to appear in V t′. Co-occurrence of two codes in V t′ are counted as follows,

co − occurrence(ci, cj, V t′) = count(ci, V t′) × count(cj, V t′)
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where count(ci, V t′) is the number of times the code ci appears in the augmented visit V t′. For 

example, the co-occurrence between the leaf code ci and the root ca is 3. However, the co-

occurrence between the ancestor cc and the root ca is 6. Therefore our algorithm will make 

the higher ancestor codes more likely to be involved in all medical events (i.e. visits), which 

is natural in healthcare applications as those general concepts are often reliable. We repeat 

this calculation for all pairs of codes in all augmented visits of all patients to obtain the co-

occurrence matrix M ∈ ℝ D × D  depicted by Figure 2. For training the embedding vectors 

ei’s using M, we minimize the following loss function as described in Pennington et al. [31],

J = ∑
i, j = 1

D
f(Mij)(ei

⊺ej + bi + bj − log Mij)
2

where f(x) = (x < xmax)α if x < xmax
1 otherwise

and the hyperparameters xmax and α are respectively set to 100 and 0.75 as the original 

paper [31]. Note that, after the initialization, the basic embeddings ei’s of both leaf nodes 

(i.e. medical codes) and non-leaf nodes (i.e. ancestors) are fine-tuned during model training 

via backpropagation.

3 EXPERIMENTS

We conducted three experiments to determine if GRAM offered superior prediction 

performance when facing data insufficiency. We first describe the experimental setup 

followed by results comparing predictive performance of GRAM with various baseline 

models. Then we present GRAM’s scalability results. Finally, we qualitatively show the 

intuitive interpretation of GRAM. The source code of GRAM is publicly available at https://

github.com/mp2893/gram.

3.1 Experiment Setup

Prediction tasks and source of data: We conducted two sequential diagnoses 

prediction (SDP) tasks using two different datasets. The overall aim of the experiments was 

to use all information prior to a next visit to predict all diagnosis codes that would be in that 

next visit. The first dataset was from the Sutter Palo Alto Medical Foundation (PAMF), 

which consisted of 10-years longitudinal medical records of 258K primary care patients 

between 50 to 89 years of age. This will determine GRAM’s performance for general adult 

population with many hospital visits. The second dataset was MIMIC-III [15, 19], which is a 

publicly available dataset consisting of medical records of 7.5K intensive care unit (ICU) 

patients over 11 years. This will determine GRAM’s performance for high-risk patients with 

veiy few hospital visits. We utilized all the patients with at least 2 visits. We prepared the 

true labels yt by grouping the ICD9 codes into 283 groups using CCS single-level diagnosis 

grouper1. This is to improve the training speed and predictive performance for easier 

analysis, while preserving sufficient granularity for each diagnosis. Each diagnosis code’s 

1https://www.hcup-us.ahrq.gov/toolssoftware/ccs/AppendixASingleDX.Lxt
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varying frequency in the training data can be viewed as different degrees of data 

insufficiency. Model performance was assessed by Accuracy@k for each of CCS single-

level diagnosis codes such that, given a visit Vt, we get 1 if the target diagnosis is in the top 

k guesses and 0 otherwise.

We also conducted a heart failure (HF) prediction task, which is a binaiy prediction task for 

predicting a future HF onset where the prediction is made only once at the last visit xT. The 

key difference between sequential diagnoses prediction and HF prediction is that the 

prediction target for the former can already occur in patient’s prior visits while the 

prediction target for the latter is a new diagnosis of HF that has not appeared before. HF 

prediction was conducted on Sutter heart failure (HF) cohort, which is a subset of Sutter 

PAMF data for a heart failure onset prediction study with 3.4K HF cases chosen by a set of 

criteria described in Gurwitz et al. [17], Vijayakrishnan et al. 39] and 27K matching controls 

chosen by a set of criteria described in Choi et al. 12]. This will determine GRAM’s 

performance for a different prediction task where we predict the onset of one specific 

condition. We randomly downsampled the training data to create different degrees of data 

insufficiency. We used area under the ROC curve (AUC) to measure the performance. A 

summary of the datasets are provided in Table 1.We used CCS multi-level diagnoses 

hierarchy2 as our knowledge DAG G. We also tested the ICD9 code hierarchy3, but the 

performance was similar to using CCS multi-level hierarchy. For all three tasks, we 

randomly divide the dataset into the training, validation and test set by .75:.10:.15 ratio, and 

use the validation set to tune the hyper-parameters. Further details regarding the hyper-

parameter tuning are provided below. The test set performance is reported in the paper.

Implementation details: We implemented GRAM with Theano 0.8.2 [38]. For training 

models, we used Adadelta [45] with a minibatch of 100 patients, on a machine equipped 

with Intel Xeon E5-2640, 256GB RAM, four Nvidia Titan X’s and CUDA 7.5.

Models for comparison are the following. The first two GRAM+ and GRAM are the 

proposed methods and the rest are baselines. Hyper-parameter tuning is configured so that 

the number of parameters for the baselines would be comparable to GRAM’s. Further 

details are provided below.

• GRAM: Input sequence x1, …, xT is first transformed by the embedding matrix 

Wemb ∈ ℝk × ∣ C ∣ , then fed to the GRU with a single hidden layer, which in turn 

makes the prediction, as described by Eq. (4). The basic embeddings ei’s are 

randomly initialized.

• GRAM+: We use the same setup as GRAM, but the basic embeddings ei’s are 

initialized according to Section 2.4.

• RandomDAG: We use the same setup as GRAM, but each leaf concept has five 

randomly assigned ancestors from the CCS multi-level hierarchy to test the effect 

of correct domain knowledge.

2https://www.hcup-us.ahrq.gov/toolssoftware/ccs/AppendixCMultiDX.txt
3http://www.icd9data.com/2015/Volume1/default.htm
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• RNN: Input xt is transformed by an embedding matrix Wemb ∈ ℝk × C , then fed 

to the GRU with a single hidden layer. The embedding size k is a hyper-

parameter. Wemb is randomly initialized and trained together with the GRU.

• RNN+: We use the RNN model with the same setup as before, but we initialize 

the embedding matrix Wemb with GloVe vectors trained only with the co-

occurrence of leaf concepts. This is to compare GRAM with a similar weight 

initialization technique.

• SimpleRollUp: We use the RNN model with the same setup as before. But for 

input xt, we replace all diagnosis codes with their direct parent codes in the CCS 

multi-level hierarchy, giving us 578, 526 and 517 input codes respectively for 

Sutter data, MIMIC-III and Sutter HF cohort. This is to compare the 

performance of GRAM with a common grouping technique.

• RollUpRare: We use the RNN model with the same setup as before, but we 

replace any diagnosis code whose frequency is less than a certain threshold in the 

dataset with its direct parent. We set the threshold to 100 for Sutter data and 

Sutter HF cohort, and 10 for MIMIC-III, giving us 4,408, 935 and 1,538 input 

codes respectively for Sutter data, MIMIC-III and Sutter HF cohort. This is an 

intuitive way of dealing with infrequent medical codes.

Hyper-parameter Tuning: We define five hyper-parameters for GRAM:

• dimensionality m of the basic embedding ei: [100, 200, 300, 400, 500]

• dimensionality r of the RNN hidden layer ht from Eq. (4): [100, 200, 300, 400, 

500]

• dimensionality l of Wa and ba from Eq. (3): [100, 200, 300, 400, 500]

• L2 regularization coefficient for all weights except RNN weights: [0.1, 0.01, 

0.001, 0.0001]

• dropout rate for the dropout on the RNN hidden layer: [0.0, 0.2, 0.4, 0.6, 0.8]

We performed 100 iterations of the random search by using the above ranges for each of the 

three prediction experiments. In order to fairly compare the model performances, we 

matched the number of model parameters to be similar for all baseline methods. To facilitate 

reproducibility, final hyper-parameter settings we used for all models for each prediction 

experiments are described at the source code repository, https://github.com/mp2893/gram, 

along with the detailed steps we used to tune the hyper-parameters.

3.2 Prediction performance

Tables 2a and 2b show the sequential diagnoses prediction performance on Sutter data and 

MIMIC-III. Both tables show that GRAM+ outperforms other models when predicting 

labels with significant data insufficiency (i.e. less observed in the training data).The 

performance gain is greater for MIMIC-III, where GRAM+ outperforms the basic RNN by 

10% in the 20th-40th percentile range. This seems to come from the fact that MIMIC 

patients on average have significantly shorter visit history than Sutter patients, with much 
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more codes received per visit. Such short sequences make it difficult for the RNN to learn 

and predict diagnoses sequence. The performance difference between GRAM+ and GRAM 

suggests that our proposed initialization scheme of the basic embeddings ei is important for 

sequential diagnosis prediction.

Table 2c shows the HF prediction performance on Sutter HF cohort. GRAM and GRAM+ 

consistently outperforms other baselines (except RNN+) by 3~4% AUC, and RNN+ by 

maximum 1.8% AUC. These differences are quite significant given that the AUC is already 

in the mid-80s, a high value for HF prediction, cf. [12]. Note that, for GRAM+ and RNN+, 

we used the downsampled training data to initialize the basic embeddings ei’s and the 

embedding matrix Wemb with GloVe, respectively. The result shows that the initialization 

scheme of the basic embeddings in GRAM+ gives limited improvement over GRAM. This 

stems from the different natures of the two prediction tasks. While the goal of HF prediction 

is to predict a binary label for the entire visit sequence, the goal of sequential diagnosis 

prediction is to predict the co-occurring diagnosis codes at every visit. Therefore the co-

occurrence information infused by the initialized embedding scheme is more beneficial to 

sequential diagnosis prediction. Additionally, this benefit is associated with the natures of 

the two prediction tasks than the datasets used for the prediction tasks. Because the 

initialized embedding shows different degrees of improvement as shown by Tables 2a and 

2c, when Sutter HF cohort is a subset of Sutter PAMF, thus having similar characteristics.

Overall, GRAM showed superior predictive performance under data insufficiency in three 

different experiments, demonstrating its general applicability in clinical predictive modeling.

3.3 Scalability

We briehy discuss the scalability of GRAM by comparing its training time to RNN’s. Table 

3 shows the number of seconds taken for the two models to train for a single epoch for each 

predictive modeling task. GRAM+ and RNN+ showed the similar behavior as GRAM and 

RNN. GRAM takes approximately 50% more time to train for a single epoch for all 

prediction tasks. This stems from calculating attention weights and the final representations 

gi for all medical codes. GRAM also generally takes about 50% more epochs to reach to the 

model with the lowest validation loss. This is due to optimizing an extra MLP model that 

generates the attention weights. Overall, use of GRAM adds a manageable amount of 

overhead in training time to the plain RNN.

3.4 Qualitative evaluation of interpretable representations

To qualitatively assess the interpretability, we generates the t-SNE plots [26] using the final 

representations gi of 2,000 randomly chosen diseases learned by GRAM+ for sequential 

diagnoses prediction on Sutter data4 (Figure 3a). The color of the dots represents the highest 

disease categories and the text annotations represent the detailed disease categories in CCS 

multi-level hierarchy. For comparison, we also show the t-SNE plots on the strongest results 

from GRAM (Figure 3b), RNN+ (Figure 3c), RNN (Figure 3d) and RandomDAG (Figure 

4The scatterplots of models trained for sequential diagnoses prediction on MIMIC-III and HF prediction for Sutter HF cohort were 
similar but less structured due to smaller data size.
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3e). GloVe (Figure 3f) and Skip-gram (Figure 3g) were trained on the Sutter data, where a 

single visit Vt was used as the context window to calculate the co-occurrence of codes.

Figures 3c and 3f conhrm that interpretable representations cannot simply be learned only by 

co-occurrence or supervised prediction without medical knowledge. GRAM+ and GRAM 

learn interpretable disease representations that are signihcantly more consistent with the 

given knowledge DAG G. Based on the prediction performance shown by Table 2, and the 

fact that the representations gi’s are the final product of GRAM, we can infer that such 

medically meaningful representations are necessary for predictive models to cope with data 

insufficiency and make more accurate predictions. Figure 3b shows that the quality of the 

final representations gi of GRAM is quite similar to GRAM+. Compared to other baselines, 

GRAM demonstrates signihcantly more structured representations that align well with the 

given knowledge DAG. It is interesting that Skip-gram shows the most structured 

representation among all baselines. We used GloVe to initialize the basic embeddings ei in 

this work because it uses global co-occurrence information and its training time is fast as it 

only depends on the total number of unique concepts ∣ C ∣. Skip-gram’s training time, on the 

other hand, depends on both the number of patients and the number of visits each patient 

made, which makes the algorithm generally slower than GloVe. An interactive visualization 

tool can be accessed at http://www.sunlab.org/research/gram-graph-based-attention-model/.

3.5 Analysis of the attention behavior

Next we show that GRAM’s attention can be explained intuitively based on the data 

availability and knowledge DAG’s structure when performing a prediction task. Using Eq. 

(1), we can calculate the attention weights of individual disease. Figure 4 shows the attention 

behaviors of four representative diseases when performing HF prediction on Sutter HF 

cohort.

Other pneumothorax (ICD9 512.89) in Figure 4a is rarely observed in the data and has only 

five siblings. In this case, most information is derived from the highest ancestor. 

Temporomandibular joint disorders & articular disc disorder (ICD9 524.63) in Figure 4b is 

rarely observed but has 139 siblings. In this case, its parent receives a stronger attention 

because it aggregates sufficient samples from all of its children to learn a more accurate 

representation. Note that the disease itself also receives a stronger attention to facilitate 

easier distinction from its large number of siblings.

Unspecified essential hypertension (ICD9 401.9) in Figure 4c is very frequently observed 

but has only two siblings. In this case, GRAM assigns a very strong attention to the leaf, 

which is logical because the more you observe a disease, the stronger your confidence 

becomes. Need for prophylactic vaccination and inoculation against influenza (ICD9 

V04.81) in Figure 4d is quite frequently observed and also has 103 siblings. The attention 

behavior in this case is quite similar to the case with fewer siblings (Figure 4b) with a slight 

attention shift towards the leaf concept as more observations lead to higher confidence.
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4 RELATED WORK

The attention mechanism is a general framework for neural network learning [2], and has 

been since used in many areas such as speech recognition [14], computer vision [1,43] 

andhealthcare [10]. However, no one has designed attention model based on knowledge 

ontology, which is the focus of this work.

There are related works in learning the representations of graphs. Several studies focused on 

learning the representations of graph vertices by using the neighbor information. DeepWalk 

[32] and node2vec [16] use random walk while FINE [37] uses breadth-first search to find 

the neighbors of a vertex and learn its representation based on the neighbor information. 

Graph convolutional approaches [20, 44] also focus on learning the vertex representations to 

mainly perform vertex classification. All those works focus on solving the graph data 

problems whereas GRAM focuses on solving clinical predictive modeling problems using 

the knowledge DAG as supplementary information.

Several researchers tried to model the knowledge DAG such as WordNet [28] or Freebase 

[4] where two entities are connected with various types of relation, forming a set of triples. 

They aim to project entities and relations [5, 23, 35, 40] to the latent space based on the 

triples or additional information such as hierarchy of entities [42]. These works 

demonstrated tasks such as link prediction, triple classification or entity classification using 

the learned representations. More recently, Li et al. [22] learned the representations of words 

and Wikipedia categories by utilizing the hierarchy of Wikipedia categories. GRAM is 

fundamentally different from the above studies in that it aims to design intuitive attention 

mechanism on the knowledge DAG as a knowledge prior to cope with data insufficiency and 

learn medically interpretable representations to make accurate predictions.

A classical approach for incorporating side information in the predictive models is to use 

graph Laplacian regularization [6, 41]. However, using this approach is not straightforward 

as it relies on the appropriate definition of distance on graphs which is often unavailable.

5 CONCLUSION

Data insufficiency, either due to less common diseases or small datasets, is one of the key 

hurdles in healthcare analytics, especially when we apply deep neural networks models. To 

overcome this challenge, we leveraged the knowledge DAG, which provides a multi-

resolution view of medical concepts. We proposed GRAM, a graph-based attention model 

using both a knowledge DAG and EHR to learn an accurate and interpretable representations 

for medical concepts. GRAM chooses a weighted average of ancestors of a medical concept 

and train the entire process with a predictive model in an end-to-end fashion. We conducted 

three predictive modeling experiments on real EHR datasets and showed signihcant 

improvement in the prediction performance, especially on low-frequency diseases and small 

datasets. Analysis of the attention behavior provided intuitive insight of GRAM. Although 

GRAM showed good performance, there is room for improving the way we incorporate 

knowledge DAG into neural networks. For future work, we plan to devise a method to 

Choi et al. Page 12

KDD. Author manuscript; available in PMC 2021 March 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



systematically leverage knowledge DAG in addition to using attention-weighted 

embeddings.
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Figure 1: 
The illustration of GRAM. Leaf nodes (solid circles) represents a medical concept in the 

EHR, while the non-leaf nodes (dotted circles) represent more general concepts. The final 

representation gi of the leaf concept ci is computed by combining the basic embeddings ei of 

ci and eg, ec and ea of its ancestors cg, cc and ca via an attention mechanism. The final 

representations form the embedding matrix G for all leaf concepts. After that, we use G to 

embed patient visit vector xt to a visit representation vt, which is then fed to a neural 

network model to make the final prediction yt.
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Figure 2: 
Creating the co-occurrence matrix together with the ancestors. The n-th ancestors are the 

group of nodes that are n hops away from any leaf node in G. Here we exclude the root 

node, which will be just a single row (column).
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Figure 3: 
t-SNE scatterplots of medical concepts trained by GRAM+, GRAM, RNN+, RNN, 

RandomDAG, GloVe and Skip-gram. The color of the dots represents the highest disease 

categories and the text annotations represent the detailed disease categories in CCS multi-

level hierarchy. It is clear that GRAM+ and GRAM exhibit interpretable embedding that are 

well aligned with the medical ontology.
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Figure 4: 
GRAM’s attention behavior during HF prediction for four representative diseases (each 

column). In each figure, the leaf node represents the disease and upper nodes are its 

ancestors. The size of the node shows the amount of attention it receives, which is also 

shown by the bar charts. The number in the parenthesis next to the disease is its frequency in 

the training data. We exclude the root of the knowledge DAG G from all figures as it did not 

play a significant role.

Choi et al. Page 19

KDD. Author manuscript; available in PMC 2021 March 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Choi et al. Page 20

Table 1:

Basic statistics of Sutter PAMF, MIMIC-III and Sutter heart failure (HF) cohort.

Dataset Sutter PAMF MIMIC-III Sutter HF cohort

# of patients 258,555
†

7,499
†

30,727
†
 (3,408 cases)

# of visits 13,920,759 19,911 572,551

Avg. # of visits per patient 53.8 2.66 38.38

# of unique ICD9 codes 10,437 4,893 5,689

Avg. # of codes per visit 1.98 13.1 2.06

Max # of codes per visit 54 39 29

†
For all datasets, we chose patients who made at least two visits.
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Table 3:

Scalability result in per epoch training time in second (the number of epochs needed). SDP stands for 

Sequential Diagnoses Prediction

Model SDP
(Sutter data)

SDP
(MIMIC-III)

HF prediction
(Sutter HF cohort)

GRAM 525s (39 epochs) 2s (11 epochs) 12s (7 epochs)

RNN 352s (24 epochs) 1s (6 epochs) 8s (5 epochs)
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