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Abstract

Technical challenges associated with telomere length (TL) measurements have prompted concerns 

regarding their utility as a biomarker of aging. Several factors influence TL assessment via qPCR, 

the most common measurement method in epidemiological studies, including storage conditions 

and DNA extraction method. Here, we tested the impact of power supply during the qPCR assay. 

Momentary fluctuations in power can affect the functioning of high-performance electronics, 

including real-time thermocyclers. We investigated if mitigating these fluctuations by using an 

uninterruptible power supply (UPS) influenced TL assessment via qPCR. Samples run with a UPS 

had significantly lower standard deviation (p < 0.001) and coefficient of variation (p < 0.001) 

across technical replicates than those run without a UPS. UPS usage also improved exponential 

amplification efficiency at the replicate, sample, and plate levels. Together these improvements 

translated to increased performance across metrics of external validity including correlation with 

age, within-person correlation across tissues, and correlation between parents and offspring.
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1. Introduction

Telomeres, the repetitive nucleoprotein regions at chromosome ends, are hallmarks of 

biological aging (Lopez-Otin et al., 2013). Large population studies have associated shorter 
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telomere length (TL) with a range of risk factors that predict health problems and shorter life 

expectancy (Wang et al., 2018). Even so, technical challenges with TL measurement have 

led to questions regarding their utility as a biomarker of aging (e.g. Hastings et al., 2017).

The most common approach to quantify TL in epidemiological studies is quantitative-PCR 

(qPCR), which expresses telomeric content relative to a single copy gene (Cawthon, 2002). 

In addition to concerns of being less precise than measures generated by Southern Blot 

(Aubert et al., 2012), TL measurement via qPCR is subject to influence by several pre-

analytical factors including DNA extraction method (Cunningham et al., 2013), sample 

storage conditions (Dagnall et al., 2017), and analytical factors such as PCR mastermix 

(Jiménez & Forero, 2018) and well position on plate-based thermocyclers (Eisenberg et al., 

2015). However, whether power supply during the qPCR assay influences TL measurement 

has remained unconsidered.

Momentary fluctuations in power can affect the functioning of high-performance electronics, 

including real-time thermocyclers. These fluctuations can be mitigated by using an 

uninterruptible power supply (UPS), an apparatus capable of supplying constant, 

uninterrupted voltage (Aamir et al., 2016). The current study investigated if UPS usage 

influenced TL assessment via qPCR across a range of technical and external validity 

metrics.

2. Methods

2.1. DNA Extraction and Telomere Length Assessment

Whole blood and buccal epithelial cells were collected from 26 grandmothers (age 52.6–

72.2), 106 mothers (age 29.1–43.6) and 126 children (45.4% male; age 0.5–24.9). DNA for 

TL analyses was extracted from buffy coat (N = 94; 12 grandmothers, 79 mothers, & 3 

children) and buccal epithelial cells (N = 271; 26 grandmothers, 116 mothers, & 129 

children; dataset included multiple time points for 10 mothers and 3 children) using QIAamp 

DNA Mini Kits (Qiagen, Germany). DNA purity and quality was assessed using 260/230 

and 260/280 ratios, but no exclusionary criteria was imposed prior to assays. DNA was 

stored at −80°C until TL analysis. All TL assays were performed by WJH on a Qiagen 

Rotor-Gene Q thermocycler, using a qPCR protocol adapted from Cawthon (2002). Each 

telomere assay comprised two qPCR runs, one run quantifying telomere content (T) and a 

second run quantifying genome copy number (S) using the single copy gene 36B4. Detailed 

descriptions of sample handling and processing, as well as details regarding qPCR assay and 

quality control are summarized in the supplemental material in accordance with guidelines 

recommended by the Telomere Research Network (https://trn.tulane.edu/wp-content/

uploads/sites/445/2020/08/TRN-Reporting-Guidelines-updated.pdf). The same DNA aliquot 

was used for T and S runs. Each run hosted triplicate reactions of 22 samples, 5 standards, 

and 6 positive controls on 100 well disks.

Telomere length was quantified as the T/S ratio, which was calculated as T /S =
ETCtT

ESCtS

−1
, 

where ET/S is the efficiency of exponential amplification for the telomere or single copy 
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gene respectively, and CtT/S is the cycle at which a given replicate targeting telomeric 

content or the single copy gene reaches the critical threshold of fluorescence detection. A 

serial dilution of five standards were used to identify a critical threshold of detection for 

extraction of CtT/S values. Estimates of amplification efficiency at the replicate, sample, and 

plate levels used data generated from LinRegPCR (Ramakers et al., 2003). T/S ratios were 

calculated using plate-level efficiencies, which have been shown to decrease bias and 

variability in qPCR data (Ruijter et al., 2009).

2.2. Sample Overview and Statistical Analyses

The present work summarizes data generated from TL assessments of 2,221 replicate 

reactions across 34 qPCR runs (17 T & 17 S) as part of a larger investigation into 

intergenerational transmission of trauma, as previously reported (Etzel et al., 2020). Sample-

level analyses used the standard deviation and coefficient of variation across replicate CtT/S 

values, natural log transformed T estimates (Ln ET
CtT ), and natural log transformed S 

estimates (Ln ES
CtS ). Due to potential differences in reaction chemistry, telomere and 

single copy gene reactions were analyzed independently. A full break down of sample flow 

and subsets used in each analysis is provided in Figure 1. Results described in the main text 

represent combined analyses of leukocyte and buccal samples. Independent analyses within 

each tissue are reported in Supplemental Tables S1–S5. Two telomere samples failing to 

reach the threshold of detection were removed from analyses. A UPS (Back-UPS Pro 700; 

APC) was utilized on approximately half of the runs (N = 18; 9 T & 9 S). All samples which 

had T run with the UPS also had their corresponding S reaction also run with the UPS. The 

runs utilizing the UPS were situated within the middle of the assays (i.e., 5 T runs and 5 S 

runs without the UPS followed by 9 T runs and 9 S runs using the UPS followed by 4 T runs 

and 4 S runs without the UPS). Differences in group means were assessed using t-tests. 

Homogeneity of variances between reactions assessed with and without the UPS was tested 

using Levene’s test. In instances where group variances were significantly different, the 

Welch t test was conducted in lieu of the Student’s t test (Welch, 1947).

To better understand how UPS usage would influence the findings derived from telomere 

length data, we compared how samples assessed on runs with and without a UPS varied in 

their correlation between T/S ratio and external validity metrics including age, across-tissue 

within person, and among parents and offspring (Eisenberg, 2016). Differences in T/S ratio 

correlation coefficients were evaluated based on overlap of 83.4% confidence intervals 

(Knol et al., 2011). Samples with T/S ratios more than 3 standard deviations above the mean 

were marked as outliers and removed from analyses (N(+)UPS = 5; N(−)UPS = 4). Statistical 

analyses were conducted with IBM SPSS Statistics 26. Sample size estimates for reported 

power calculations were performed in Stata 15.1 using the ‘power onecorrelation’ command 

with power = 0.80 and α = 0.05, and effect size equal to the observed correlation coefficient.

3. Results

The standard deviation and coefficient of variation were significantly lower across replicate 

CtT values and natural log transformed T estimates for samples assessed on runs utilizing a 

UPS relative to those run without a UPS (Figure 2A;Table 1:). Estimates of amplification 

Hastings et al. Page 3

Exp Results. Author manuscript; available in PMC 2021 March 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



efficiency at the replicate, sample, and plate level were also significantly improved on runs 

using a UPS, situating them closer to desired population doubling (Figure 3A; Table 1:). 

Similar patterns were observed for reactions targeting the single copy gene (Figure 

2B;Figure 3B;Table 2:).

UPS status improved all metrics assessing the external validity of T/S ratios (Table 3:). 

Within-person, cross-tissue correlations were significantly higher for samples assessed with 

a UPS relative to those without. The correlation between age and T/S ratios and between 

parent and offspring T/S ratios were also improved for samples assessed with a UPS, but not 

to a significant extent. Similar patterns were observed when leukocyte and buccal samples 

were analyzed independently (Supplemental Table S5).

To explore power gains yielded from using the UPS, we compared the sample sizes needed 

to distinguish UPS versus no-UPS TL external validity correlates as significantly different 

from zero (α = 0.05, power = 0.80.) For example, to detect the correlation of TL across 

tissues without a UPS (r = 0.62) requires a sample size of 18, while a sample of 7 is required 

to detect to detect with a UPS (r = 0.92). This equates to being able to detect a significant 

effect with a 61% smaller sample size. Using the same procedure for age and parent-

offspring correlations yields estimates of 25% and 8% smaller samples, for an average 

ability to detect an effect with a 31% smaller sample.

4. Conclusions

TL assessment via qPCR is subject to bias from a host of analytical and pre-analytical 

factors (reviewed in Lin et al., 2019), leading some to challenge the utility of telomeres as a 

biomarker of aging (Boonekamp et al., 2013). Nevertheless, TL measurement via qPCR 

remains widely used in epidemiological research. Thus, elucidating measurement practices 

which enhance reproducibility and precision is of great interest.

Our results demonstrate substantial improvements to qPCR assay precision and measures of 

external validity through the utilization of an uninterruptible power supply. Further, findings 

suggest utilization of a UPS increases power in a manner equivalent to a 31% increase in 

sample size, although the degree of such improvement may differ with the baseline electric 

power quality and type of thermocycler employed. We frame our findings in the context of 

literature on TL assessment given the aim of the assays comprising our sample. However, 

the results are likely applicable to qPCR more broadly, and demonstrate the importance of 

considering power supply when conducting biological assays that rely on high performance 

electronics.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Sample flow and subsets used for analyses.
1A. 2,221 replicate reactions comprising the full sample. 1B. Replicate reactions were 

distinguished by amplification target and analyzed separately due to concerns in reaction 

chemistry. Replicate reactions were used in analyses of replicate level efficiencies as a 

function of UPS utilization. 1C. Technical replicates were clustered by sample ID for 

analyses of standard deviation and coefficient of variation across replicate level efficiencies, 

replicate T-estimates, and replicate S-estimates. Differences in sample level efficiencies, 

calculated as the average efficiency across replicates, were also conducted within this 

subsample. The two additional data points for single copy gene data correspond to the two 

telomere samples that did not amplify as described in main text. 1D. Calculated T-estimates 

and S-estimates were used to calculate T/S values for 363 samples. Original T/S values for 

the 9 samples that were rerun were not included in analyses of T/S ratio data. Neither were 

the 9 T/S values marked as outliers, bringing the final sample size for external validity 

correlates to 354.
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Figure 2. Differences in assay precision as a function of UPS usage delineated by PCR 
amplification target.
2A: Average standard deviation and coefficient of variation across replicate CtT values and T 

estimates for samples assessed with (N = 196) and without (N = 176) the use of a UPS. 2B: 

Average standard deviation and coefficient of variation across replicate CtS values and S 

estimates for samples assessed with (N = 198) and without (N = 176) the use of a UPS. 

Error bars reflect standard error of the mean. SD = Standard Deviation. CV=Coefficient of 

Variation. ***p < 0.001.
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Figure 3. Differences in amplification efficiency as a function of UPS usage delineated by PCR 
amplification target.
3A: Average replicate, sample, and plate-level efficiencies for telomere reactions assessed 

with and without the use of a UPS. 3B: Average replicate, sample, and plate-level 

efficiencies for single copy gene reactions assessed with and without the use of a UPS. 

Efficiencies derived from LinRegPCR. Error bars reflect standard error of the mean. SD = 

Standard Deviation. CV=Coefficient of Variation. ***p < 0.001; **p < 0.01; *p < 0.05.
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Table 1.

Comparing Features of T-Estimates by UPS Status

(−UPS) (+) UPS Test Statistic p-value

Standard Deviation Across Replicate Ct Values 0.14 (0.09) 0.10 (0.07) t322.038 = 4.555 p < 0.001

CV Across Replicate Ct Values 0.49 (0.32) 0.38 (0.25) t330.442 = 3.829 p < 0.001

Standard Deviation Across Replicate Natural Log Transformed T-Estimates 0.07 (0.04) 0.05 (0.03) t329.618 = 4.294 p < 0.001

CV Across Replicate Natural Log Transformed T-Estimates 0.41 (0.26) 0.31 (0.20) t331.142 = 3.909 p < 0.001

Replicate Level Efficiency 1.88 (0.08) 1.89 (0.05) t921.119 = −3.571 p < 0.001

Standard Deviation Across Replicate Level Efficiencies 0.05 (0.03) 0.04 (0.02) t293.912 = 5.979 p < 0.001

Coefficient of Variation Across Replicate Level Efficiencies 2.79 (1.51) 1.88 (0.97) t292.945 = 6.131 p < 0.001

Sample Level Efficiency 1.88 (0.05) 1.89 (0.04) t311.781 = −2.963 p = 0.003

Plate Level Efficiency 1.87 (0.03) 1.89 (0.02) t15 = −2.430 p = 0.028

*
Test statistics reported from independent samples t-test. Values reported are Mean (Standard Deviation). CV = coefficient of variation.
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Table 2.

Comparing Features of S-Estimates by UPS Status

(−UPS) (+) UPS Test Statistic p-value

Standard Deviation Across Replicate Ct Values 0.13 (0.09) 0.09 (0.06) t321.314 = 4.571 p < 0.001

CV Across Replicate Ct Values 0.49 (0.33) 0.37 (0.26) t332.150 = 3.804 p < 0.001

Standard Deviation Across Replicate Natural Log Transformed S-Estimates 0.07 (0.05) 0.05 (0.03) t324.946 = 4.267 p < 0.001

CV Across Replicate Natural Log Transformed S-Estimates 0.40 (0.27) 0.31 (0.21) t332.144 = 3.818 p < 0.001

Replicate Level Efficiency 1.93 (0.08) 1.96 (0.06) t976.353 = −7.431 p < 0.001

Standard Deviation Across Replicate Level Efficiencies 0.05 (0.03) 0.04 (0.02) t318.043 = 4.672 p < 0.001

Coefficient of Variation Across Replicate Level Efficiencies 2.57 (1.37) 1.94 (1.01) t318.327 = 4.955 p < 0.001

Sample Level Efficiency 1.92 (0.05) 1.96 (0.04) t328.426 = −6.365 p < 0.001

Plate Level Efficiency 1.92 (0.03) 1.95 (0.02) t15 = −2.841 p = 0.012

*
Test statistics reported from independent samples t-test. Values reported are Mean (Standard Deviation). CV = coefficient of variation.
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Table 3.

Comparing Metrics of External Validity by UPS Status

Leukocyte-Buccal Correlation of Plate-Level T/S Ratios

r (p-value) 83.4% CI

(−) UPS 0.62 (<0.001) [0.47, 0.74]

(+) UPS 0.92 (<0.001) [0.88, 0.95]

*Correlations controlled for sex and age

Correlation Between Age and Plate-Level T/S Ratios

r (p-value) 83.4% CI

(−) UPS −0.13 (0.085) [−0.23, −0.02]

(+) UPS −0.15 (0.048) [−0.26, −0.05]

*Correlations controlled sex and tissue (leukocyte/buccal)

Parent-Offspring Correlation of Plate-Level T/S Ratios

r (p-value) 83.4% CI

(−) UPS 0.74 (<0.001) [0.65, 0.80]

(+) UPS 0.78 (<0.001) [0.70, 0.84]

*
Correlations controlled for sex, parental age, offspring age, and tissue (leukocyte/buccal)
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