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Abstract

The two-phase design is a cost-effective sampling strategy to evaluate the effects of covariates on 

an outcome when certain covariates are too expensive to be measured on all study subjects. Under 

such a design, the outcome and inexpensive covariates are measured on all subjects in the first 

phase and the first-phase information is used to select subjects for measurements of expensive 

covariates in the second phase. Previous research on two-phase studies has focused largely on the 

inference procedures rather than the design aspects. We investigate the design efficiency of the 

two-phase study, as measured by the semiparametric efficiency bound for estimating the regression 

coefficients of expensive covariates. We consider general two-phase studies, where the outcome 

variable can be continuous, discrete, or censored, and the second-phase sampling can depend on 

the first-phase data in any manner. We develop optimal or approximately optimal two-phase 

designs, which can be substantially more efficient than the existing designs. We demonstrate the 

improvements of the new designs over the existing ones through extensive simulation studies and 

two large medical studies.

Keywords

Case-cohort design; Case-control study; Generalized linear models; Outcome-dependent 
sampling; Proportional hazards; Semiparametric efficiency

1. INTRODUCTION

In modern epidemiological and clinical studies, the outcomes of interest, such as disease 

occurrence and death, together with demographic factors and basic clinical variables, are 

typically known for all study subjects. The covariates of main interest often involve 

genotyping, biomarker assay, or medical imaging and thus are prohibitively expensive to be 

measured on all study subjects. A cost-effective solution is the two-phase design (White, 

1982), under which the outcome and inexpensive covariates are observed on all subjects 

during the first phase and the first-phase information is used to select subjects for 
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measurements of expensive covariates during the second phase. This type of design greatly 

reduces the cost associated with the collection of expensive covariate data and thus has been 

used widely in large-scale studies, including the National Wilms’ Tumor Study (Green et al., 

2001; Warwick et al., 2010) and the National Heart, Lung, and Blood Institute Exome 

Sequencing Project (Lin et al., 2013).

A large body of literature exists on statistical inference for two-phase studies. For case-

control studies, Prentice and Pyke (1979) showed that standard logistic regression ignoring 

the retrospective nature of the sampling scheme yields valid and efficient inference for the 

odds-ratio parameters. For designs under which every subject has a positive probability of 

being selected in the second phase, Robins et al. (1995) developed efficient estimators based 

on augmented inverse probability of selection weighting. For more general designs, 

Chatterjee et al. (2003) and Weaver and Zhou (2005) constructed inefficient estimators based 

on pseudo and estimated likelihood, respectively. Efficient estimators that are 

computationally feasible were proposed by Scott and Wild (1991), Breslow and Holubkov 

(1997), Scott and Wild (1997), Lawless et al. (1999), and Breslow et al. (2003) when the 

first-phase variables are discrete and by Song et al. (2009) and Lin et al. (2013) when there 

are no inexpensive covariates. Recently, Tao et al. (2017) studied efficient estimation under 

general two-phase designs, where the sampling in the second phase can depend on the first-

phase data in any manner, and the outcome and inexpensive covariates can be continuous.

The design aspects of two-phase studies have received much less attention than the inference 

procedures. It is natural to ask which design leads to the most efficient inference on the 

effects of expensive covariates. The answer to this question is known only when there are no 

inexpensive covariates. Specifically, Prentice and Pyke (1979)’s work implies that the case-

control design with an equal number of cases and controls is optimal. For a continuous 

outcome, Lin et al. (2013) showed that the two-phase design is more efficient if it selects 

subjects with more extreme values of the outcome variable.

The use of two-phase designs in large cohort studies with potentially censored event times 

has been a topic of great interest. Important examples include the case-cohort design 

(Prentice, 1986), which selects all cases and a random subcohort, and the nested case-control 

design (Thomas, 1977), which selects a small number of controls at each observed event 

time. These designs have been extended so as to select a fraction of, rather than all, cases 

(Cai and Zeng, 2007). Recently, Ding et al. (2014) proposed a general failure-time outcome-

dependent sampling scheme that selects cases with extremely large or small observed event 

times in addition to a random subcohort, and Lawless (2018) suggested to select the smallest 

observed event times and the largest censored observations. Various methods have been 

developed to make inference under two-phase cohort studies; see Zeng and Lin (2014) and 

Ding et al. (2017) for reviews. However, no theoretical results exist on optimal cohort 

sampling.

Inexpensive covariates can be used in the second-phase sampling to enhance efficiency. For 

discrete outcomes, Breslow and Chatterjee (1999) stratified the second-phase sampling by 

the outcome and inexpensive covariates jointly. For continuous outcomes, the National 

Heart, Lung, and Blood Institute Exome Sequencing Project selected subjects with extreme 
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values of the residuals from the linear regression of the outcome on inexpensive covariates 

(Lin et al., 2013). Zhou et al. (2014) proposed a probability-dependent sampling scheme, 

which selects a simple random sample at the beginning of the second phase and selects the 

remaining subjects using the predicted values of the expensive covariate. For censored 

outcomes, Borgan et al. (2000) stratified the selection of the subcohort in the case-cohort 

design on inexpensive covariates, and Langholz and Borgan (1995) used inexpensive 

covariates to select “counter-matched” controls at each observed event time. Whether any of 

the aforementioned two-phase designs are optimal among designs that make use of 

inexpensive covariates is unknown.

In this paper, we investigate the efficiency of general two-phase designs, where the second-

phase sampling can depend on the first-phase data in any manner, and the outcome variable 

can be continuous, discrete, or censored. The design efficiency pertains to the 

semiparametric efficiency bound for estimating the regression coefficients of expensive 

covariates. We explore the optimal designs that maximize the efficiency among all possible 

two-phase designs and find good approximations to the optimal designs when they are not 

directly implementable. In addition, we compare the efficiencies of the proposed and 

existing two-phase designs through extensive simulation studies. Finally, we provide 

applications to the National Wilms’ Tumor Study and the National Heart, Lung, and Blood 

Institute Exome Sequencing Project.

2. THEORY AND METHODS

2.1. Data and Models

Let Y denote the outcome of interest, X the expensive covariate, and Z the vector of 

inexpensive covariates. The observation (Y X, Z) is assumed to be generated from the joint 

density pθ,η(Y | X, Z) f (X, Z), where pθ,η(·|·,·) pertains to a parametric or semiparametric 

regression model indexed by parameters θ = (α,β,γT)T and η,(α,β,γ) are the regression 

coefficients in the linear predictor μ(X,Z) = α + βX + γTZ, η is a possibly infinite-

dimensional nuisance parameter, and f (·,·) is the joint density of X and Z with respect to a 

dominating measure. For linear regression,

pθ, η(Y |X, Z) = 2πσ2 −1/2exp − Y − μ(X, Z) 2/ 2σ2 ,

Where η = σ2; for logistic regression,

pθ, η(Y = 1|X, Z) = [1 + exp − μ(X, Z) ]−1 .

For proportional hazards regression (Cox, 1972), the hazard function of the event time T 

conditional on covariates X and Z takes the form λ(t) exp{μ(X, Z)}, where α in μ(X, Z) is 

set to zero, and λ(·) is an unknown baseline hazard function, which corresponds to η. In the 

presence of right censoring, the observed outcome becomes Y = (T , Δ), where T = min(T , C), 
Δ = I (T ≤ C), C is the censoring time on T, and I(·) is the indicator function. Assuming that 

C is independent of T and X conditional on Z, we have
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pθ, η(Y |X, Z) ∝ [λ(T ) exp μ(X, Z) ]Δ exp[ − Λ(T ) exp μ(X, Z) ],

where Λ(t) = ∫0
tλ(u)du.

2.2. Efficient Inference Under Two-Phase Sampling

If (Y,X, Z) is observed for all n subjects in the study, then the inference on θ is typically 

based on the likelihood ∏n = 1
n pθ, n Y i |Xi, Zi . Under the two-phase design, however, only 

(Y, Z) is measured on all n subjects in the first phase, and X is measured for a sub-sample of 

size n2 in the second phase. Let R be the selection indicator for the measurement of X in the 

second phase. It is assumed that the distribution of (R1,…,Rn) depends on (Yi,Xi,Zi) (i = 1,

…,n) only through the first-phase data (Yi,Zi) (i = 1,…,n). This assumption implies that the 

data on X are missing at random, such that the joint distribution of (R1,…,Rn) conditional on 

(Y1,Z1,…,Yn,Zn) can be disregarded in the likelihood inference on θ. Thus, the observed-

data likelihood can be written as

L(θ, η, f)

= ∏
i = 1

n
pθ, n Y i |Xi, Zi f Xi, Zi

Ri ∫ pθ, n Y i |x, Zi f x, Zi dx
1 − Ri

. (1)

Our main interest lies in the inference on β.

Remark 1. For designs that select a simple random sample at the beginning of the second 

phase, the observed-data likelihood (1) is valid even if the selection of the remaining 

subjects depends on the values of X in the simple random sample.

As mentioned in Section 1, efficient inference on β has been studied for different regression 

models (e.g., Robins et al., 1995; Breslow et al., 2003; Lin et al., 2013). In particular, 

nonparametric maximum likelihood estimation, under which the distribution of covariates is 

unspecified, has been developed by Tao et al. (2017) for continuous and discrete outcomes 

and by Zeng and Lin (2014) for censored data. Specifically, the joint density f (x, z) in (1) is 

expressed as the product of the marginal density of Z and the conditional density of X given 

Z = z. The marginal density of Z drops out of the likelihood, whereas the conditional density 

of X given z is estimated through sieves and kernel smoothing by Tao et al. (2017) and Zeng 

and Lin (2014), respectively. Under mild regularity conditions, the nonparametric maximum 

likelihood estimator for β, denoted by β , is consistent, and n1/2(β − β) is asymptotically zero-

mean normal with a variance that attains the semiparametric efficiency bound. We denote 

this variance by Vβ. By definition, the design is more efficient if the corresponding Vβ is 

smaller, and the optimal design minimizes Vβ for a given n2.

2.3. Design Efficiency

In this subsection, we present some theoretical results on Vβ in terms of the joint distribution 

of (Y,X,Z) and the probability of R = 1 given (Y,Z). The general form of Vβ is available but 

involves an implicit integral equation (Robins et al., 1995; Bickel et al., 1998). To make the 
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expression of Vβ analytically tractable, we assume that β is small in the sense that β = o(1). 

This situation is of practical importance because design efficiency is the most critical when 

β is small, as in genetic association studies. For commonly used regression models, the 

information matrix is insensitive to perturbation in β, such that the expression of Vβ under β 
= o(1) provides a good approximation for large β.

Let Dμ be the derivative of logpθ,η (Y|X,Z) with respect to the linear predictor μ. We state 

below our main theoretical result.

Theorem 1. Under β = o(1),

V β = Σ1 + E R var Dμ |R = 1, Z var(X |Z) −1, (2)

Where Σ1 is the Fisher information for β in the regression model pθ,η (Y | X,Z) based on one 

observation, with X replaced by E(X | Z).

The proof of Theorem 1 is given in the Appendix. A key step in the proof is to derive the 

efficient score function for β using the semiparametric efficiency theory (Bickel et al., 1998) 

and the fact that Y and X are approximately independent given Z under β = o(1). When β = 

0, Z is discrete, and η is finite-dimensional, taking the inverse of the two sides of equation 

(2) yields equation (7) in Derkach et al. (2015).

In Theorem 1, Σ1 does not depend on R. Therefore, searching for the optimal, two-phase 

design is equivalent to finding the sampling rule R that maximizes

E R var Dμ |R = 1, Z var(X |Z) (3)

subject to the constraint

Pr(R = 1) = τ, (4)

where τ is the second-phase sampling fraction that is fixed by study budgets. In light of 

expression (3), it is desirable to select the subjects with the largest or smallest values of Dμ 

in each stratum of Z to maximize the variability of Dμ, where the strata correspond to the 

levels of discrete or discretized Z. In addition, expression (3) shows that the optimal design 

should oversample subjects with the largest values of var(X | Z). This is reasonable because 

X is harder to “impute” by Z when var(X | Z) is larger, such that measuring X among 

subjects with larger values of var(X | Z) is more “rewarding” than measuring X among 

subjects with smaller values of var(X | Z). We formalize these heuristic arguments in the 

following theorem, whose proof is provided in the Appendix.

Theorem 2. The optimal sampling rule Ropt under budget constraint (4) takes the following 

form:
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Pr Ropt = 1|Dμ = dμ, Z = z =

1 if dμ < lz or dμ > uz,
az if dμ = lz and Pr Dμ = lz |Z = z > 0,
bz if dμ = uz and Pr Dμ = uz |Z = z > 0,
0 othervise, 

(5)

where (lz,uz,az,bz) for each z in the support of Z is chosen to maximize

∫
z
∫ dμ < lz ∪ dμ > uz

dμ
2dF dμ |z + lz2azF lz |z + uz2bzF uz |z

−
∫ dμ < lz ∪ dμ > uz dμdF dμ |z + lzazF ( lz |z + uzbzF uz |z 2

F lz− |z + 1 − F uz+ |z) + azF lz |z + bzF ( uz |z
var(X |z

)dFz(z)

(6)

subject to

∫ F lz− |z + 1 − F uz+ |z + azF lz |z + bzF uz |z dFz(z) = τ . (7)

Here, FZ is the cumulative distribution function of Z, F(·| z) is the conditional cumulative 

distribution function of Dμ given Z = z, and F({dμ}| z) is the jump size of F(dμ | z) at Dμ = dμ.

Remark 2. If F(·| z) is continuous, then az = bz = 0, and equation (5) and expression (6) can 

be simplified greatly. Note that expression (6) and constraint (7) correspond to expression 

(3) and constraint (4), respectively.

Theorem 2 confirms that the optimal design selects subjects with the largest or smallest 

values of Dμ in each stratum of Z and favors the strata with the largest values of var(X | Z). 

Under β = 0, μ(X,Z) reduces to μ(Z) = γTZ. For linear regression, Dμ = {Y − μ(Z)}/σ2, 

which is the error term scaled by σ2; for logistic regression Dμ = Y−[1 + exp{−μ(Z)}]−1, 

which is the deviance for one subject; for proportional hazards regression, 

Dμ = Δ − Λ(T ) exp μ(Z) , which is a martingale. The unknown parameters in Dμ are 

estimated by the first-phase data to yield the scaled, deviance, and martingale residuals for 

the linear, logistic, and proportional hazards regression, respectively.

The dependence of the optimal design on var(X | Z) is a new discovery. In practice, var(X | 

Z) is unknown and needs to be estimated from prior knowledge or historical data. Many two-

phase studies, including the National Heart, Lung, and Blood Institute Exome Sequencing 

Project, select a simple random sample in the second phase, which can be used to study 

multiple outcomes or to explore the correct form of the model. We can estimate var(X | Z) 

from this subsample and then use the optimal rule Ropt to select the remaining subjects. The 

resulting design is optimal among those with a second-phase simple random sample of the 

same size.
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Remark 3. A question naturally arises as to what the “optimal” size of the simple random 

sample is. A larger simple random sample will yield a more accurate estimate of var(X | Z) 

but entails more efficiency loss. If the spread of var(X | Z) is small across different values of 

Z, then it may be sensible to treat var(X | Z) as a constant and not select a simple random 

sample at all. If the spread of var(X | Z) is large, then one should select the smallest number 

of subjects that ensures an accurate estimate of var(X | Z). A rule of thumb is to group Z into 

five strata and select ten subjects in each stratum.

2.4. Algorithms for Finding the Optimal Design

According to Theorem 2, the optimal design is determined by the distribution of Dμ at the 

two extreme tails and the variability of X in each stratum of Z. Except for some special 

distributions of Dμ, there exists no explicit solution for (lz, uz, az, bz). In this subsection, we 

first derive the optimal designs for linear and logistic regression, where simple solutions 

exist. We then propose a generic algorithm for finding an approximate solution to the 

optimal design for general regression models.

For linear regression, Dμ = −{Y – μ(Z)}/σ2. Under β = o(1) the conditional distribution of Y 
given Z is continuous and symmetric about zero. In this situation, the optimal design has an 

explicit form, as given in the following corollary, whose proof is provided in the Appendix.

Corollary 1. The second-phase sampling rule Rlinear
opt  , defined as

Rlinear
opt  = 1 if Y − μ(Z) 2 var(X |Z) ≥ c0

2,
0 otherwise,

where c0 is chosen to satisfy Pr Y − μ(Z) 2 var(X |Z) ≥ c0
2 = Pr Rlinear

opt  = 1 = τ, maximizes 

expression (3) over all rules that satisfy budget constraint (4).

Corollary 1 sheds light on existing two-phase designs. If var(X | Z) is a constant, then the 

optimal design is the same as the residual-dependent sampling design that selects subjects 

with extreme values of Y – μ(Z). If we further assume that Z does not affect Y, such that 

μ(Z) is a constant, then the optimal design becomes the outcome-dependent sampling design 

that selects subjects with extreme values of Y; this result was previously proven by Lin et al. 

(2013). The probability-dependent sampling design of Zhou et al. (2014) requires a simple 

random sample at the beginning of the second phase; it selects the remaining subjects using 

the extreme predicted values of X, where the prediction model is built on the simple random 

sample. This sampling strategy essentially maximizes E{R var(X | Z,Y,R =1)}, which 

reduces to

E R var(X |Z) (8)

under β = 0. Unlike expression (3), expression (8) ignores var(Dμ | R = 1,Z) Thus, the 

probability-dependent sampling design is less efficient than the optimal design.
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For logistic regression, Dμ = Y−[1 + exp{−μ(Z)}]−1. Because the conditional distribution of 

Y given Z among subjects with R = 1 is Bernoulli, we have var(Y | R = 1,Z) = E(Y | R = 

1,Z) {1 − E(Y | R = 1,Z)}. By Bayes’ theorem, E(Y | R = 1,Z) = E(R | Y = 1,Z)E(Y | Z)/ E(R 
| Z). Thus, expression (3) equals

E E(R |Y = 1, Z)E(Y |Z) E(R |Z) − E(R |Y = 1, Z)E(Y |Z)
E(R |Z) var(X |Z) . (9)

We derive the optimal design that maximizes expression (9) in the following corollary, 

whose proof is provided in the appendix.

Corollary 2. Assume, without loss of generality, that E(Y | Z) ≤1/2. The optimal sampling 

rule Rlogistic
opt   satisfies

E Rlogistic
opt  |Y = 1, Z = min E Rlogistic 

opt  |Z /2E(Y |Z), 1 , (10)

where E Rlogistic
one  |Z  maximizes

E I E(R |Z)
E(Y |Z) ≤ 2 E(R |Z)

4 + I E(R |Z)
E(Y |Z) > 2 E(Y |Z) 1 − E(Y |Z)

E(R |Z) var(X

|Z)
(11)

over E(R | Z) subject to budget constraint (4). In particular, if var(X | Z) is a constant and τ ≤ 

2E(Y), then there exists a design such that E(R | Z) ≤ 2E(Y | Z) and E(R | Y = 1,Z) = E(R | 

Z)/{2E(Y | Z)}. Moreover, any such design maximizes (11) and thus is optimal.

Remark 4. Equation (10) is equivalent to E(RY | Z) = E{R(1 − Y) | Z} if E(R | Z) ≤ 2E(Y | 

Z). Thus, the optimal design selects an equal number of cases and controls within the strata 

of Z for which E(R | Z) ≤ 2E(Y | Z) and selects all cases and more controls than cases for the 

other strata. If var(X | Z) is a constant and τ ≤ 2E(Y), then the optimal design always selects 

an equal number of cases and controls in each stratum of Z. In this situation, the stratum 

sizes are irrelevant to design efficiency. In other situations, we determine the optimal stratum 

sizes by maximizing the empirical version of expression (11) through grid search.

For more complex models such as the proportional hazards model, the conditional 

distribution of Dμ given Z is not symmetric. In this situation, (lz, uz, az, bz) does not have an 

explicit form, and finding the optimal design relies on numerical maximization of the 

empirical version of expression (3). When the conditional distribution of Dμ given Z is not 

too skewed, we suggest to select an equal number of subjects at the two extreme tails of Dμ 

in each stratum of Z and then determine the optimal second-phase sample size of each 

stratum by maximizing the empirical version of expression (3) through grid search. This 

design is easy to implement and should provide a good approximation to the optimal design.

Remark 5. When there is no information about var(X | Z) at all, treating it as a constant will 

result in a design that is optimal among those with the same second-phase sample 
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stratification. For linear regression, Corollary 1 shows that the optimal design does not need 

to stratify on Z. Then treating var(X | Z) as a constant reduces the optimal design to residual-

dependent sampling, which is always more efficient than outcome-dependent sampling 

whether var(X | Z) is a constant or not. For logistic regression, treating var(X | Z) as a 

constant reduces the optimal design to stratified case-control sampling. In this situation, we 

do not know the optimal stratum sizes because var(Dμ | R = 1,Z) = 1/4 for any Z (provided 

that τ < 2E(Y)). If var(X | Z) is a constant, then the stratum sizes are irrelevant to design 

efficiency. If the spread of var(X | Z) is large, then stratified case-control sampling with 

equal stratum sizes can be more or less efficient than case-control sampling when the strata 

with larger values of var(X | Z) are less or more prevalent than the other strata, respectively. 

For more complex models, such as the proportional hazards model, treating var(X | Z) as a 

constant is appropriate when the spread of var(X | Z) is small or when var(X | Z) and var(Dμ 

| R =1,Z) are positively correlated. Treating var(X | Z) as a constant can reduce design 

efficiency when the spread of var(X | Z) is large and var(X | Z) and var(Dμ | R = 1,Z) are 

negatively correlated.

3. SIMULATION STUDIES

We conducted extensive simulation studies to compare the efficiencies of various two-phase 

designs in realistic settings. In the first set of studies, we considered a continuous outcome 

with discrete covariates. Specifically, we set Z and X | Z to Bern(0.5) and Bern{I(Z = 0)p0 + 

I(Z = 1)p1}, respectively, with 0 < p0 <1 and 0 < p1 <1. We generated the outcome from the 

linear model Y =βX + γZ + ϵ1, where ϵ1 is a standard normal random variable independent 

of X and Z. We set n = 4000 and considered four sampling strategies at the second phase: 

simple random sampling selects 400 subjects randomly; outcome-dependent sampling 

selects 200 subjects with the highest and 200 subjects with the lowest values of Y; residual-

dependent sampling selects 200 subjects with the highest and 200 subjects with the lowest 

values of Y − μ(Z), where μ(Z) = α + γZ, and α and γ  are the least-squares estimates from 

the linear regression of Y on Z; and optimal sampling selects 200 subjects with the highest 

and 200 subjects with the lowest values of Y − μ(Z) var(X |Z) 12, where var(X | Z = j) = pj 

(1 − pj) (j = 0,1). We performed maximum likelihood estimation (Tao et al., 2017) under the 

four designs. We evaluated the efficiency of each design according to the empirical variance 

of β . In addition, we compared the analytical variance Vβ given in Theorem 1 with the 

empirical variance.

The results for the first set of studies are shown in Table 1 and Supplementary Table S1. We 

see that outcome-dependent, residual-dependent, and optimal sampling are much more 

efficient than simple random sampling. When γ = 0, residual-dependent sampling is as 

efficient as outcome-dependent sampling. When γ ≠ 0, residual-dependent sampling is more 

efficient than outcome-dependent sampling, and the efficiency gain increases as γ increases. 

When var(X | Z) is a constant, the optimal design is as efficient as residual-dependent 

sampling. When var(X | Z) is a non-trivial function of Z, the optimal design is substantially 

more efficient than residual-dependent sampling. The analytical standard error of β
approximates the empirical standard error very well when β is small. The approximation 

becomes less accurate when β is large; however, the bias tends to be small (relative to the 
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true value) and in the same direction for different designs, such that the ordering of the 

design efficiencies is unaltered.

In the second set of simulation studies, we considered a continuous instead of a discrete 

expensive covariate. Specifically, we set X = 0.2Z + (1 + kZ)1/2ϵ2, where ϵ2 is a standard 

normal random variable independent of Z and ϵ1, and κ is a parameter that controls the 

value of var(X | Z). We set Z to Bern(0.5) or Unif(0,1). In addition to the two-phase designs 

considered in the first set of studies, we included four designs that select a simple random 

sample of 200 subjects at the beginning of the second phase. The following strategies were 

adopted to select the remaining 200 subjects in the second phase: outcome-dependent 

sampling selects subjects with extreme values of Y; residual-dependent sampling selects 

subjects with extreme values of Y − μ(Z); probability-dependent sampling (Zhou et al., 

2014) selects subjects with extreme values of X, where X is the predicted value of X from 

the linear regression of X on Y stratified by Z when Z is discrete and from the linear 

regression of X on (Y, Z) when Z is continuous; and optimal sampling selects subjects with 

extreme values of Y − μ(Z) var(X |Z) 1/2, where var(X | Z) is estimated from the simple 

random sample.

The results for the second set of studies are summarized in Table 2 and Supplementary 

Tables S2–S3. In general, the designs that do not require a simple random sample at the 

beginning of the second phase are more efficient than those that do. Among designs that 

contain a simple random sample, the design that adopts the optimal sampling rule Rlinear
opt   to 

select the remaining subjects in the second phase is the most efficient.

In the third set of simulation studies, we considered a binary outcome. We generated X and 

Z in the same manner as in the first set of studies, except that we considered different values 

of E(Z). We simulated the outcome from the logistic model logit {Pr(Y = 1 | X,Z)} = a + βX 
+ γZ, where we used α to control E(Y). We considered both common and rare outcomes. 

For a common outcome, we let E(Y) = 0.3 and varied E(Z) from 0.3 to 0.7. We set n = 10, 

000 and defined two strata according to the values of Z. We set n2 = 400 and compared the 

optimal design with case-control sampling, which selected 200 cases and 200 controls, and 

stratified case-control sampling, which selected 100 cases and 100 controls from each 

stratum. For a rare outcome, we set n = 4000, E(Y) = 0.14, and E(Z) = 0.1, mimicking the 

“rare disease and rare exposure” scenario described in Breslow and Chatterjee (1999). We 

compared the optimal design with case-control sampling and stratified case-control 

sampling, both of which select all cases and an equal number of controls in the second 

phase.

The results for the third set of studies are summarized in Table 3 and Supplementary Tables 

S4–S5. When var(X | Z) is a constant and γ = 0, all designs are equally efficient. When γ ≠ 

0, stratified case-control sampling and optimal design are more efficient than case-control 

sampling, and the efficiency gain increases as γ increases. In addition, the similar 

efficiencies between stratified case-control sampling and optimal design confirm that the 

stratum size is irrelevant to the design efficiency. When var(X | Z) is a non-trivial function of 

Z, the optimal design is substantially more efficient than the other two designs. Stratified 
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case-control sampling can be less efficient than case-control sampling when var(X | Z) is 

larger in the more prevalent stratum. These results disprove the common belief that it is 

always desirable to pursue an equal number of subjects per stratum.

In the last set of simulation studies, we considered a potentially censored event time. We 

generated X and Z in the same manner as in the first set of studies. We generated T from the 

Weibull proportional hazards model with cumulative hazard function 0.1t0.7 exp(βX + γZ). 

In addition, we generated the censoring time C from a Uniform(0,c1) distribution, where c1 

= 1or 5, yielding 85% to 94% or 64% to 84% censoring, to be referred to as high and 

moderate censoring rates, respectively. We set the cohort size n = 2000. In the case of 

moderate censoring rate, we set n2 = 400 and compared the optimal design with four 

sampling strategies that select a subset of cases: case-cohort sampling (Cai and Zeng, 2007) 

selects 200 cases and 200 controls; stratified case-cohort sampling (Borgan et al., 2000) 

selects 100 cases and 100 controls from each of the two strata; general failure-time outcome-

dependent sampling (Ding et al., 2014) selects 100 cases with the largest and 100 cases with 

the smallest observed event times in addition to a subcohort of 200 subjects; and Y-

dependent sampling (Lawless, 2018) selects the 200 smallest observed event times and the 

200 largest censored observations. In the case of high censoring rate, we compared the 

optimal design with four sampling strategies that select all cases and an equal number of 

controls in the second phase: case-cohort sampling (Prentice, 1986); stratified case-cohort 

sampling; nested case-control sampling (Thomas, 1977) with one control for each observed 

event time; counter-matching (Langholz and Borgan, 1995), which selects one control with 

Z = 0 for each case with Z = 1 and vice versa; and Y-dependent sampling.

The results for the last set of studies are summarized in Table 4 and Supplementary Tables 

S6–S7. The optimal design is much more efficient than the other designs in most situations. 

The Y-dependent sampling design is as efficient as the optimal design when var(X | Z) is a 

constant and γ = 0. In this situation, Dμ = Δ − Λ(T ), which is a monotone function of T . 

Therefore, selecting the smallest observed event times and the largest censored observations 

is equivalent to selecting subjects with the largest and smallest values of Dμ, respectively.

4. APPLICATIONS

4.1. National Heart, Lung, and Blood Institute Exome Sequencing Project

The National Heart, Lung, and Blood Institute Exome Sequencing Project was designed to 

identify genetic variants in all protein–coding regions of the human genome that are 

associated with heart, lung, and blood disorders. The project performed whole-exome 

sequencing on 4494 subjects from seven large cohorts and consisted of several studies, each 

focusing on a particular outcome (Lin et al., 2013). The majority of the studies adopted two-

phase designs. For example, the study on body mass index selected 659 subjects with body 

mass index less than 25kg / m2 or greater than 40kg / m2. The study on blood pressure 

selected 806 subjects from the upper and lower 0.2% to 1.0% of the blood pressure 

distribution adjusted for age, gender, race, body mass index, and anti-hypertensive 

medication. The study on low-density lipoprotein cholesterol selected 657 subjects with 

extremely high or low values of low-density lipoprotein cholesterol adjusted for age, gender, 
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race, and lipid medication. In addition to the two-phase studies, the project obtained a simple 

random sample of 964 subjects with measurements on a common set of phenotypes, referred 

to as the “deeply phenotyped reference”. We used this deeply phenotyped reference to 

evaluate the efficiencies of two-phase designs.

We considered log-transformed body mass index as the outcome of interest and included 

age, gender, race, and cohort indicators as inexpensive covariates. We restricted our analysis 

to the 43,245 single-nucleotide polymorphisms (SNPs) with minor allele frequencies greater 

than 5%. We chose the additive genetic model, under which the genetic variable codes the 

number of minor alleles that a subject carries at a variant site. We set n2 = 300 and 

considered three sampling strategies: outcome-dependent sampling; residual-dependent 

sampling; and optimal sampling. The probability-dependent sampling design (Zhou et al., 

2014) is not applicable because it does not allow discrete expensive covariates. Because age, 

gender, and cohort indicators are independent of SNPs, we only need to estimate the 

conditional variance of the genetic variable given race when implementing the optimal 

design. Because this conditional variance depends on the genetic variable, the optimal 

sampling rule is specific to each SNP.

Figure 1 compares the estimates of the genetic effects and the standard error estimates 

among the three two-phase designs and the full-data analysis. The effect estimates are 

similar among the three two-phase designs and are close to those of the full-data analysis. 

The standard error estimates under the optimal design tend to be smaller than those under 

residual-dependent sampling, which tend to be smaller than those under outcome-dependent 

sampling. These results show that residual-dependent sampling can yield more precise 

genetic effect estimates and higher power than outcome-dependent sampling for genome-

wide association studies, and the optimal design can be more efficient than residual-

dependent sampling for candidate-gene studies.

4.1. National Wilms’ Tumor Study

The National Wilms’ Tumor Study Group conducted a series of studies on Wilms’ tumor, 

which is a rare childhood kidney cancer. We used data on 4028 patients from the group’s 

third and fourth clinical trials (D’angio et al., 1989; Green et al., 1998) to evaluate the effects 

of tumor histological type, stage, and age at diagnosis on disease relapse. The censoring rate 

was approximately 86%. This dataset was analyzed previously by Breslow and Chatterjee 

(1999).

Each tumor’s histological type was assessed by both a local pathologist and an experienced 

pathologist from a central facility. The latter assessment tends to be more accurate but is 

more expensive and time-consuming. If a two-phase design had been adopted to assess 

histological type at the central facility for only a small subset of patients, then the cost of the 

trials would have been drastically reduced. In fact, several follow-up studies by the National 

Wilms’ Tumor Study Group adopted the nested case-control design (Green et al., 2001; 

Warwick et al., 2010).

We defined two strata according to unfavorable versus favorable local histological 

assessment. We considered two scenarios with different values of n2. In the first scenario, we 
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set n2 = 400 and considered five sampling strategies: case-cohort sampling; stratified case-

cohort sampling; general failure-time outcome-dependent sampling; Y-dependent sampling; 

and optimal sampling. To ensure model identifiability and numerical stability, we required 

the second-phase sample size for each stratum to be greater than 60 under the optimal 

design. Because var(X | Z) is larger among patients with unfavorable local histological 

assessment than those with favorable local histological assessment, with values of 0.152 

versus 0.034, we ended up selecting 156 cases and 184 controls with unfavorable local 

histological assessment and 30 cases and 30 controls with favorable local histological 

assessment. In the second scenario, we set n2 = 1142 and compared the optimal design with 

case-cohort sampling, stratified case-cohort sampling, nested case-control sampling, 

counter-matching, and Y-dependent sampling. These designs selected all 571 cases in the 

second phase. The optimal design selected all patients, 156 cases and 250 controls, with 

unfavorable local histological assessment and 368 cases and 368 controls with favorable 

local histological assessment.

Table 5 shows the estimation results for the proportional hazards model under the two-phase 

designs and the full-cohort analysis. The log hazard-ratio estimates under most two-phase 

designs are close to their full-cohort counterparts. The effect of local histological assessment 

is not significant after adjusting for central histological assessment. The standard error 

estimate of central histological assessment under the optimal design is smaller than that 

under the other two-phase designs. These results are consistent with our theoretical and 

simulation results.

5. DISCUSSION

As mentioned in Section 1, the existing literature on two-phase studies is concerned 

primarily with the inference procedures rather than the design aspects. In particular, Tao et 

al. (2017) studied efficient inference under two-phase sampling but did not consider design 

efficiency at all. To investigate design efficiency, one has to know exactly how the design 

parameter affects the efficiency bound. To this end, Theorem 1 provides for the first time an 

explicit form for the efficiency bound. It reveals an important fact that the efficiency depends 

on the conditional variance of the expensive covariate given inexpensive covariates. 

Theorem 2, together with Corollaries 1 and 2, provides the optimal sampling rules for two-

phase studies. No such result exists in the literature, despite extensive prior research on two-

phase studies. Indeed, our work shows that the commonly used two-phase designs are not 

optimal. The proofs of Theorems 1 and 2 and Corollaries 1 and 2 require considerable 

technical innovation.

As shown in Section 2.4, the optimal design for linear regression does not need to stratify on 

Z. The optimal designs for logistic regression and proportional hazards regression do not 

need to stratify on Z when γ = 0 and var(X | Z) is a constant. In other situations, we need to 

divide Z into a few strata when implementing the “optimal” design. Discretizing Z is a 

common practice to facilitate implementation of two-phase studies. The resulting design 

should converge to the optimal one as the number of strata increases.
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The efficiency bound under the condition of β = o(1) is of practical importance because 

design efficiency matters the most when β is small, and it provides a good approximation to 

the efficiency bound for large β, as confirmed by our numerical studies. In the simulation 

studies, we considered β as large as 0.5, which corresponds to 50% of the error variance, 

odds ratio of 1.65, and hazard ratio of 1.65 under the linear, logistic, and proportional 

hazards models, respectively. For the National Heart, Lung, and Blood Institute Exome 

Sequencing Project, the estimates of the genetic effects on standardized log-transformed 

body mass index range from −0.39 to 0.32. For genetic studies with binary traits, the odds 

ratio estimates are rarely larger than 1.3 (Schizophrenia Working Group of the Psychiatric 

Genomics Consortium, 2014; Xue et al., 2018). Thus, the values of β is our simulation 

studies cover the typical values in genetic studies, for which two-phase designs are most 

commonly adopted. For the National Wilms’ Tumor Study, the hazard ratio for central 

histology is 4.24. In all these situations, the proposed designs are more efficient than the 

existing designs.

Our theory does not require every study subject to have a positive probability of being 

selected in the second phase and thus can accommodate the outcome-dependent sampling 

and residual-dependent sampling described in Lin et al. (2013), the Y-dependent sampling 

proposed by Lawless (2018), and the optimal design. Naturally, we can estimate only the 

parameters that are informed by the observed data. For example, if we sample only from the 

extreme tails of the outcome distribution, then we cannot nonparametrically identify the 

distribution in the middle, although we can estimate the regression parameters. The existing 

semiparametric efficiency theory with missing data (Robins et al., 1995) requires positive 

selection probability for every study subject, so as to identify all parameters.

We evaluated the efficiencies of existing two-phase designs and developed optimal designs. 

A closely-related problem is to calculate the power and sample size for a specific design. 

The variance formula given in (2) can be used for power and sample size calculations under 

any two-phase design, provided that the first-phase data and the first and second moments of 

the conditional distribution of X given Z are available.

We focused on the main effect of X. If the primary interest lies instead in the interactions 

between X and Z, then we can include those interactions in the linear predictor μ(X,Z) and 

derive the corresponding optimal designs. In this case, the design efficiency for logistic 

regression may depend on stratum sizes even when var(X | Z) is a constant.

We assumed that X is a scalar. For multivariate X, var(Dμ | R = 1,Z) is still a scalar, whereas 

var(X | Z) becomes a matrix. We can still use Theorem 1 to calculate Vβ for any two-phase 

design. The added complexity lies in the estimation of var(X | Z). We can define the design 

efficiency based on the trace or determinant of Vβ, with the corresponding optimal designs 

being “A-optimal” or “D-optimal”, respectively. Optimality criteria have been discussed in 

the design of experiments literature; see Fedorov and Leonov (2013). The use of different 

optimality criteria, such as the determinant, trace, or eigenvalues of the covariance matrix, 

can yield different optimal designs, and which should be chosen in practice depends on the 

scientific question of interest. Because var(Dμ | R = 1,Z) is a scalar, the optimal designs still 

select subjects with the largest or smallest values of Dμ in each stratum of Z and favors the 
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strata with the largest values of the trace or determinant of var(X | Z). Theorem 2 and 

Corollaries 1 and 2 with multivariate X can be derived similarly to the case of a scalar X.

Some of the early research on two-phase designs was concerned with the main effects of Z, 

with X as an expensive confounder, and the inference procedures were typically based only 

on the second-phase data (White, 1982; Breslow and Cain, 1988). Because our efficient 

inference procedures utilize the data on Z for all study subjects, our estimator of γ under any 

two-phase design is essentially as efficient as the maximum likelihood estimator based on 

the full data.

We dealt with a single outcome. In large-scale cohort studies and electronic heath record 

systems, a number of potentially correlated outcomes are observed. An interesting topic of 

investigation is the optimal two-phase design when multiple continuous outcomes are of 

equal importance. Tao et al. (2015) considered two multivariate outcome-dependent 

sampling designs: the first design selects an equal number of subjects from the upper and 

lower tails of each outcome distribution; the second design selects subjects from one tail of 

each outcome distribution and uses a random sample as a common comparison group. 

Although their simulation results indicated that the first design is more efficient than the 

second one, it is unclear whether or not this conclusion holds broadly. Another interesting 

topic is the optimal design when the outcome is longitudinal repeated measures (Schildcrout 

et al., 2013). Our framework can be used to derive optimal designs for studies with multiple 

or longitudinal outcomes.
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APPENDIX:: Technical Details

Let Sη(h1) denote the score for η along the submodel ϵ → ηϵ(h1) for one complete Let 

observation (Y, X, Z), where h1 is the tangent direction along this submodel in that dηϵ(h1) / 

dϵ|ϵ=0 = h1, and η0(h1) = η. Let Uθ denote the score for θ,Uη(h1) denote the score for η 
along the submodel ηϵ(h1), and Uf (h2) denote the score for f along the submodel {1 + 

ϵh2(x, z)}f(x, z) under the two-phase design, where h2 belongs to 

L2
0(f) = ℎ:∫ ℎ fdxdz = 0, ∫ ℎ2 fdxdz < ∞ . Clearly,

Uθ = RDμ 1, X, ZT T + (1 − R)E Dμ 1, X, ZT T|Y , Z ,
Uη ℎ1 = RSη ℎ1 + (1 − R)E Sη ℎ1 |Y , Z ,
Uf ℎ2 = Rℎ2(X, Z) + (1 − R)E ℎ2(X, Z) |Y , Z .

The information operator is
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Uθ*Uθ Uθ*Uη Uθ*Uf
Uη*Uθ Uη*Uη Uη*Uf
Uf*Uθ Uf*Uη Uf*Uf

,

where Uθ*, Uη* and Uf* are the adjoint operators of Uθ, Uη, and Uf, respectively. where β = 0, 

Dμ and Sη(h1) do not depend on X, and the calculations of the information operators can be 

simplified greatly. We utilize this property to derive the semiparametric efficiency bound of 

estimating β under general two-phase designs.

Let θ0, η0, and f0 be the true values of θ, η, and f, respectively. We impose the following 

regularity conditions:

Condition A.1. The set of covariates (X, Z) has bounded support.

Condition A.2. If there exist two sets of parameters (θ1, η1, f1) and (θ2, η2, f2) such 

that

pθ1, n2(Y |X, Z)f1(X, Z) = pθ2, n2(Y |X, Z)f2(X, Z),

where (Y, X, Z) lies in C = (y, x, z):Pr(R = 1|y, z) > 0 , then θ1 = θ2, η1 = η2, and f1 

= f2. In addition, if there exists a constant vector v such that

∂log pθ0, η0 y1 |x, z /pθ0, η0 y2 |x, z / ∂θ Tv = 0

for any yi, x, z ∈ C(i = 1, 2), then ν = 0.

Condition A.3. The density function f0 is positive in its support and q-times 

continuously differentiable with respect to a suitable measure, where q > dz / 2, and 

dz is the dimension of Z.

Condition A.4. The function E(R | Y, Z) is q-times continuously differentiable with 

respect to Z in its support.

Remark A.1. Conditions A.1–A.4 correspond to Conditions (C.1)–(C.4) in Tao et al. (2017); 

see Remark S.1 in Tao et al. (2017) for discussion of these conditions.

Because α, β, and γ can be perturbed independently, we can write Uθ*Uθ as

Uα*Uα Uα*Uβ Uα*Uγ
Uβ*Uα Uβ*Uβ Uβ*Uγ
Uγ*Uα Uγ*Uβ Uγ*Uγ

,

where Uα, Uβ and Uγ denote the scores for α, β, and γ, respectively, and Uα*, Uβ* and Uγ*

denote the adjoint operators of Uα, Uβ and Uγ, respectively. We state and prove the 

following two lemmas, which will be used in the proof of Theorem 1.
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Lemma A.1. When β = 0, the information operators for (θ, η, f) are

Uα*Uα = E Dμ2 , Uγ*Uγ = E Dμ2ZZT , Uα*Uγ = E Dμ2ZT ,

Uα*Uβ = E Dμ2E(X |Z) , Uβ*Uγ = E Dμ2E(X |Z)ZT ,

Uβ*Uβ = E Dμ2E(X |Z)2 + E RDμ2 var(X |Z) ,

Uα*Uη ℎ1 = E DμSη ℎ1 , Uγ*Uη ℎ1 = E DμZSη ℎ1 ,

Uβ*Uη ℎ1 = E DμE(X |Z)Sη ℎ1 , Uη*Uη ℎ1 = Sη*Sη ℎ1 ,

Uα*Uf ℎ2 = 0, Uγ*Uf ℎ2 = 0, Uη*Uf ℎ2 = 0,

Uβ*Uf ℎ2 = E E RDμ |Z X − E(X |Z) ℎ2(X, Z) ,

Uf*Uf ℎ2 = E(R |Z)ℎ2(X, Z) + E(1 − R |Z)E ℎ2(X, Z) |Z ,

where Sη* is the adjoint operator of Sη.

Proof of Lemma A.1. The calculations of the information operators follow from the 

derivations in the proof of Theorem S.2 in Tao et al. (2017) and the fact that Y and R are 

independent of X conditional on Z when β = 0. ■

Lemma A.2. Let M2 = Uf Uf*Uf
−1Uf* be the projection operator onto the score space of f. 

Suppose that h3 belongs to L2
0(P), where P is the probability measure indexed by (θ, η, f). 

When β = 0 and Conditions A.1–A.4 hold,

M2ℎ3 = RE(R |Z)−1 E Rℎ3/X, Z − E Rℎ3 |Z + E ℎ3 |Z , (A.1)

where we define E(R | Z)−1 = 0 whenever E(R | Z) = 0.

Proof of Lemma A.2. We first derive Uf* ℎ3 . By the definition of adjoint operators,
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Uf ℎ2 , ℎ3 = ℎ2, Uf* ℎ3 , (A.2)

where 〈·,·〉 denotes the inner product in Hilbert space. Under β = 0, Y and R are independent 

of X given Z, such that the left side of equation (A.2) equals

E Rℎ2(X, Z) + (1 − R)E ℎ2(X, Z) |Z ℎ3(Y , X, Z)
= E E Rℎ3(Y , X, Z) |X, Z ℎ2(X, Z) + E E E (1 − R)ℎ3(Y , X, Z) |Z ℎ2(X, Z) |Z
= E E Rℎ3(Y , X, Z) |X, Z + E (1 − R)ℎ3(Y , X, Z) |Z ℎ2(X, Z) .

Thus,

Uf* ℎ3 = E Rℎ3(Y , X, Z) |X, Z + E (1 − R)ℎ3(Y , X, Z) |Z . (A.3)

Next, we calculate Uf*Uf
−1 ℎ2 . Assume, without loss of generality, that 

Uf*Uf
−1 ℎ2 = A(X, Z)ℎ2(X, Z) + B(X, Z)E ℎ2(X, Z) |Z , where A(X, Z) and B(X, Z) 

belong to L2(f) = {h: ∫ h2 fdxdz < ∞}. Clearly,

ℎ2(X, Z) = Uf*Uf
−1 Uf*Uf ℎ2

= A(X, Z) E(R |Z)ℎ2(X, Z) + 1 − E(R |Z) E ℎ2(X, Z) |Z + B(X, Z
)E E(R |Z)ℎ2(X, Z) + 1 − E(R |Z) E ℎ2(X, Z) |Z |Z
= A(X, Z)E(R |Z)ℎ2(X, Z) + A(X, Z) − A(X, Z)E(R |Z) + B(X, Z)
E ℎ2(X, Z) |Z .

(A.4)

Because equation (A.4) holds for all ℎ2 ∈ L2
0(f), we have A(X, Z) = E(R | Z)−1 and B(X, Z) 

= 1 – E(R | Z)−1. Thus,

Uf*Uf
−1 ℎ2 = E(R)(Z)−1ℎ2(X, Z) + 1 − E(R |Z)−1 E ℎ2(X, Z) |Z . (A.5)

By combining equations (A.3) and (A.5), we obtain

Uf*Uf
−1Uf* ℎ3 = E(R |Z)−1 E Rℎ3 |X, Z + E (1 − R)ℎ3 |Z

+ 1 − E(R |Z)−1 E E Rℎ3 |X, Z + E (1 − R)ℎ3 |Z |Z
= E(R |Z)−1 E Rℎ3 |X, Z − E Rℎ3 |Z + E ℎ3 |Z ,
M2ℎ3 = Uf Uf*Uf

−1Uf* ℎ3 = RE(R |Z)−1 E Rℎ3 |X, Z − E Rℎ3 |Z
+ E ℎ3 |Z .

(A.6)

This concludes the proof of Lemma A.2. ■

Proof of Theorem 1. By Lemma A.1, Uα*Uf ℎ2 = 0, U7*Uf ℎ2 = 0, and Uη*Uf ℎ2 = 0, i.e., 

the score space for (α, γ, η) and f are orthogonal when β = 0. Thus, the inverse of the 

efficiency bound for estimating β with one observation is
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Σ0 = Uβ*Uβ − M1Uβ, Uβ − M2Uβ, Uβ
= E Dμ

2E(X |Z)2 − M1Uβ, Uβ − M2Uβ, Uβ + E RDμ
2 var(X |Z) ,

(A.7)

where M1 is the projection operator onto the score space of (α, γ, η). Clearly,

M1 = Uα Uγ Uη

Uα*Uα Uα*Uγ Uα*Uη
Uγ*Uα Uγ*Uγ Uγ*Uη
Uη*Uα Uη*Uγ Uη*Uη

−1 Uα*
Uγ*
Uη*

, (A.8)

Σ1 = E Dμ2E(X |Z)2 − M1Uβ, Uβ .

We wish to calculate 〈M2Uβ,Uβ〉. By setting h3 = Uβ in Lemma A.2, we have

M2Uβ = RE(R |Z)−1 E RUβ |X, Z − E RUβ |Z + E Uβ |Z . (A.9)

We evaluate the expressions E(RUβ|X, Z), E(RUβ|Z), and E(Uβ| Z) on the right side of 

equation (A.9) as follows:

E RUβ |X, Z = E R RDμX + (1 − R)E DμX |Y , Z |X, Z
= E RDμ |Z X, (A.10)

E RUβ |Z = E E RUβ |X, Z |Z = E RDμ |Z E(X |Z), (A.11)

E Uβ |Z = E RDμX + (1 − R)E DμX |Y , Z |Z
= E RDμX + (1 − R)DμE(X |Z) |Z
= E RDμ + (1 − R)Dμ |Z E(X |Z)
= 0 .

(A.12)

By combining equations (A.9), (A.10), (A.11), and (A.12), we have

M2Uβ = RE(R |Z)−1E RDμ |Z X − E(X |Z) . (A.13)

In light of equation (A.13),

M2Uβ, Uβ = E RE(R |Z)−1E RDμ |Z X − E(X |Z)
RDμX + (1 − R)DμE(X |Z)

= E RE(R |Z)−1E RDμ |Z X − E(X |Z) RDμX
= E E(R |Z)−1E RDμ |Z E X2 − E(X |Z)X |Y , Z RDμ
= E E(R |Z)−1E RDμ |Z 2 var(X |Z) .

(A.14)

By combining equations (A.7), (A.8), and (A.14), we obtain
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∑0 = ∑1 + E E RDμ
2 |Z − E(R |Z)−1E RDμ |Z 2 var(X |Z)

= ∑1 + E R var Dμ |R = 1, Z var(X |Z) .
(A.15)

Because Σ0 is a continuous function of β, equation (A.15) continues to hold when β = o(1). 

Taking the inverse of both sides of equation (A.15) yields equation (2). ■

Proof of Theorem 2. By Theorem 1, for any fixed E(R | Z) = g > 0, we wish to find Pr(R = 1| 

Dμ, Z) that maximizes var(Dμ | R = 1, Z), which is equal to 

E RDμ
2 |Z /E(R |Z) − E RDμ |Z 2/E(R |Z)2. If we further fix E(RDμ | Z) = m, then this 

maximization is equivalent to maximizing E RDμ
2 |Z  subject to the constraints of E(R | Z) = 

g and E(RDμ | Z) = m. That is, we wish to find Pr(R = 1| Dμ, Z) that maximizes

∫dμdμ2Pr R = 1|Dμ = dμ, Z dF dμ |Z

subject to the constraints

∫dμ
Pr R = 1|Dμ = dμ, Z dF dμ |Z = g, (A.16)

∫dμ
dμPr R = 1|Dμ = dμ, Z dF dμ |Z = m . (A.17)

Using the method of Lagrange multipliers, we aim to maximize

∫dμ dμ2 − ξ1 − ξ2dμ Pr R = 1|Dμ = dμ, Z dF dμ |Z ,

where ξ1 and ξ2 are the Lagrange multipliers. By the arguments in the proof of the 

Neyman–Pearson lemma (Lehmann and Romano, 2005), we can show that

Pr Ropt = 1 |Dμ = dμ, Z =
1 if  dμ2 − ξ1 − ξ2dμ > 0,

cZ if  dμ2 − ξ1 − ξ2dμ = 0,
0 otherwise,

where cZ is a constant such that pr(Ropt = 1|Dμ = dμ, Z) satisfies constraints (A.16) and 

(A.17). This immediately leads to expression (5). ■

Proof of Corollary 1. Again, we appeal to the arguments in the proof of the Neyman–

Pearson lemma (Lehmann and Romano, 2005). Specifically, if R′ is another second-phase 

sampling rule that satisfies budget constraint (4), then
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E Rlinex 
opt  − R′ Y − μ(Z) 2 var(X |Z) − c0

2 ≥ 0

by the definition of Rlinear 
opt  . This inequality can be rewritten as

E Rlinex 
opt  Y − μ(Z) 2 var(X |Z) − E R′ Y − μ(Z) 2 var(X |Z)

≥ c0
2E Rlinear 

opt  − R′ = 0.

It follows that

E Rlinear 
opt  Y − μ(Z) 2 var(X |Z)

≥ E R′ Y − μ(Z) 2 var(X |Z) = E E R′ Y − μ(Z) 2 |Z var(X |Z)
≥ E R′ var(Y |R′ = 1, Z) var(X|Z) .

(A.18)

When β = 0, Y is independent of X given Z, and the conditional distribution of Y – μ(Z) 

given Z is symmetric about 0. Thus,

E Rlinear 
opt  Y − μ(Z) |Z = 0. (A.19)

By combining inequality (A.18) and equality (A.19), we obtain

E Rlinear
opt var(Y |R = 1, Z) var(X|Z) = E Rlinex 

opt  Y − μ(Z) 2 var(X /Z)
≥ E R′ var Y |R′ = 1, Z var(X |Z) .

That is, the second-phase sampling rule Rlinear 
opt   maximizes expression (3) over all rules R′ 

that satisfy budget constraint (4). ■

Proof of Corollary 2. To maximize expression (9), we first fix E(R | Z) ∈[0,1] and search for 

the value of E(R | Y = 1, Z) that maximizes

E(R |Y = 1, Z) E(R| Z) − E(R|Y = 1, Z)E(Y | Z) (A.20)

subject to the constraint

max 1 − 1 − E(R |Z)
E(Y |Z) , 0 ≤ E(R |Y = 1, Z) ≤ min E(R |Z)

E(Y |Z) , 1 . (A.21)

This constraint arises from the relationship

E(R|Z) = E(R|Y = 1, Z)E(Y |Z) + E(R|Y = 0, Z) 1 − E(Y |Z) (A.22)

and the fact that E(R | Y = 1, Z) and E(R | Y = 0, Z) are conditional probabilities. We 

consider two scenarios for E(R | Z).
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Scenario 1: E(R | Z) ≤ 2E(Y | Z). Let

E(R|Y = 1, Z) = E(R|Z)/ 2E(Y |Z) . (A.23)

By equation (A.22),

E(R|Y = 0, Z) = E(R|Z)/[2 1 − E(Y |Z) ] . (A.24)

Clearly, both E(R | Y = 1, Z) and E(R | Y = 0, Z) lie in [0,1], and E(R | Y = 1, Z) maximizes 

expression (A.20). Under this sampling rule, E(RY | Z) = E{R(1–Y) | Z}, so we should 

select an equal number of cases and controls in this stratum.

Scenario 2: E(R | Z) > 2E(Y | Z). The upper bound for E(R | Y =1, Z) in constraint (A.21) is 

one. Because E(R | Z)/ {2E(Y | Z)}>1, the maximum of expression (A.20) is attained when 

E(R | Y = 1, Z) = 1. By equation (A.22),

E(R |Y = 0, Z) = E(R|Z) − E(Y |Z)
1 − E(Y |Z) .

Clearly, E(RY | Z) < E{R(1 – Y) | Z}, so we should select all cases and a larger number of 

controls in this stratum.

By taking into account both scenarios, we see that expression (9) can be written as 

expression (11). We then search for the optimal E(R | Z) that maximizes expression (11) 

subject to budget constraint (4).

Now consider the special case when var(X | Z) is a constant and E(R) ≤ 2E(Y). We first 

show that there exists a design such that E(R | Z) ≤ 2E(Y | Z). In fact, if we define (z0 (= inf 

{(z (: 2Pr(Y = 1,(Z(>(z0 () ≤τ}, which is finite, then the design with E(R | Z = z) = 2E(Y | Z 
= z) for (z (>(z0 (and E(R| Z = z0) = τ − Pr(R = 1, (Z (>(z0 () satisfies the condition. For any 

such design, if we further let E(R | Y = 1, Z) = E(R | Z) / {2E(Y | Z)}, then the value of 

expression (11) equals constant var(X)τ / 4. On the other hand, expression (11) is bounded 

by var(X)τ / 4 because

E(Y |Z) 1 − E(Y |Z)
E(R |Z) ≤ E(R |Z)

4 .

Hence, any design that satisfies E(R | Z) ≤ 2E(Y | Z) and

E(R |Y = 1, Z) = E(R |Z)/ 2E(Y |Z)}

is optimal. ■
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Fig. 1. 
Estimates of the genetic effects, shown in the upper right triangle, and standard errors, 

shown in the lower left triangle, from the linear regression of the log-transformed body mass 

index on SNPs in the deeply phenotyped reference for the National Heart, Lung, and Blood 

Institute Exome Sequencing Project.
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Table 1

Simulation Results for Linear Regression With Discrete Covariates

Analytical Empirical Efficiency

standard error of β standard error of β relative to SRS

p0 p1 β γ SRS ODS RDS OPT SRS ODS RDS OPT ODS RDS OPT

0.7 0.7 0.0 0.0 0.109 0.052 0.052 0.052 0.109 0.053 0.053 0.053 4.23 4.24 4.24

0.5 0.109 0.058 0.052 0.052 0.109 0.058 0.053 0.053 3.53 4.24 4.24

1.0 0.109 0.080 0.052 0.052 0.109 0.081 0.053 0.053 1.83 4.24 4.24

0.3 0.0 0.108 0.052 0.052 0.052 0.108 0.054 0.054 0.054 3.96 3.95 3.95

0.5 0.108 0.057 0.052 0.052 0.108 0.060 0.054 0.054 3.21 3.95 3.95

1.0 0.108 0.078 0.052 0.052 0.108 0.082 0.054 0.054 1.71 3.95 3.95

0.5 0.0 0.107 0.051 0.051 0.051 0.104 0.057 0.057 0.057 3.31 3.31 3.31

0.5 0.107 0.056 0.051 0.051 0.104 0.062 0.057 0.057 2.77 3.31 3.31

1.0 0.107 0.076 0.051 0.051 0.104 0.083 0.057 0.057 1.55 3.31 3.31

0.5 0.9 0.0 0.0 0.122 0.058 0.058 0.055 0.122 0.059 0.058 0.055 4.35 4.37 5.01

0.5 0.122 0.064 0.058 0.055 0.122 0.065 0.058 0.055 3.50 4.37 5.01

1.0 0.122 0.089 0.058 0.055 0.122 0.090 0.058 0.055 1.82 4.37 5.01

0.3 0.0 0.120 0.058 0.057 0.054 0.117 0.059 0.060 0.055 3.89 3.87 4.51

0.5 0.120 0.067 0.057 0.054 0.117 0.068 0.060 0.055 3.02 3.87 4.51

1.0 0.120 0.096 0.057 0.054 0.117 0.095 0.060 0.055 1.53 3.87 4.51

0.5 0.0 0.119 0.057 0.056 0.053 0.110 0.061 0.061 0.056 3.19 3.23 3.82

0.5 0.119 0.068 0.056 0.053 0.110 0.070 0.061 0.056 2.45 3.23 3.82

1.0 0.119 0.099 0.056 0.053 0.110 0.097 0.061 0.056 1.29 3.23 3.82

0.1 0.5 0.0 0.0 0.122 0.058 0.058 0.055 0.123 0.059 0.059 0.055 4.36 4.36 5.00

0.5 0.122 0.064 0.058 0.055 0.123 0.066 0.059 0.055 3.52 4.36 5.00

1.0 0.122 0.088 0.058 0.055 0.123 0.091 0.059 0.055 1.82 4.36 5.00

0.3 0.0 0.120 0.058 0.05 0.054 0.118 0.060 0.060 0.056 3.88 3.87 4.40

0.5 0.12 0.067 0.057 0.054 0.118 0.068 0.060 0.056 3.03 3.87 4.40

1.0 0.120 0.096 0.057 0.054 0.118 0.096 0.060 0.056 1.52 3.87 4.40

0. 0. 0.11 0.05 0.05 0.05 0.11 0.06 0.06 0.05 3.18 3.19 3.72

5 0 9 7 6 3 0 2 2 7

0.5 0.119 0.068 0.056 0.053 0.110 0.071 0.062 0.057 2.43 3.19 3.72

1.0 0.119 0.099 0.056 0.053 0.110 0.097 0.062 0.057 1.28 3.19 3.72

NOTE: SRS, ODS, RDS, and OPT denote simple random sampling, outcome-dependent sampling, residual-dependent sampling, and optimal 
design, respectively. Each entry is based on 10,000 replicates.
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Table 2

Relative Efficiencies of Two-Phase Designs to Simple Random Sampling for Linear Regression With a 

Continuous Expensive Covariate

Without a simple With a simple

random sample random sample

Z κ β γ ODS RDS OPT ODS RDS PDS OPT

Bern(0.5) 0.0 0.0 0.0 4.41 4.40 4.40 3.24 3.24 2.44 3.22

0.5 3.55 4.40 4.40 2.82 3.24 2.44 3.22

1.0 1.88 4.40 4.40 2.12 3.24 2.44 3.22

0.3 0.0 2.57 2.60 2.60 2.29 2.30 1.93 2.28

0.5 2.14 2.60 2.60 2.08 2.30 1.93 2.28

1.0 1.37 2.60 2.60 1.74 2.30 1.93 2.28

0.5 0.0 1.30 1.30 1.30 1.48 1.49 1.41 1.48

0.5 1.12 1.30 1.30 1.42 1.49 1.41 1.48

1.0 0.85 1.30 1.30 1.32 1.49 1.41 1.48

−0.7 0.0 0.0 4.40 4.40 5.07 3.26 3.26 2.52 3.83

0.5 3.55 4.40 5.07 2.83 3.26 2.52 3.83

1.0 1.88 4.40 5.07 2.13 3.26 2.52 3.83

0.3 0.0 2.48 2.49 2.90 2.14 2.15 2.01 2.35

0.5 2.08 2.49 2.90 1.93 2.15 2.01 2.35

1.0 1.35 2.49 2.90 1.63 2.15 2.01 2.35

0.5 0.0 1.41 1.41 1.65 1.45 1.46 1.41 1.46

0.5 1.20 1.41 1.65 1.36 1.46 1.41 1.46

1.0 0.89 1.41 1.65 1.23 1.46 1.41 1.46

Unif(0, 1) 0.0 0.0 0.0 4.93 4.94 4.94 3.57 3.56 2.00 3.56

0.5 4.61 4.93 4.93 3.38 3.55 2.00 3.55

1.0 3.69 4.94 4.94 2.99 3.55 2.00 3.55

0.3 0.0 2.82 2.83 2.83 2.50 2.50 2.01 2.50

0.5 2.65 2.83 2.83 2.41 2.51 2.02 2.51

1.0 2.26 2.83 2.83 2.22 2.51 2.01 2.51

0.5 0.0 1.36 1.36 1.36 1.58 1.57 1.51 1.57

0.5 1.30 1.36 1.36 1.54 1.57 1.50 1.57

1.0 1.16 1.36 1.36 1.48 1.57 1.50 1.57

−0.7 0.0 0.0 4.92 4.92 5.06 3.57 3.56 1.85 3.79

0.5 4.60 4.92 5.06 3.38 3.56 1.86 3.79

1.0 3.69 4.92 5.06 2.99 3.56 1.85 3.79

0.3 0.0 3.18 3.21 3.40 2.68 2.67 1.86 2.77

0.5 2.99 3.20 3.39 2.55 2.67 1.86 2.76

1.0 2.55 3.21 3.39 2.36 2.67 1.86 2.76

0.5 0.0 1.82 1.82 1.96 1.86 1.86 1.69 1.85
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Without a simple With a simple

random sample random sample

Z κ β γ ODS RDS OPT ODS RDS PDS OPT

0.5 1.72 1.82 1.96 1.81 1.86 1.69 1.85

1.0 1.52 1.82 1.96 1.71 1.86 1.69 1.85

NOTE: ODS, RDS, PDS, and OPT denote outcome-dependent sampling, residual-dependent sampling, probability-dependent sampling, and 
optimal design, respectively. Each entry is based on 10,000 replicates.
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Table 3

Relative Efficiencies of Other Two-Phase Designs to Case-Control Sampling for Logistic Regression

Common disease Rare disease

E(Z) = 0.3 E(Z) = 0.5 E(Z) = 0.7 E(Z) = 0.1

p0 p1 β γ SCC OPT SCC OPT SCC OPT SCC OPT

0.7 0.7 0.0 0 0.98 1.00 1.03 1.04 0.97 1.00 0.99 0.98

1 1.04 1.05 1.08 1.10 1.03 1.07 1.05 1.05

2 1.23 1.27 1.30 1.29 1.18 1.19 1.17 1.17

0.3 0 0.96 1.01 1.04 1.05 0.97 1.00 1.01 1.03

1 1.04 1.07 1.09 1.07 1.05 1.03 1.06 1.05

2 1.24 1.28 1.22 1.26 1.17 1.19 1.18 1.19

0.5 0 0.99 1.01 1.02 1.00 1.01 1.04 1.01 0.99

1 1.08 1.10 1.05 1.07 1.04 1.07 1.05 1.03

2 1.28 1.33 1.23 1.26 1.13 1.15 1.14 1.12

0.5 0.9 0.0 0 0.84 1.20 1.02 1.45 1.25 1.77 0.97 1.02

1 0.90 1.29 1.15 1.66 1.44 2.04 0.99 1.10

2 1.10 1.64 1.56 2.18 1.71 2.51 0.95 1.10

0.3 0 0.83 1.19 1.00 1.47 1.27 1.85 0.97 1.05

1 0.91 1.31 1.16 1.65 1.45 2.08 0.99 1.08

2 1.11 1.56 1.52 2.17 1.82 2.62 0.96 1.10

0.5 0 0.82 1.23 1.02 1.50 1.29 1.95 1.01 1.06

1 0.92 1.31 1.14 1.72 1.47 2.16 0.98 1.07

2 1.12 1.58 1.57 2.18 1.86 2.75 0.96 1.09

0.1 0.5 0.0 0 1.22 1.80 0.98 1.46 0.85 1.21 1.01 1.02

1 1.29 1.90 0.99 1.47 0.86 1.22 1.16 1.22

2 1.52 2.10 1.12 1.58 0.90 1.28 1.55 1.56

0.3 0 1.20 1.73 1.01 1.46 0.84 1.20 1.01 1.04

1 1.29 1.84 1.01 1.41 0.84 1.17 1.16 1.24

2 1.58 2.19 1.10 1.58 0.87 1.23 1.46 1.50

0.5 0 1.22 1.74 0.98 1.37 0.84 1.16 1.02 1.06

1 1.27 1.80 1.00 1.41 0.87 1.20 1.16 1.23

2 1.53 2.11 1.16 1.58 0.89 1.23 1.41 1.43

NOTE: SCC and OPT denote stratified case-control sampling and optimal design, respectively. Each entry is based on 10,000 replicates.
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Table 4

Relative Efficiencies of Other Two-Phase Designs to Case-Cohort Sampling Under the Proportional Hazards 

Model

High censoring rate Moderate censoring rate

p0 p1 β γ SCC NCC CM YDS OPT SCC ODS YDS OPT

0.7 0.7 0.0 0.0 1.01 1.01 0.97 1.06 1.07 1.02 0.99 1.35 1.36

0.5 1.02 1.02 0.95 1.08 1.12 1.02 1.01 1.44 1.50

1.0 1.11 1.07 0.90 1.17 1.28 1.07 1.01 1.58 1.94

0.3 0.0 1.02 1.02 1.00 1.09 1.10 1.00 1.00 1.38 1.41

0.5 1.05 1.03 0.98 1.13 1.16 1.02 1.00 1.50 1.56

1.0 1.06 1.04 0.87 1.12 1.23 1.02 0.98 1.62 2.00

0.5 0.0 1.00 1.03 1.02 1.11 1.11 1.01 0.98 1.43 1.43

0.5 1.01 1.02 0.97 1.11 1.14 0.99 0.93 1.52 1.60

1.0 1.03 1.03 0.90 1.14 1.24 1.04 0.93 1.65 2.05

0.5 0.9 0.0 0.0 0.99 1.03 1.04 1.08 1.18 0.99 0.97 1.34 1.62

0.5 0.96 1.03 1.03 1.09 1.13 1.05 0.97 1.39 1.69

1.0 0.96 1.03 0.99 1.12 1.15 1.13 0.99 1.50 1.82

0.3 0.0 0.97 1.02 1.02 1.08 1.17 1.02 0.98 1.37 1.74

0.5 0.95 1.05 1.07 1.14 1.14 1.10 1.00 1.48 1.87

1.0 0.95 1.04 1.01 1.15 1.15 1.13 0.95 1.50 1.84

0.5 0.0 0.98 1.01 1.05 1.11 1.17 1.07 0.98 1.45 1.90

0.5 0.93 1.04 1.05 1.12 1.12 1.13 0.98 1.51 1.99

1.0 0.93 1.02 0.98 1.14 1.12 1.17 0.94 1.51 1.89

0.1 0.5 0.0 0.0 0.97 1.01 0.99 1.06 1.14 0.99 0.95 1.30 1.56

0.5 1.06 1.02 0.93 1.09 1.26 0.98 0.94 1.46 1.86

1.0 1.22 1.06 0.82 1.15 1.43 0.96 0.93 1.63 2.33

0.3 0.0 1.01 0.99 0.98 1.06 1.13 1.02 0.96 1.38 1.62

0.5 1.06 1.05 0.92 1.09 1.26 0.98 0.90 1.49 1.90

1.0 1.19 1.05 0.81 1.17 1.43 1.01 0.94 1.78 2.50

0.5 0.0 1.03 1.03 1.02 1.10 1.17 0.96 0.93 1.40 1.61

0.5 1.10 1.05 0.94 1.14 1.28 1.00 0.91 1.58 2.00

1.0 1.17 1.07 0.81 1.18 1.44 1.00 0.92 1.73 2.43

NOTE: SCC, NCC, CM, ODS, YDS, and OPT denote stratified case-cohort sampling, nested case-control sampling, counter-matching, general 
failure-time outcome-dependent sampling, Y-dependent sampling, and optimal design, respectively. Each entry is based on 10,000 replicates.
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