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A B S T R A C T   

The capability of generalization to unseen domains is crucial for deep learning models when considering real- 
world scenarios. However, current available medical image datasets, such as those for COVID-19 CT images, 
have large variations of infections and domain shift problems. To address this issue, we propose a prior 
knowledge driven domain adaptation and a dual-domain enhanced self-correction learning scheme. Based on the 
novel learning scheme, a domain adaptation based self-correction model (DASC-Net) is proposed for COVID-19 
infection segmentation on CT images. DASC-Net consists of a novel attention and feature domain enhanced 
domain adaptation model (AFD-DA) to solve the domain shifts and a self-correction learning process to refine 
segmentation results. The innovations in AFD-DA include an image-level activation feature extractor with 
attention to lung abnormalities and a multi-level discrimination module for hierarchical feature domain align-
ment. The proposed self-correction learning process adaptively aggregates the learned model and corresponding 
pseudo labels for the propagation of aligned source and target domain information to alleviate the overfitting to 
noises caused by pseudo labels. Extensive experiments over three publicly available COVID-19 CT datasets 
demonstrate that DASC-Net consistently outperforms state-of-the-art segmentation, domain shift, and corona-
virus infection segmentation methods. Ablation analysis further shows the effectiveness of the major components 
in our model. The DASC-Net enriches the theory of domain adaptation and self-correction learning in medical 
imaging and can be generalized to multi-site COVID-19 infection segmentation on CT images for clinical 
deployment.   

1. Introduction 

Deep learning (DL) methods achieved remarkable success with the 
fundamental hypothesis that the training data and test data are from an 
identical distribution (Robinson et al., 2020). However, in real-world 
scenarios, this hypothesis is often violated in the fields of natural 
image and medical image processing. A typical situation in the medical 
field is the usage of various image datasets, which can differ significantly 
in data distribution due to different hospitals, scanner vendors, imaging 
protocols, patient populations, etc (Abràmoff, Lavin, Birch, Shah, & 
Folk, 2018; Dou et al., 2018). As the distribution of domain changes, a 
well-trained system may fail to produce precise predictions for unseen 
data with domain shift. 

To tackle this issue, domain adaptation (DA) algorithms normally 
learn to align source and target data in the domain-invariant discrimi-
native feature space (Dou et al., 2018; Chen, Lin, Yang, & Huang, 2019; 
Zhang, Qiu, Yao, Liu, & Mei, 2018; Saporta, Vu, Cord, & Pérez, 2020; 
Chen, Dou, Chen, Qin, & Heng, 2020; Zhu, Du, & Yan, 2019). Many of 
those DA methods embed the source and target data into the latent space 
to obtain similar distributions. By such embedding, the well-trained 
model on the source domain can be applied to the target domain 
(Wang, Du, & Guo, 2019). However, obstacles exist in those types of DA 
methods. Firstly, most of the DA models focus on narrowing the distri-
bution variations in higher-order latent space while neglecting the in-
fluence of hierarchical low-level semantic features in the antecedent. 
Secondly, few DA models integrate prior knowledge in the feature 
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Fig. 2. An overview of the proposed (a) prior 
knowledge-driven domain adaptation and (b) dual- 
domain enhanced self-correction learning scheme to 
address the domain shift problem in semantic feature 
space, especially when there are limited amounts of 
data for training. Ff and Tg denote the feature 
extractor and decoder. Dm and Df are the mask-level 
and hierarchical feature level discriminators. Fprior is 
prior knowledge extractor. F′

f and T ′

g refer to the 
adaptively refined Ff and Tg . Lseg , Ladv seg , and Ladv fea 

denote the segmentation loss, mask domain adversa-
rial loss, and feature domain adversarial loss function.   

Fig. 1. Illustration of the domain shift problem in the three datasets of COVID-19 used in this work. Latent space features extracted by ResNet-34 are visualized by t- 
SNE, where each cluster has 100 randomly selected samples from each domain. vS1

i denotes the i-th feature vector extracted from domain S1 in the latent space, S1,
S2, and S3 denote different domains, and the feature vector vS1

tsne is embedded by t-SNE. 

Q. Jin et al.                                                                                                                                                                                                                                      



Expert Systems With Applications 176 (2021) 114848

3

extraction and discrimination process. Prior knowledge, however, can 
provide supervision especially when there is a limited amount of data 
available for training. Finally, for those DA based segmentation models, 
the segmentation masks, or the so-called pseudo labels, are obtained 
based on DA results of the target domain. The source and aligned target 
domains, however, are not revisited for potential refinement over the 
pseudo labels. 

To address those issues, we propose a novel domain adaptation based 
self-correction learning (DASC) algorithm. In practice, the novel algo-
rithm is applied to the coronavirus infection segmentation task. Coro-
navirus (COVID-19) infection segmentation from computed tomography 
(CT) images is an emerging issue with the outbreak of COVID-19 (Zhu 
et al., 2020). The automatic segmentation of COVID-19 infections on CT 
images, however, is challenging because of several reasons. Firstly, the 
data volume of COVID-19 CT images is limited. Besides, datasets with 
pixel-level annotations are even harder to obtain when the world, 
especially experts with domain knowledge, is fighting the COVID-19 
pandemic. Secondly, domain shifts exist in the currently available 
public COVID-19 CT image datasets as illustrated in Fig. 1. Thirdly, large 
variations exhibit in COVID-19 infections on CT images, such as irreg-
ular shapes, indistinct boundaries, and inhomogeneous intensity distri-
butions (Wang et al., 2020). It makes the automated localization and 
segmentation of abnormalities even challenging. 

To make full use of the limited amount of available datasets and 
address the domain shift problems, we propose a novel prior knowledge 
driven domain adaptation and a dual-domain enhanced self-correction 
learning scheme (Fig. 2). Given data from both source (S1) and target 
(S2/S3) domains, we firstly extract features under the supervision of 
prior knowledge from image-level labels. To solve the domain shift 
problem in semantic feature space, we introduce hierarchical feature- 
level alignment and discrimination. Then the initial segmentation, i.e., 
pseudo labels, is obtained after alignment. Finally, we propose a dual- 
domain enhanced self-correction learning mechanism to adaptively 
refine the pseudo labels by learning from both source and target domain 
samples. In practice, we propose a domain adaption based self- 
correction model (DASC-Net). The unique contributions of the pro-
posed algorithm are summarized below.  

• Theoretically, we propose a novel prior knowledge driven domain 
adaptation and a dual-domain enhanced self-correction learning 
scheme. The proposed DA scheme is capable of minimizing the 
impact of domain shift in the mask-level domain and hierarchical 
feature-level domain. In the meanwhile, the potential refinement 
over the pseudo labels is formulated by the self-correction learning 
scheme.  

• Practically, we propose a novel attention and feature domain 
enhanced DA model (AFD-DA) to improve the segmentation perfor-
mance, especially when there are variations of infections and domain 
shifts. The innovations include a class activation map (CAM) (Zhou, 
Khosla, Lapedriza, Oliva, & Torralba, 2016) based segmentation to 
emphasize lung abnormalities, and hierarchical feature-level align-
ment and discrimination.  

• To fully utilize the limited amount of available data for training, we 
propose a dual-domain enhanced self-correction learning algorithm 
to refine the segmentation results. The self-correction learning al-
gorithm enables model optimization and pseudo label aggregation 
during training cycles. Besides, the source and target domains are co- 
learnt in self-correction to minimize the misleading supervision from 
noises caused by pseudo labels.  

• Extensive experiments using three public COVID-19 CT datasets and 
comprehensive evaluations demonstrated improved segmentation 
results over state-of-the-art methods for medical image segmentation 
and domain adaptation. Besides, the extensive experiments show 

that our proposed DASC-Net fills the gap between theoretical and 
practical implications. The source code will be released publicly at 
GitHub.2 

In the following sections, we present related work in Section 2. The 
methodologies are given in Section 3, where we first introduce the basic 
DA model, followed by the novel AFD-DA model, self-correction 
learning, and implementation details. Datasets and pre-processing 
strategy are given in Section 4. Section 5 presents and discusses exper-
imental results with a conclusion in Section 6. 

2. Related works 

In the past decades, various computer vision applications have been 
developed in stereo-vision, 3D reconstruction, object detection, and 
segmentation (Tang et al., 2019; Jin, Cui, Sun, Meng, & Su, 2020; Zlo-
cha, Dou, & Glocker, 2019; Dou, Liu, Heng, & Glocker, 2020). Among 
the proposed vision applications, artificial intelligence (AI) models 
attracted intensive research interests (Chen et al., 2020; Tang et al., 
2020; Tang, Wang, Luo, & Zou, 2020; Jin et al., 2020). For instance, 
Chen et al. (2020) utilized DeepLabV3 + network to segment banana 
central stocks as a way of image pre-processing. Tang et al. (2020) 
corrected the relative positions of the two clouds using PointNet++ (Qi, 
Yi, Su, & Guibas, 2017) for 3D reconstruction of large-scale concrete- 
filled steel tubes. Recent methods for semantic segmentation are mainly 
based on deep learning (Lv, Liang, Chen, & Lin, 2020; Zhou, Canu, & 
Ruan, 2020; Qiu, Liu, & Xu, 2020; Shi et al., 2021), and some of which 
have achieved state-of-the-art performances in COVID-19 analysis and 
domain adaptation fields. 

2.1. Computer-aided COVID-19 analysis from CT images 

Recent applications of AI technologies to COVID-19 CT images fall 
into three categories: severity assessment, COVID-19 screening from 
other types of pneumonia, and infection segmentation (Shi et al., 2021). 

Severity assessment: He et al. (2020) proposed a multi-instance 
based architecture to predict the severity of COVID-19. The synergistic 
learning framework achieved joint segmentation of lung lobes and 
classification of COVID-19. Tang et al. (2020) trained a random forest 
model using severity-related features to automatically quantify the 
severity. 

COVID-19 screening: Shi et al. (2020) developed an infection size- 
aware random forest model where location-specific features were 
extracted and sorted for classification. Attention-based 3D convolutional 
neural network (CNN) was developed by Ouyang et al. (2020) to 
improve the screening performance with the focus on COVID-19 infec-
ted regions. Kang et al. (2020) proposed a multi-view representation 
learning model to extract complementary types of features for COVID-19 
diagnosis. 

Infection segmentation: To automatically segment COVID-19 
infected regions, Zhou et al. (2020) developed a DL model using 
aggregated residual transformations and attention mechanism. Chen, 
Yao, and Zhang (2020) extracted contextual features by incorporating 
spatial and channel attentions to a U-Net architecture. The proposed 
method was evaluated on a COVID-19 CT segmentation dataset with 473 
CT slices. Zhou et al. (2020) proposed a machine-agnostic method that 
can segment and quantify the infection regions on multi-sites CT scans. A 
joint classification and segmentation (JCS) system for real-time and 
interpretable COVID-19 diagnosis was developed by Wu et al. (2020). 
Because public COVID-19 dataset is limited and hard to obtain, Qiu et al. 
(2020) developed a lightweight deep learning model for efficient 
COVID-19 segmentation while avoiding overfitting. Fan et al. (2020) 
proposed a semi-supervised learning model to tackle the challenge of a 

2 https://github.com/qgking/DASC_COVID19.git. 
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limited amount of data for training. 
Given a small amount of data for training which may also exhibit 

domain shifts, the machine learning (ML) methods could have over-
fitting problems, especially for data-hungry DL models. Hence, how to 
make the best use of a limited amount of cross-site data for COVID-19 
analysis is an emerging and challenging problem to be solved. 

2.2. DA based semantic segmentation 

Most of the ML models for semantic segmentation are based on the 
hypothesis that the training and test data have an identical distribution 
(Lv et al., 2020). The hypothesis, however, is not always true in real- 
world data. When transferring knowledge from a label-rich source 
domain to a label-scarce target domain, it is common to find the 
discrepancy from the training to the test stage. The DA based technique 
aims to rectify this discrepancy and tune the models towards better 
generalization at the testing step (Patel, Gopalan, Li, & Chellappa, 
2015). When the data distribution gap between source and target do-
mains is narrowed, an improved generality can be obtained. 

Over the past few years, DA techniques attract intensive interests in 
semantic segmentation (Lv et al., 2020; Luo, Liu, Guan, Yu, & Yang, 
2019; Tsai, Sohn, Schulter, & Chandraker, 2019; Zhu, Park, Isola, & 
Efros, 2017; Chen, Xu, & Jia, 2020; Li, Yuan, & Vasconcelos, 2019; Li, 
Xu, Wei, & Yang, 2019; Du et al., 2019; Zheng & Yang, 2019). Generally, 
DA models can be divided into two categories (Lv et al., 2020): domain- 
invariant representation learning and pseudo label guided learning. 

2.2.1. Domain-invariant representations learning 
One of the key motivations behind this category of DA based se-

mantic segmentation is to learn domain invariant representations. Most 
of the recent studies are based on domain adversarial learning and 
generative adversarial networks (GANs). For instance, Luo et al. (2019) 
combined an information bottlenecked strategy and an adversarial 
learning framework for feature-space DA semantic segmentation. Tsai 
et al. (2019) proposed an adversarial adaptation scheme, which makes 
the feature representations of target patches closer to the distributions of 
source patches in clustered spaces. 

CycleGAN (Zhu et al., 2017) provides an alternative solution for DA 
by translating the source images into target-style images. For instance, 
Chen et al. (2020) proposed a domain adaptive image-to-image trans-
lation architecture for out-of-domain samples. Li et al. (2019) proposed 
a bidirectional learning framework for self-supervised DA segmentation. 
Unlike domain adversarial learning based methods, Lv et al. (2020) 
demonstrated that pivot information could improve the performance of 
DA based segmentation, which served as a bridge to share common 
knowledge between source and target domains. 

2.2.2. Pseudo label guided learning 
The pseudo-labelling method, which is a typical technique in semi- 

supervised learning (Lee, 2013), can also be used to solve domain 
shifts. The pseudo label normally refers to the label for target data (Li 
et al., 2019). For instance, Zheng and Yang (2019) proposed a model to 
mine the target domain knowledge and fine-tune unlabelled target data 
in a self-training approach. Du et al. (2019) introduced a progressive 
confidence strategy taking full advantage of pseudo labels via adversa-
rial learning without global feature alignment. In Saporta et al. (2020), 
entropy is used as a confidence indicator to improve the quality of 
pseudo labels in an entropy-guided self-supervised learning (ESL) 
model. 

A recent self-correction training strategy (Li et al., 2019) is proposed 
to improve the segmentation performance during different training cy-
cles by self-supervision. The apparent drawback of using this approach is 
that if the pseudo labels of target domain contain noises, the noisy in-
formation may mislead the correction of pseudo labels and result in 
overfitting to the noise. However, our approach leverages both source 
and target domain information for improved self-correction, especially 
when there is a limited amount of data with domain shifts. 

3. Methods 

The network architecture of DASC-Net is given in Fig. 3. The DASC- 
Net consists of an attention and feature domain enhanced DA model 
(AFD-DA) for initial segmentation and a self-correction procedure for 
segmentation correction and improvement. The AFD-DA has three 

Fig. 3. Overview of the proposed DASC-Net for COVID-19 CT segmentation. Given (a) input data, (b) AFD-DA is firstly trained to solve the domain shift problem and 
obtain initial segmentation results. The detailed structure of ADF-DA is in (e). (c) The self-correction learning process iteratively aggregates (f) AttSegNet model and 
pseudo labels until the final cycle to generate (d) final segmentation results. AttSegNet is initialized by the generator of ADF-DA. 

Q. Jin et al.                                                                                                                                                                                                                                      



Expert Systems With Applications 176 (2021) 114848

5

innovations: a class activation map (CAM) (Zhou et al., 2016) (i.e., prior 
knowledge) based attentive segmentation branch to drive the network’s 
attention to lung infections, a discrimination module for hierarchical 
feature-level domain alignment and discrimination, and a hybrid loss 
function for optimization. The major components in the self-correction 
learning process include learning cycles where each cycle has an 
attention enhanced segmentation network (AttSegNet) and a self- 
correction mechanism to propagate model parameters and pseudo 
labels. 

3.1. Baseline DA model via adversarial learning 

3.1.1. Problem formulation 
Given an image Is ∈ RH×W from infected source domain IS and an 

image It ∈ RH×W from target domain IT, where H and W are the height 
and width of the images, S and T are the index set of images in source 
and target domains respectively, and we use the labelled source domain 
D S = {(Is,Ys) }s∈S and the unlabelled target domain D T = {It}t∈T to 
train a segmentation network, where Ys ∈ {0,1}H×W denotes the cor-
responding label of Is. The Is is first passed to the segmentor with 
Ys ∈ {0,1}H×W. Afterwards, the segmentor infers the segmentation 
output Pt for image It. The goal of domain adaptation is to achieve the 
desirable semantic segmentation performance on the target domain. 

3.1.2. Basic DA framework 
We exploit the DA model in (Luo, Zheng, Guan, Yu, & Yang, 2019) as 

the basic network for a better local semantic consistency enforcement 
during the procedure of global alignment, which is composed of a 
generator G and a mask domain discriminator τm(⋅). The generator G is 
divided into feature encoder fenc(⋅) and two decoders, termed as gad1(⋅)
and gad2(⋅). In our experiments, the dilated ResNet-34 (He, Zhang, Ren, 
& Sun, 2016; Yu, Koltun, & Funkhouser, 2017) is adopted as the feature 
encoder. During the co-training procedure (Zhou & Li, 2005), the 
weights of gad1 and gad2 are diversified by a cosine distance cost function. 

High-level feature maps are extracted from fenc(⋅) after feeding Is 
from the source domain. Those high-level feature maps serve as the 
input of the two decoders, i.e, gad1 and gad2, to yield the final predictions 
P1

s and P2
s . P1

s and P2
s are used to penalize the network for learning a 

better prediction under the supervision of Ys. The segmentation loss 
function Lseg is defined as: 

Lseg = E
[
Lce

(
P1

s ,Ys
)
+ Lce

(
P2

s ,Ys
)]
, (1)  

where Lce denotes the cross-entropy loss, and P1
s and P2

s are obtained 
based on gad1(fenc(Is)) and gad2(fenc(Is)) respectively. In the meantime, P1

s 

and P2
s are also treated as mask domain inputs to the discriminator τm for 

mask domain adversarial learning. 
On the other hand, P1

t and P2
t can also be obtained by G. Apart from 

mask domain adversarial loss, pixel-wise discrepancy Dis(P1
t , P

2
t ) be-

tween P1
t and P2

t is measured by a cosine similarity as: 

Dis
(
P1

t ,P2
t

)
= 1 − cos

(
P1

t ,P
2
t

)
. (2) 

In summary, the adversarial learning procedure can be formulated 
as: 

Ladv seg = E
[
log

(
τm
(
P1

s + P2
s

) ) ]
+

E
[(

λdisDis
(
P1

t ,P
2
t

))
log

(
1 − τm

(
P1

t + P2
t

) ) ]
,

(3)  

where λdis is a weight factor. Each pixel on the segmentation map is 
differently weighted with respect to the mask domain adversarial loss 
(Luo et al., 2019). 

The basic DA model also provides the weight discrepancy loss on gad1 
and gad2 for providing two different views on features (Luo et al., 2019). 
The Lweight is formulated as: 

Lweight =
w1
̅→⋅ w2

̅→

‖ w1
̅→‖‖ w2

̅→‖,
(4)  

where w1
̅→ and w2

̅→ are obtained by flattening and concatenating the 
weights of the convolutional layers of gad1 and gad2. 

The final training objective LBASE in the base DA model can be 
summarized as: 

LBASE = Lseg + λweightLweight + λadv segLadv seg, (5)  

where λweight and λadv seg are weight factors. 

3.2. Prior knowledge driven domain adaptation 

As there are large variations between the COVID-19 source domain 
and target domain, the baseline DA model may fail to identify infected 
lung regions which are tiny or have high similarities with healthy tis-
sues. Besides, the basic DA only penalizes mask-domain alignment. 
However, there still exists domain misalignment between features in 
antecedent. Thus, we propose an AFD-DA model to improve the per-
formance of the basic DA. 

We hypothesize that a DA model with attention to lung abnormities 
and hierarchical feature domain alignment and discrimination can 
enhance the segmentation performance. Fig. 3(e) gives the architecture 
of AFD-DA. Compared with the basic DA, the AFD-DA includes an 
attentive segmentation branch with a CAM extractor and a major 
decoder, and a feature-level domain alignment and discrimination 
module where there are a feature encoder, two auxiliary decoders, and a 
feature-level discriminator. 

3.2.1. Prior knowledge driven segmentation branch 
In the segmentation branch, we firstly design a CAM enhanced 

encoder with attention to lung abnormalities. This is achieved by pre- 
training a classification network using image-level labels as shown in 
Fig. 4. Since CAM can highlight image regions associated with image- 
level labels, we use positive samples (CT slices with infections, i.e., IS) 
and negative samples (CT slices without infections) from the source 
domain as the training dataset. The classification network consists of a 
dilated ResNet-34 encoder and a 1 × 1 convolutional layer. The pre- 
trained network is referred to as CAM extractor φ. 

As CAM may contain non-infected regions which can mislead the 
segmentation (Xie, Zhang, Xia, & Shen, 2020), we propose an online 
CAM attention based decoder to improve the conventional decoders gad1 
and gad2 in the basic DA. Inspired by residual learning (He et al., 2016), if 
soft CAM can be constructed as the attention map, the performance shall 
be at least better than a decoder without attention. 

Given the original decoder of DeepLab V3+ (Chen, Papandreou, 

Fig. 4. CAM extractor for attention to lung abnormalities. The classification 
network is pre-trained using COVID-19/Non-COVID-19 data from the 
source domain. 

Q. Jin et al.                                                                                                                                                                                                                                      



Expert Systems With Applications 176 (2021) 114848

6

Kokkinos, Murphy, & Yuille, 2017) as the major segmentor gmd, we 
modify output P0

s of major segmentor gmd as 

P0
s = (1 + σ(Up(φ(Is) ) ) )gmd(fenc(Is) ), (6)  

where σ(⋅) denotes the sigmoid function, Up(⋅) is a bilinear upsample 
function to interpolate the CAM to the input resolution, σ(Up(φ(Is) ) ) is 
within the range of [0, 1]. After combining Eqs. (1) and (6), we can 
rewrite the final segmentation loss function as: 

Lseg = E
[
λsegLce

(
P0

s ,Ys
)
+ Lce

(
P1

s ,Ys
)
+ Lce

(
P2

s , Ys
)]
, (7)  

where λseg is a weight factor to magnify the impact of the major decoder, 
the two auxiliary decoders. 

3.2.2. Hierarchical feature-level alignment of semantic feature 
According to (Luo et al. (2019), lower Dis(P1

t ,P
2
t ) values indicate less 

severe domain shifts and larger overlap between source and target 
domain distributions. It seems that the domain shift problem is solved in 
the latent space. However, due to the hierarchical architecture of the 
convolutional layers, the features extracted from a specific layer heavily 
rely on the activations from its previous layers and vice versa (Dou et al., 
2018). Thus, if a model only focuses on the high-level latent space 
alignment, domain shift problems may still exist during the lower-level 
feature extractions. The problem may be magnified when the misaligned 
low-level features are propagated to the deeper layers for final 
integration. 

To overcome this problem, and inspired by deep supervision (Lee, 
Xie, Gallagher, Zhang, & Tu, 2015), we propose hierarchical feature- 
level domain alignment discrimination. As shown in Fig. 3(e), there 
are a feature extractor fenc for high-level and low-level knowledge 
encoding and feature-level discriminator τf to facilitate the conventional 
mask-level discriminator. We aggregate and concatenate the outputs, 
which are the input of the feature-level discriminator τf , from every 
residual block in fenc except the last one. Given fenc, the feature-level 
domain alignment can be supervised by the gradients from τf to fenc as 

Ladv fea = E
[
log

(
τf
(
f 1

enc

(
Is
)
, f 2

enc

(
Is
)
, f 3

enc

(
Is
)) ) ]

+ E
[
log

(
1 − τf

(
f 1

enc

(
It
)
, f 2

enc

(
It
)
, f 3

enc

(
It
)) ) ]

,
(8)  

where f i
enc(Is) denotes the output of the i-th residual block in feature 

extractor fenc. 

3.3. Pseudo label refinement via self-correction learning 

To fully utilize the available information for training and decrease 
the impact of noise in the self-correction process, we propose a dual- 
domain enhanced self-correction learning mechanism. Because the 
AFD-DA model addressed the domain shift problem, our motivation is 
that the label-rich source domain can be blended with the target domain 
to correct the noise caused by pseudo labels. As shown in Fig. 3, the 
process consists of C training cycles where each cycle has an AttSegNet. 
The self-correction mechanism aggregates the model and propagates the 
updated labels.  

Algorithm 1. Self-correction learning mechanism 

Input: ω̂0: initialized model weight by fenc, gmd, gad1, gad2, and φ after domain 
adaptation; ŷa

0: augmented initial pseudo label generated by ω̂0; Ep: epoch in each 
cycle; C: total number of cycles;  

Output: Optimal ω̂C  

1: Construct a training dataset D training using D S = (IS,YS) and D T =
(

IT, Ŷ
a
0

)

2: for each c ∈ [1,C] do  
3: for each e ∈ [1, Ep] do  
4: Update the learning rate; 
5: Calculate loss Lseg by Eq. (7);  
6: end for 
7: Update weight ω̂c+1 for initializing the weight of the next cycle c+1 by Eq. (9);  

(continued on next column)  

(continued ) 

8: Generate pseudo label Ŷc+1 using ω̂c;  

9: Augment pseudo label Ŷ
a
c+1 using ω̂c;  

10: Pseudo label refinement by Eq. (10); 

11: Re-construct a training dataset D training using D S = (IS,YS) and D T =
(

IT,

Ŷ
a
c+1

)

12: end for  

3.3.1. Self-correction mechanism 
Given C training cycles and a set of optimal segmentation models S =

{ω̂0, ω̂1,…, ω̂C} where each of them is obtained after a training cycle, 
ω̂0 denotes the well-trained generator in our AFD-DA model. At the 
beginning of the c-th cycle, we initialize model ω̂c by aggregating model 
ω̂c− 1 with ω̂0. The aggregation is formulated as: 

ω̂c =
c

c + 1
ω̂c− 1 +

1
c + 1

ω̂0, (9)  

where c is in {1,…,C} and C is set as 9 in our experiments. The pseudo- 
code of the self-learning algorithm is given in Algorithm 1. During the 
self-correction integration, the pseudo labels are progressively improved 
in terms of performance and generability. 

3.3.2. Pseudo label aggregation and AttSegNet 
As shown in Fig. 3(f), AttSegNet consists of a CAM extractor φ, 

feature extractor fenc, CAM enhanced decoder gmd, and two auxiliary 
decoders gad1 and gad2, which are structurally identical to the generator 
in AFD-DA. In each training cycle, the segmentation model takes mixed 
source data with ground-truth and target data with pseudo labels as 
input. In practice, we update the pseudo label of the target domain at the 
end of each cycle. To further alleviate the incorrect segmentation in 
pseudo labels from the target domain, we augment the target domain by 
horizontal and vertical flipping, and then aggregate those augmented 
predictions to increase the reliability of pseudo labels. 

With Ya =
{

Ŷ
a
0, Ŷ

a
1,…, Ŷ

a
C

}
denoting the augmented set of all the 

pseudo labels after each cycle, pseudo labels are updated as follows 
based on our model aggregation strategy: 

Ŷ
a
c =

c
c + 1

Ŷ
a
c− 1 +

1
c + 1

Ŷ
a
0, (10)  

where Ŷ
a
0 is generated by the initial model ω̂0. 

3.4. Network architecture and loss function 

In our DASC-Net, there are three networks requiring optimization: a 
CAM extractor for online CAM generation, AFD-DA for domain adap-
tation training, and AttSegNet for pseudo label and model aggregation in 
self-correction. 

3.4.1. Network architecture 
Even though performance can be improved with a deeper depth of 

network architecture, a deeper network may hamper the training pro-
cess and cause problems of vanishing and exploding gradients (He et al., 
2016). To address this issue, He et al. (2016) proposed a deep residual 
learning scheme, where the deep residual unit makes the deep network 
easy to train and alleviates the problem of vanishing gradients (He et al., 
2016). Because of these advantages, we use ResNet as the backbone 
encoders in our models. Since there are a limited amount of available 
COVID-19 data and computational resources, we choose the 34-layer 
ResNet. Besides, atrous convolutions with different dilation rates are 
employed within the last two residual blocks to increase the receptive 
field of each layer for better and multi-scale feature representation. The 
encoders in all three models in our work are identical to the dilated 
ResNet-34 (He et al., 2016; Yu et al., 2017) and initialized with the 
weight pre-trained on ImageNet (Deng et al., 2009). 

Q. Jin et al.                                                                                                                                                                                                                                      



Expert Systems With Applications 176 (2021) 114848

7

The mask domain discriminator τm consists of 5 convolutional layers 
with 4 × 4 kernels, channel numbers of {64,128,256,512,1}, and stride 
of 2. Each convolutional layer is followed by a Leaky-ReLU with a 
negative slope of 0.2 except the last layer. The last layer is an up- 
sampling layer to restore the output to the size of the input domain. 
The structure of feature domain discriminator τf is the same as τm but 
without the last up-sampling layer, and the channel numbers are set as 
{256,128,64,64,1}. 

3.4.2. Loss function 
We use the cross-entropy loss as the objective function to train the 

CAM extractor: 

CE = −
1
N

∑N

i=1

∑M

m=1
pm

i logp̂m
i , (11)  

where ̂pm
i denotes the probability of an image sample i belonging to class 

m, pm
i denotes the ground-truth class, N indicates the total number of 

samples, and M represents the total class type of a slice, i.e., M = 2. 
In adversarial learning, the G of AFD-DA is trained against an ad-

versary with the two discriminators τm and τf . The training objective of 
AFD-DA is formulated as: 

Lda = Lseg + λweightLweight+

λadv segLadv seg + λadv feaLadv fea,
(12)  

where λweight ,λadv seg, and λadv fea are weight factors, Lseg is calculated by 
Eq. (7), Lweight is defined by Eq. (4), Ladv seg and Ladv fea are formulated in 
Eq. (3) and Eq. (8), respectively. 

AttSegNet is initialized by the generator of AFD-DA. We penalize the 
network using Eq. (7) with source and target domain data. 

4. Dataset and preprocessing 

4.1. Dataset 

We collect COVID-19 CT datasets from three sites to evaluate the 
performance of DASC-Net. 

4.1.1. Coronacases Initiative and Radiopaedia (CIR) 
CIR released 20 public 3D CT scans without manual segmentations. 

Ma et al. (2020) provided manually segmented lung and infections by 
radiologists. Among the images, 10 scans are 630 × 630 in-plane reso-
lution, while the other 10 scans are of 512× 512. In total, there are 
3,520 axial CT slices, including 1,844 slices with annotated COVID-19 
infections (considered as positive 2D samples) and 1,676 slices 
without annotations (considered as negative 2D samples). 

4.1.2. Italian Society of Medical and Interventional Radiology (ISMIR) 
ISMIR provided 100 axial CT images from 60 patients with COVID- 

19.3 The manual segmentation of COVID-19 infected areas, including 
ground-glass opacity (GGO), consolidation, and pleural effusion, was 
performed by a radiologist. The image size is 512 × 512 pixels and has 
been greyscaled and compiled into a single NIFTI file. 

4.1.3. MOSMEDDATA 
Research and Practical Clinical Center for Diagnostics and Tele-

medicine Technologies of the Moscow Health Care Department (Moro-
zov et al., 2020) provided 50 CT volumetric scans and corresponding 
annotations by experts. For each scan, the annotations of GGO and 
consolidation are recorded by non-zero values in a binary mask. In total, 
there are 2,049 axial CT slices, including 785 COVID-19 positive and 
1,264 negative samples. It is noted that the proportion of the samples 

containing GGO and consolidation is less than 25%. The in-plane reso-
lution of all the images is 512× 512. 

In the experiments, we use the CIR data as the source domain, termed 
as COVID-19-S. The ISMIR and MOSMEDDATA data are used as target 
domains which are denoted by COVID-19-T1 and COVID-19-T2 
respectively. 

4.2. Data pre-processing and augmentation 

Pre-processing includes image normalization and patch generation. 
All the CT images were normalized by windowing operation of [-1,250, 
250] Hounsfield Units (HU) values, and then linearly scaled to [0, 1] by 
min–max normalization. Secondly, we cropped the images by localizing 
lung regions. Manual-segmented lungs were provided in COVID-19-S 
and COVID-19-T1. To obtain the lung mask in COVID-19-T2, we 
trained a 3D U-Net (Ronneberger, Fischer, & Brox, 2015) using COVID- 
19-S. Finally, the image patches were obtained by cropping the original 
CT image using a bounding box outside the lung. 

Data augmentation transformations included random flippings in 
vertical and horizontal directions, affine transformations using trans-
lation within [0.01,0.01], scaling within [0.8, 1.2], shearing within 
[− 10, 10], and rotating by up to 90◦. Finally, we down-sampled the 
infected 2D CT slices and infection masks into 320 × 320 pixels for 
efficient computation. 

5. Experimental results and discussion 

5.1. Implementation and parameter settings 

The DASC-Net model was implemented using the PyTorch (Paszke 
et al., 2017) library and trained on an NVIDIA 1080Ti GPU. For the loss 
function, the hyper-parameters λseg, λweight , λadv seg , λadv fea, and λdis are 
set to 3, 0.01, 0.001, 0.001, and 10 respectively. Adam optimizer, with a 
batch size of 4, is applied to minimize the objectives in DASC-Net. The 
learning rate for the discriminators is set to 1 × 10− 4, while the others 
are set as 2.5× 10− 4. All the optimizers are decayed by a polynomial 
learning rate policy, where the initial learning rate is multiplied by 
(

1 − iter
total iter

)power 
with power at 0.9. The total number of training iter-

ations is set to 100 ∗ (iter per epoch), i.e., 100 epoch, for AFD-DA. For 
AttSegNet, the total number of cycles C is set to 9 and the total number of 
epochs in each cycle is set to 2. The training of the CAM extractor 
stopped after one epoch obtains a map which can totally cover the 
infections. 

5.2. Comparison methods and evaluation metrics 

The segmentation models are validated using a comprehensive list of 
evaluation metrics including sensitivity (SEN), specificity (SPC), Jaccard 
(JA), Dice coefficient (Dice), and Hausdorff distance (HD) (Taha & 
Hanbury, 2015). 

To demonstrate the effectiveness of our DASC-Net, we compare with 
several segmentation models, which can be categorized as U-Net based 
model for medical image segmentation, DA based model for semantic 
segmentation, and most recent segmentation models published for 
COVID-19 infection segmentation. 

U-Net based model: The U-Net based models are most widely used 
in medical image analysis. As there are few published peer-reviewed 
methods for COVID-19 infection segmentation, we firstly compared 
with U-Net based state-of-the-art models. U-Net (Ronneberger et al., 
2015) is one of the most widely used CNN models for medical image 
segmentation. The architecture captures contextual features and utilizes 

3 http://medicalsegmentation.com/covid19/. 
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a symmetric expanding path for precise localization. Compared to U- 
Net, U2-Net (Qin et al., 2020)4 is able to capture more contextual in-
formation from different scales with the receptive fields of different sizes 
in the Residual U-blocks. The residual U-blocks increase the depth of the 
network with few computational cost and shows promising results for 
segmentation. U-Net++ (Zhou, Siddiquee, Tajbakhsh, & Liang, 2018)5 

is a nested architecture, which is designed for medical image segmen-
tation, and has been evaluated across multiple tasks. Taking advantage 
of full-scale skip connections and deep supervisions, the U-Net 3+
(Huang et al., 2020)6 is proposed, which shows desirable results on liver 
segmentation. 

DA based model: We also compare with recent DA based models 
including AdaptSegNet (Tsai et al., 2018), ADVENT (Vu, Jain, Bucher, 
Cord, & Pérez, 2019). Different from our AFD-DA model, those models 
lack strict hierarchical feature alignment and discrimination. Adapt-
SegNet (Tsai et al., 2018)7 is an adversarial learning method for domain 
adaptation in the context of semantic segmentation. A multi-level 
adversarial algorithm is proposed to perform output space domain 
adaptation. Entropy of the pixel-wise predictions is fully utilized by 
ADVENT (Vu et al., 2019),8 which provides an alternative solution for 
DA. 

COVID-19 infection segmentation model: Semi-Inf-Net (Fan et al., 
2020) is compared as it is a most recent segmentation model proposed 
for COVID-19 infection segmentation. The model uses a semi-supervised 

approach to address the problem of training on a limited amount of data. 
The model was only validated on COVID-19-T1. 

5.3. Comparison results 

5.3.1. Quantitative results 
The evaluation results over COVID-19-T1 using our DASC-Net, 

DASC-Net without self-correction, referred to as AFD-DA, and all the 
other models are given in Table 1. As shown in the table, our AFD-DA 
outperformed all the other methods for all the evaluation metrics 
especially HD, Dice, and SEN. The results demonstrated the effectiveness 
of AFD-DA in addressing domain shifts. The self-correction mechanism 
further boosted the performance of AFD-DA by 2% and 6.1 in terms of 
Dice and HD, and 2.32%, 0.1%, and 2.45% with respect to SEN, SPC, and 
JA. 

The comparison results over COVID-19-T2 are summarized in 
Table 2. As shown in this table, the DASC-Net achieved the best results, 
followed by AFD-DA. We also found that the overall experimental results 
by all the models on COVID-19-T2 were worse than those on COVID-19- 
T1. This may be due to the fact that the infections have large variations 
between COVID-19-T2 and COVID-19-S. For instance, in the COVID-19- 
T2 samples, image regions with GGO and pulmonary parenchymal 
typically cover less than 25% of the whole lung. In the source domain, 
however, there are not too many CT slices with less than 25% infected 
areas. Besides, our empirical finding is that the less the portion of the 
infections, the more influence on the segmentation results. Nevertheless, 
our model outperformed all the methods in comparison over the cases 
with smaller infection regions. 

When comparing with Semi-Inf-Net (Fan et al., 2020), we found that 
the experimental results in (Fan et al., 2020) were using 50 samples from 
COVID-19-T1 only. Thus, we selected the same 50 slices as reported in 
(Fan et al., 2020)9 and re-calculated the segmentation results for a fair 
comparison. The comparison results are given in Table 3. 

Our DASC-Net achieved a Dice of 77.0%, a SEN of 81.2%, and a SPC 
of 98.0% which outperformed the published results of Semi-Inf-Net by 
0.6%, 1.5%, and 1.7% respectively. As shown in Fig. 5, the proportion 
with red color indicates false predictions. It reveals that the DASC-Net 
provides a better segmentation with higher confidence. It is also noted 
that the Semi-Inf-Net was trained using the rest 50 slices from COVID- 
19-T1. Our DASC-Net, however, was trained using source domain data 
without fine-tuning on the 50 slices from the target domain. Compared 
with Semi-Inf-Net, our model is more applicable to real-world scenarios, 
especially when the training and testing datasets are from different sites. 

Our primary finding is that our DASC-Net substantially alleviates the 
domain shift problem and achieves superior performance in segmenting 
COVID-19 infection when compared to the U-Net based models (i.e., U- 
Net (Ronneberger et al., 2015), U2-Net (Qin et al., 2020), U-Net++

(Zhou et al., 2018), and U-Net 3+ (Huang et al., 2020)). Secondly, the 
DA based models (i.e., AdaptSegNet (Tsai et al., 2018) and ADVENT (Vu 
et al., 2019)) gain better quantitative results than the U-Net based 
models. Finally, our DASC-Net outperforms the COVID-19 infection 
segmentation model (i.e., Semi-Inf-Net (Fan et al., 2020)) without fine- 
tuning on extra data, which is extremely important at the early stage of 
COVID-19 outbreak when limited well-annotated data samples can be 
acquired. 

Table 1 
Results on the COVID-19-T1 dataset for DASC-Net and SOTA methods. The best 
results are shown in bold font.  

Method Dice 
(%) 

SEN 
(%) 

SPC 
(%) 

HD JA 
(%) 

U-Net (Ronneberger et al., 
2015) 

70.30 71.83 98.27 80.80 55.72 

U2-Net (Qin et al., 2020) 69.58 77.16 97.26 87.82 55.03 
U-Net++ (Zhou et al., 2018) 67.46 75.67 96.73 89.63 52.69 

U-Net 3+ (Huang et al., 
2020) 

69.60 78.00 97.09 91.52 54.84 

AdaptSegNet* (Tsai et al., 
2018) 

71.29 76.62 97.64 83.53 56.83 

ADVENT* (Vu et al., 2019) 72.01 78.39 97.66 77.49 57.82  

Ours (AFD-DA)* 74.33 80.92 97.72 71.41 60.52 
Ours (DASC-Net)* 76.33 83.24 97.82 65.31 62.97  

* DA based method. 

Table 2 
Results on the COVID-19-T2 dataset for DASC-Net and SOTA methods. The best 
results are shown in bold font.  

Method Dice 
(%) 

SEN 
(%) 

SPC 
(%) 

HD JA 
(%) 

U-Net (Ronneberger et al., 
2015) 

51.95 61.99 99.76 95.09 39.56 

U2-Net (Qin et al., 2020) 56.91 66.52 99.76 71.55 44.12 
U-Net++ (Zhou et al., 2018) 54.00 73.88 99.58 95.72 40.41 

U-Net 3+ (Huang et al., 
2020) 

55.46 73.80 99.61 78.58 42.18 

AdaptSegNet* (Tsai et al., 
2018) 

56.18 69.87 99.70 64.97 43.15 

ADVENT* (Vu et al., 2019) 56.40 69.00 99.70 66.78 43.36  

Ours (AFD-DA)* 59.04 75.17 99.74 74.14 45.42 
Ours (DASC-Net)* 60.66 72.44 99.78 75.62 46.96  

* DA based method. 

Table 3 
Results on the 50 slices from COVID-19-T1 dataset for DASC-Net and Semi-Inf- 
Net. The best results are shown in bold font.  

Method Dice (%) SEN (%) SPC (%) 

Semi-Inf-Net (Fan et al., 2020) 76.4 79.7 96.3 
Ours 77.0 81.2 98.0  

4 https://github.com/NathanUA/U-2-Net  
5 https://github.com/4uiiurz1/pytorch-nested-unet.  
6 https://github.com/ZJUGiveLab/UNet-Version  
7 https://github.com/wasidennis/AdaptSegNet  
8 https://github.com/valeoai/ADVENT. 9 https://github.com/DengPingFan/InfNet. 
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5.3.2. Qualitative results 
Six segmentation results on COVID-19-T1 and COVID-19-T2 are 

given in Fig. 6. The segmentation results of DASC-Net are the closest to 
manual segmentations whether the regions to be segmented are large or 
small, as shown by the top three and bottom three rows. It is also found 
that the DA based models, including AdaptSegNet (Tsai et al., 2018) and 
ADVENT (Vu et al., 2019), outperformed those U-Net based models 
without domain adaptation. 

5.4. Ablation studies for effectiveness validation 

Ablation study was performed to evaluate the contributions of major 
components in DASC-Net. We first obtain the performance of the base-
line DA model (Luo et al., 2019). Afterwards, we gradually added the 
newly proposed components to the baseline model. The experimental 
results on COVID-19-T1 are presented in Table 4. 

5.4.1. Contributions of prior knowledge driven segmentation branch and 
hierarchical feature-level alignment of semantic features in AFD-DA 

The baseline DA model (Luo et al., 2019) achieved a Dice of 73.65%. 
When an online CAM based attentive segmentation branch was added to 
the baseline, the experimental results were improved. The newly pro-
posed feature-level domain alignment also contributed to the experi-
mental results where the Dice value further increased to 73.84%. The 
SEN and HD metrics were improved by 0.99% and 0.71 respectively. 

When considering both CAM based attentive segmentation branch and 
feature domain alignment module, the performance was further 
improved to a Dice of 74.33%. 

The experimental results verified our hypothesis that although 
domain shift problems are tackled in a high-level latent space by the 
basic DA, the problem still exists in the low-level feature space. The 
proposed feature-level domain alignment module enabled our model to 
resolve the feature-level domain shifts, as demonstrated by the 
improved segmentation results. 

5.4.2. Effectiveness of self-correction learning 
When examining the contributions of the self-correction algorithm, 

Table 4 shows that the most noticeable improvement was in HD, fol-
lowed by JA, Dice, and SEN. 

We also investigate the segmentation performance in different cycles 
during the self-correction learning process. The detailed segmentation 
results and the corresponding Dice scores in each cycle are given in 
Fig. 7. As shown in this figure, with the aggregation of the model and 
pseudo labels, the segmentation results gradually increased from a Dice 
of 75.25% in Cycle 1 to a Dice of 76.33% in the final cycle. More 
importantly, the segmentation results on small or isolated infected re-
gions were improved as indicated by the orange arrows in Fig. 7. 

Fig. 5. Three examples of COVID-19 infection segmentation against Semi-Inf-Net. The segmentation results from Semi-Inf-Net were downloaded from the authors’ 
GitHub repository. The false predictions, i.e., false-positive and false-negative, are shown in red while the correct predictions are in green. The significant 
improvement by our model is marked with orange arrows. 
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6. Conclusion 

We propose a novel domain adaptation based self-correction 
learning (DASC-Net) model. The DASC-Net utilizes the prior domain 
knowledge and enhances the distribution similarity of the semantic 
features by hierarchical feature-level discrimination, and adaptively 
refines the pseudo labels by self-correction learning mechanism. In 
practice, CAM drives the segmentation network to emphasize lung ab-
normalities. The new hierarchical feature-level discriminator comple-
ments mask-level discrimination, which enhances feature domain 
alignment. The self-correction learning mechanism alleviates the 
misleading supervision caused by noises in pseudo labels. Extensive 
experiments on multi-sites public COVID-19 datasets demonstrate that 
our model outperforms the state-of-the-art methods. Our model and 
framework can be generally applied to other tasks when there are 
domain shift problems and lack of sufficient dataset for training, which 
bridges the theory–practice gap. The limitation of our method is that we 
assume that all of the source data samples are fully annotated. However, 
in the early stage of the COVID-19 outbreak, the amount of well- 

annotated data samples is still limited, and the performance of DA 
methods can degrade substantially with fewer labeled samples. Our 
future work includes the exploration of DASC-Net for few-shot learning 
tasks. 
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Fig. 6. Visual comparison of COVID-19 infection segmentation against other methods on two target datasets.  

Table 4 
Ablation studies of our DASC-Net on the COVID-19-T1 dataset. A component marked by √ means that the model contains this component. The best results are shown in 
bold font.  

Basic DA CAM attention enhanced Feature-level alignment Self-correction Dice (%) SEN (%) SPC (%) HD JA (%) 

√     73.65 79.97 97.76 69.70 59.64 

√  √    74.36 80.02 97.87 68.46 60.51 

√   √   73.84 80.96 97.61 68.99 59.79 

√  √  √   74.33 80.92 97.72 71.41 60.52 

√  √  √  √  76.33 83.24 97.82 65.31 62.97  
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