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Abstract

Introduction—While monophasic and relapsing forms of myelin oligodendrocyte glycoprotein 

antibody associated disorders (MOGAD) are increasingly diagnosed world-wide, consensus on 

management is yet to be developed.

Objective—To survey the current global clinical practice of clinicians treating MOGAD.

Method—Neurologists worldwide with expertise in treating MOGAD participated in an online 

survey (February–April 2019).

Results—Fifty-two responses were received (response rate 60.5%) from 86 invited experts, 

comprising adult (78.8%, 41/52) and pædiatric (21.2%, 11/52) neurologists in 22 countries. All 

treat acute attacks with high dose corticosteroids. If recovery is incomplete, 71.2% (37/52) 

proceed next to plasma exchange (PE). 45.5% (5/11) of paediatric neurologists use IV 

immunoglobulin (IVIg) in preference to PE. Following an acute attack, 55.8% (29/52) of 

respondents typically continue corticosteroids for ≤ 3 months; though less commonly when 

treating children. After an index event, 60% (31/51) usually start steroid-sparing maintenance 

therapy (MT); after ≤ 2 attacks 92.3% (48/52) would start MT. Repeat MOG antibody status is 

used by 52.9% (27/51) to help decide on MT initiation. Commonly used first line MTs in adults 

are azathioprine (30.8%, 16/52), mycophenolate mofetil (25.0%, 13/52) and rituximab (17.3%, 

9/52). In children, IVIg is the preferred first line MT (54.5%; 6/11). Treatment response is 

monitored by MRI (53.8%; 28/52), optical coherence tomography (23.1%; 12/52) and MOG 

antibody titres (36.5%; 19/52). Regardless of monitoring results, 25.0% (13/52) would not stop 

MT.

Conclusion—Current treatment of MOGAD is highly variable, indicating a need for consensus-

based treatment guidelines, while awaiting definitive clinical trials.
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Introduction

Myelin oligodendrocyte glycoprotein antibody associated disorders (MOGAD) have been 

widely recognised as a distinct clinical entity only in the last decade, following the 

development of reliable cell-based assays using full-length human MOG as the target 

antigen [1, 2]. They encompass monophasic and relapsing presentations of central 

demyelination. Within the ‘neuromyelitis optica’ phenotype, optic neuritis is more common 

than transverse myelitis [3–8]. The clinical spectrum has since expanded to include 

brainstem and cortical encephalitis [9–12]. The most frequent presentation in young children 

is acute disseminated encephalomyelitis (ADEM) [8, 12, 13].

In comparison to aquaporin-4 antibody positive neuromyelitis optica spectrum disorders 

(AQP4-Ab NMOSD), relapse is less common. Approximately half of MOGAD patients may 

have monophasic disease, but some experience frequent relapses despite immunosuppressive 

therapy [14–17]. The value of antibody titres in predicting relapse is not yet fully 

understood. Overall, motor and visual disability outcomes seem better in MOGAD than in 

AQP4-Ab NMOSD [5, 14, 17], but the impact of relapses on long-term disability is unclear.

The unpredictability of MOGAD presents a challenge when developing treatment 

paradigms. Retrospective studies suggest that both acute and maintenance immunotherapy 

improve outcomes. However, there are no randomised controlled trials (RCTs) in MOGAD 

and an international, evidence-based consensus on management is yet to be developed. The 

objective of this survey is to describe the current clinical practice of neurologists treating 

adults and children with MOGAD internationally, to identify common themes, divergent 

practices and unanswered questions, which could inform the planning of collaborative 

studies and clinical trials.

Methods

The survey was created with the ‘Survey Monkey’ web-based tool (https://

www.surveymonkey.co.uk). It comprised a mix of 34 multiple choice, ranking, or free-text 

questions (see online supplementary material).

Eighty-six neurologists were invited to participate via email. Invites were sent out to 

prospective attendees at the 7th Focused Workshop of The European Committee for 

Treatment and Research in Multiple Sclerosis (ECTRIMS) on MOGAD, which took place 

on 7th–8th March 2019, in Athens, Greece. The survey was closed to meeting attendees on 

6th March to avoid obtaining biased responses following the meeting. Additional 

neurologists blinded to the workshop discussions and conclusions were invited to complete 

the survey, with the aim of creating a diverse global representation.

All responses were obtained throughout February to April 2019.
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Results

A. Respondent details and scope of practice

Fifty-two responses were received (response rate 60.5%) from neurologists practising in 22 

countries—Argentina (1), Australia (4), Brazil (1), Canada (2), China (1), Denmark/

Hungary (1), France (3), French Martinique (1), Germany (5), Italy (4), India (1), Japan (2), 

Malaysia (2), Netherlands (1), Republic of Korea (1), Spain (1), Switzerland (1), Thailand 

(1), Turkey (3), United Kingdom (7) and United States of America (9).

Respondents were adult (78.8%, 41/52) and paediatric (21.2%, 11/52) neurologists, with 

43.9% (18/41) of adult neurologists also involved in the specialist care of children. The 

median (range) number of MOGAD patients under each neurologist’s care was 20 (3–130), 

with each seeing a median (range) of 5 (0–50) new patients in the last 12 months.

The majority of neurologists (53.8%, 28/52) indicated that their management of MOGAD 

did not follow a published consensus, guideline or policy. International publications were 

cited by 32.7% (17/52) and included review or opinion articles [18–23] and observational 

studies [4, 8, 13, 24, 25]. National or regional/hospital policies were followed by 9.6% 

(5/52) and 15.4% (8/52) respectively.

For ease of review, the rest of the survey results have been condensed into 12 core questions.

B. Acute attack therapy

Question 1: Please state your usual dose and duration of high dose 
corticosteroid (HDCS) therapy for acute attacks of MOGAD (response rate 
88.5%, 46/52)—For adult patients, 100% (36/36) used intravenous (IV) 

methylprednisolone at a dose of 1000 mg daily; 11.1% (4/36) substituted oral 

methylprednisolone 500 mg daily for milder attacks. Duration of IV therapy, if specified, 

was 3–5 days for 87.8% (29/33), with 12.1% (4/33) extending up to 10 days. For paediatric 

patients, 100% (10/10) used IV methylprednisolone at an actual body weight adjusted dose 

of 20–30 mg/kg daily (maximum 1 g daily) for 3–5 days.

Question 2: For severe attacks or if recovery is incomplete after HDCS 
therapy, what is your next choice of acute therapy? (response rate 100%, 
52/52)—Respondents ranked up to six options in order of preference: plasma exchange/

immunoadsorption (PE), intravenous immunoglobulin (IVIg), rituximab, cyclophosphamide, 

repeat HDCS, other (free text). They were advised to consider local availability, restrictions 

and cost. The most popular first choice among adult neurologists was PE in 80.5% (33/41); 

the remaining 19.5% (8/41) repeated HDCS initially. Paediatric neurologists were divided 

between PE (36.4%, 4/11), IVIg (36.4%, 4/11) and repeat HDCS (27.3%, 3/11).

We also calculated the mean preference score (between 0 and 6) for each acute therapy, with 

higher scores denoting earlier use by more respondents (Fig. 1). PE (5.60) was the preferred 

choice, followed by repeat HDCS (3.42), IVIg (3.40), rituximab (2.52), cyclophosphamide 

(1.42) and other therapies (0.27). The order was unchanged when analysing only adult 

neurologist responses. Paediatric neurologists preferred IVIg (5.18) over PE (4.91). When 
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respondents were asked to disregard local restrictions and treatment costs (response rate 

94.2%, 49/52), preference increased for IVIg (3.78), reduced for repeat HDCS (3.06), and 

were otherwise unchanged.

The ‘other’ acute therapies specified were mitoxantrone (1), tocilizumab (1), azathioprine 

(2) and further courses of IVIg (1). Additionally, 7.7% (4/52) indicated that they initiate PE 

with HDCS in severe attacks, rather than waiting to assess response.

Question 3: After a recent first attack, do you give a prolonged (> 3 months) 
course of oral corticosteroid therapy? (response rate 100%, 52/52)—59.7% 

(31/52) of respondents answered ‘usually’ or ‘always’, 23.1% (12/52) answered ‘sometimes’ 

and 17.3% (9/52) answered ‘rarely’ or ‘never’ (Fig. 2). A greater proportion of paediatric 

than adult neurologists answered ‘never’ (27.3% versus 4.9%). Factors reported to influence 

this decision were attack severity (6), speed/extent of recovery (4), patient preference/co-

morbidities (2) and attack topography (1) i.e. less likely to treat an ADEM-like attack than 

optic neuritis for greater than 3 months.

88.5% (46/52) stated their preferred minimum duration of oral corticosteroid treatment: < 3 

months 15.2% (7/46), ≥ 3 months 41.3% (19/46), ≥ 6 months 39.1% (18/46), ≥ 9 months 

2.2% (1/46), and ≥ 18 months 2.2% (1/46). Dose tapering strategies were individualised. A 

minority of respondents (16.7%, 8/48) used repeat MOG-Ab titres to help determine the 

duration of corticosteroid treatment. Repeat testing was timed at 3 months (25.0%, 2/8), 6 

months (37.5%, 3/8) or unspecified (37.5%, 3/8).

C. Starting steroid-sparing maintenance therapy

Question 4: Would you recommend starting maintenance therapy after a first 
attack of confirmed MOGAD? (response rate 98.1%, 51/52)—39.2% (20/51) of 

respondents answered ‘usually’ or ‘always’, 31.4% (16/51) answered ‘sometimes’ and 

29.4% (15/51) answered ‘rarely’ or ‘never’ (Fig. 3). A greater proportion of paediatric than 

adult neurologists answered ‘never’ (45.5% versus 10.0%). Respondents justified their 

answers as follows: Relapse risk was perceived variably as low (16), high (5), or ‘impossible 

to predict’ (1). Other factors considered included the onset attack severity or recovery (13), 

the onset attack topography (8), the titre and persistence of MOG-Ab (7), and patient or 

clinician concerns about steroid-related adverse effects (6).

Question 5: Would you recommend starting maintenance therapy after two or 
more confirmed attacks of MOGAD? (response rate 100%, 52/52)—92.3% 

(48/52) respondents answered ‘usually’ or ‘always’, 5.8% (3/52) answered ‘sometimes’ and 

1.9% (1/52) answered ‘rarely’ (Fig. 4). There was general agreement between adult and 

paediatric neurologists, though fewer paediatric neurologists answered ‘always’ (36.5% 

versus 68.5%). Repeat MOG-Ab testing is used by 47.1% (24/51) to inform this decision, 

but the timing and interpretation of testing is highly variable. Additional factors that 

influence the decision to start maintenance therapy after two or more attacks included the 

attack interval (5), attack severity and recovery (4), patient preference (3), the patient’s 

tolerance of corticosteroids (3), and patient age (2).
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Respondents also differed on the minimum interval between symptomatic flares that they 

use to define a second attack: 40.4% (21/52) answered 1 month, 36.5% (19/52) 3 months, 

and 1.9% (1/52) 6 months, whereas 21.2% (11/52) felt it was important to be flexible on this 

interval, depending on the disease topography or treatment history.

D. Choosing and switching maintenance therapies

Question 6 (adult neurologists only): Taking account of local availability, 
restrictions and cost, what would be your first-choice maintenance therapy for 
treating an otherwise healthy 38-year-old male with relapsing MOGAD? 
(response rate 100%, 41/41)—The most common first choice therapy was azathioprine 

(39.0%, 16/41), followed by mycophenolate mofetil (31.7%, 13/41), rituximab (22.0%, 

9/41), tacrolimus (4.9%, 2/41) and mitoxantrone (2.4%, 1/41). One of these agents may be 

combined with low-dose oral corticosteroid ‘always’ (20.0%, 8/40), ‘usually’ (10.0%, 4/40), 

‘sometimes’ (30.0%, 12/40), ‘rarely’ (22.5%, 9/40) or ‘never’ (17.5%, 7/40).

For patients relapsing on first-line azathioprine, 68.7% (11/16) escalate therapy to rituximab 

and 31.3% (5/16) escalate to mycophenolate mofetil. For this clinical scenario, Fig. 5 shows 

the popularity of each drug as a first-, second- or third-line treatment following breakthrough 

relapses.

Question 7 (paediatric neurologists only): Taking account of local availability, 
restrictions and cost, what would be your first-choice maintenance therapy for 
treating an otherwise healthy 6-year-old female with relapsing MOGAD? 
(response rate 100%, 11/11)—The most common first choice therapy was IVIg (45.5%, 

5/11), followed by azathioprine (18.2%, 2/11) or rituximab (18.2%, 2/11). One of these 

agents may be combined with low-dose oral corticosteroid ‘always’ (9.1%, 1/11), ‘usually’ 

(18.2%, 2/11), ‘sometimes’ (36.4%, 4/11), ‘rarely’ (27.3%, 3/11) or ‘never’ (9.1%, 1/11). 

Figure 6 shows the popularity of each drug as a first-, second- or third-line treatment 

following breakthrough relapses.

Question 8: Taking account of local availability, restrictions and cost, what 
would be your first-choice maintenance therapy for treating an otherwise 
healthy 16-year-old female with relapsing MOGAD? (response rate 100%, 
52/52)—Respondents ranked up to eight options in order of preference. The most common 

first choice therapy was azathioprine (42.3%, 22/52), followed by rituximab (25.0%, 13/52), 

IVIg (13.5%, 10/52) and mycophenolate mofetil (13/5%, 7/52). The most common first 

choice amongst paediatric neurologists was IVIg (45.5%, 5/11).

We then generated overall preference scores for each treatment (as for question 2). Overall, 

rituximab was the preferred treatment choice (6.33), followed by azathioprine (5.54), 

mycophenolate mofetil (4.49), IVIg (4.12), PE (2.27), tocilizumab (1.96), methotrexate 

(1.54) and ciclosporin (0.81) (Fig. 7). Compared to adult neurologists, paediatric 

neurologists expressed greater preference for IVIg (5.64 versus 3.71) and tocilizumab (3.27 

versus 1.96), and less preference for azathioprine (3.91 versus 5.98) and mycophenolate 

mofetil (4.00 versus 5.00).
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Question 9: Disregarding cost, availability and safety profiles, how would you 
rank the following treatment options solely on their effectiveness at 
maintaining remission? (response rate 100%, 52/52)—Respondents ranked up to 

ten treatment options in order of perceived effectiveness. They were advised to only rank 

treatments that they had experience administering to MOGAD patients. Mean scores were 

then calculated for each treatment (Fig. 8). The majority of neurologists had experience 

using rituximab (92.3%, 48/52), azathioprine (84.6%, 44/52), mycophenolate mofetil 

(78.8%, 41/52), IVIg (76.9%, 40/52), prednisolone up to 0.5 mg/kg/day (73.1%, 38/52) or 

PE (53.9%, 28/52). Of these, rituximab (8.23) was perceived to be most effective, followed 

by prednisolone 0.5 mg/kg/day (7.97), mycophenolate mofetil (7.68), azathioprine (7.43), 

IVIg (7.30) and PE (5.46). Fewer neurologists had experience giving tocilizumab (40.4%, 

21/52), methotrexate (34.6%, 18/52), eculizumab (21.2%, 11/52) or ciclosporin (13.5%, 

7/52). Of these lesser used therapies, tocilizumab (6.86) was perceived to be most effective, 

followed by eculizumab (6.45), ciclosporin (5.57) and methotrexate (4.83).

Question 10: Which MS disease modifying therapies (MS-DMTs) do you think 
could be beneficial for treating MOGAD? (response rate 98.1%, 51/52)—
Respondents could either select from up to ten licensed MS-DMTs (82.4%, 42/51), or 

choose ‘none’ (17.6%, 9/51). Ocrelizumab was chosen by 72.5% (37/51). Other therapies 

with a minority of votes included haematopoietic stem cell transplant (17.6%, 9/51), 

cladribine (15.7%, 8/51), teriflonumide (13.7, 7/51), natalizumab (9.8%, 5/51), 

alemtuzumab (7.8%, 4/51), fingolimod (7.8%, 4/51) and dimethyl fumarate (5.9%, 3/51). 

Beta-interferon and glatiramer acetate received no votes.

E. Assessing treatment response and stopping immunotherapy

Question 11: How do you routinely monitor the efficacy of maintenance 
therapy? (response rate 100%, 52/52)—All respondents (100%, 52/52) use prevention 

of relapses as an indicator of drug efficacy. In addition, 59.6% (31/52) routinely assess 

disability (e.g. extended disability status scale [EDSS] score, timed 25-foot walk or visual 

assessments). Some regularly monitor asymptomatic patients using MRI (53.8%, 28/52), 

optical coherence tomography (OCT) (23.1%, 12/52), and repeated MOG-Ab titres (36.5%, 

19/52). Frequency of monitoring is variable and often individualised.

Question 12: For patients with relapsing MOGAD, in which circumstances 
would you recommend stopping maintenance immunotherapy? (response 
rate 100%, 52/52)—Twenty-five percent (13/52) of respondents would not stop 

maintenance immunotherapy in MOGAD. Others may recommend stopping treatment if the 

patient remains relapse-free after 1 year (5.8%, 3/52), 2 years (23.1%, 12/52) or 5 years 

(44.2%, 23/52). Alternatively, 17.3% (9/52) contemplate stopping treatment if the patient 

becomes MOG-Ab negative, irrespective of the time in clinical remission. Finally, 40.4% 

(21/52) described an individualised approach to stopping immunotherapy, considering not 

only time in remission and serostatus, but also the frequency and severity of prior attacks 

and the patient’s level of disability.
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Discussion

This survey summarised the current global expert approach to the treatment of MOGAD. 

There was consensus on use of high dose corticosteroids and plasma exchange in acute 

attacks, and of purine synthesis inhibitors (azathioprine and mycophenolate mofetil) or 

rituximab as maintenance therapies for relapse prevention. This mirrors treatment of AQP4-

Ab NMOSD, where the high risk of permanent disability mandates aggressive acute attack 

therapy and lifelong immunosuppression in most cases [26–28].

The survey also highlighted areas of divergent practice, such as the duration of oral 

corticosteroid therapy administered after a single attack, indications for starting and stopping 

steroid-sparing immunotherapy, individual drug choices, and the use of paraclinical tools 

(MRI, OCT and MOG-Ab titres) to monitor treatment response. Paediatric neurologists were 

less likely than adult neurologists to use PE for acute attacks, less likely to use prolonged 

oral corticosteroid therapy, and more likely to use IVIg as an acute or maintenance therapy. 

Notably, many responses indicated a complex and individualised approach to treating 

MOGAD, largely due to a lack of adequate data.

The uncertainty of relapse risk in MOGAD is probably a major reason for the variability in 

maintenance immunotherapy prescribing. The largest studies of incident cohorts (patients 

diagnosed as MOG-Ab seropositive at the time of their first attack) have indicated a relapse 

risk of 36% at 16 months or 43% at 2 years [16, 17]. However, more patients may be at risk 

of a second attack occurring beyond 2 years. An earlier study with a mean of 6.3 years 

follow-up quoted a relapse risk of 80%, increasing to 93% in cases with over 8 years follow-

up [4]. However, these estimates may have been inflated by ascertainment bias, due to 

inclusion of non-incident cases who were diagnosed only when relapse occurred; many 

monophasic cases may have gone untested and been missed in this study. Variable use of 

immunotherapies has also biased relapse risk in these retrospective studies.

Age at first attack, attack topography, and MOG-Ab titres seem to influence relapse risk, but 

no one factor accurately predicts the disease course. Patients presenting with optic neuritis 

appear more likely to relapse early than those with transverse myelitis or ADEM [4, 7, 16]. 

Numerous studies have identified correlation between MOG-Ab titres and disease activity at 

a population level [16, 17, 29, 30], but as with AQP4-Ab NMOSD, MOG-Ab titres do not 

reliably predict relapses in individual patients. Many persistently seropositive patients do not 

relapse, and seronegative patients can relapse, with or without a return of detectable MOG-

Ab [14, 31]. In adults, high titres at onset are associated with more severe presentations, but 

do not predict future disease course [32]. In children, one study reported that a high MOG-

Ab titre (≥ 1:1280) at onset attack predicted relapse with 46% sensitivity and 86% 

specificity [33]. A prospective cohort study with a median of 4 years follow-up found that 

57% of children become seronegative with a median time from first attack to seronegative 

conversion of 1 year [34]. Relapse occurred in 38% of persistently seropositive children and 

in 15% of those who became seronegative. Children with MOG-Ab positive relapsing 

ADEM have also been reported to become transiently seronegative between attacks [35]. 

This inability of serostatus to accurately predict relapses may explain why the majority of 
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neurologists surveyed did not routinely use longitudinal MOG-Ab testing to aid treatment 

decisions.

Another area of controversy is the impact of relapses on long-term disability. MOGAD 

attacks are usually milder and more steroid-responsive than in AQP4-Ab NMOSD. Earlier 

diagnosis and treatment of relapses may improve recovery versus index attacks. This may 

explain why one study found no difference between relapsing and monophasic patients in 

the proportion of patients with major disability (EDSS score ≥ 3.0 or visual acuity of 

20/100) [17]. However, other studies identified cumulative disability with repeated attacks, 

and recognised that patients with good recovery from their onset attack were at risk of 

disabling relapses, suggesting a role for maintenance immunotherapy [16, 36].

The level of evidence to support selection amongst maintenance therapies in MOGAD is 

poor. No treatments have been evaluated in RCTs, but several observational studies have 

examined treatment responses. MOGAD is clearly steroid-responsive, with several studies 

noting that early relapses frequently occur on withdrawal of corticosteroids [4, 8, 16]. 

Treatment for longer than 3 months following onset attack was associated with a lower 

relapse risk in a large British cohort [16], which may explain why 59.7% of neurologists 

surveyed usually or always treat with oral corticosteroids for at least 3 months. One 

paediatric study reported relapses on all maintenance therapies, except for patients receiving 

prednisolone ≥ 10 mg daily [37]. However, the adverse metabolic effects of exogenous 

corticosteroids limit their use, particularly in children.

Standard first-line NMOSD therapies, including azathioprine, mycophenolate, methotrexate, 

rituximab and IVIg, are associated with reduced relapse rates in observational studies of 

MOGAD [4, 8, 13, 24, 36, 37]. However, small numbers of patients on each individual 

therapy render comparison difficult. Drug choice is therefore likely to depend on availability, 

cost, and individual patient factors, as reflected by the heterogeneity of responses in this 

survey. The overall perception in this survey was that rituximab may be the most effective of 

the commonly used therapies. Interestingly, some studies have reported relatively frequent 

relapses in small numbers of RTX-treated MOGAD patients [8, 13], and a larger 

retrospective study found a modest 43% decline in relapse rate following initiation of 

rituximab, albeit in a relatively selected population with high disease activity [38]. One 

paediatric study suggested superior efficacy of IVIg over rituximab, azathioprine and 

mycophenolate mofetil, though only 12/102 patients received this treatment [13]. This may 

in part explain, together with its favourable safety profile, why IVIg was favoured by 

paediatric neurologists in this survey.

Only a minority of survey respondents had experience treating MOGAD with tocilizumab 

(interleukin-6 [IL-6] blockade) or eculizumab (terminal complement inhibitor). IL-6 plays a 

crucial role in the induction of experimental autoimmune encephalitis (EAE), the murine 

model of MOGAD [39], and CSF IL-6 is elevated in MOGAD patients during acute attacks 

[40, 41]. Tocilizumab has been reported to induce remission in rituximab-refractory 

MOGAD [42–44]. The exact role of complement in MOGAD is less established than in 

AQP4-Ab NMOSD, but human MOG-Ab can initiate complement-dependent demyelination 
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in animal models [45–48]. Further pre-clinical and clinical studies are therefore needed to 

better define the role of novel therapies in MOGAD.

As an anti-CD20 B-cell depleting therapy, like rituximab, it is unsurprising that 72.5% of 

respondents felt that ocrelizumab may be effective in treating MOGAD. The effect of other 

MS-DMTs on MOGAD is unknown, but some studies have suggested poor efficacy, 

particularly of beta-interferon [4, 13, 35, 49]. The detrimental effect of some MS-DMTs in 

AQP4-Ab NMOSD has not been observed in MOGAD thus far.

In summary, treating MOGAD is currently complicated due to the heterogenous clinical 

spectrum and the lack of data. Thus, neurologists appear to be individualizing therapy based 

on patient-specific factors.

There are limitations to this survey. Availability of diagnostic assays varies globally and 

consequently MOGAD is not diagnosed in many regions of the world, which are 

underrepresented. Racial differences in MOGAD phenotypes or the efficacy and tolerability 

of immunotherapies may affect regional treatment paradigms. Furthermore, neurologists 

inevitably acquire unconscious biases due to differing clinical exposures, health care 

systems, drug costs and availabilities. Prescribing practices do not necessarily reflect optimal 

treatment, though we have tried to address these issues.

This survey provides a current cross-sectional view of how ‘MOGAD experts’ treat patients 

in the face of limited evidence and should serve as rough map to prevent nonexperts from 

‘straying too far from the path’. It also highlights the need for prospective observational 

studies with long-term follow-up of incident cohorts and systematic testing of MOG-Ab 

titres to establish the natural history of MOGAD. RCTs should follow and will best establish 

the role of individual immunotherapies.

The more favourable outcomes of MOGAD create genuine equipoise and should make it 

more suited to placebo-controlled trials than AQP4-Ab NMOSD. Ideally, studies should 

examine different patient groups and attack types separately to generate the most clinically 

meaningful data. In the meantime, the results of this survey emphasise the importance of 

taking an individualised approach to treating MOGAD, in which patients make informed 

treatment decisions and are actively encouraged to participate in research.
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Fig. 1. 
Neurologists’ preferences for escalation of acute attack therapies in MOGAD. Mean 

preference scores were calculated as follows: 6 points were given if ranked 1st, 5 points if 

ranked 2nd, and so on, with 0 points if not ranked at all. The total number of points for each 

therapy was then divided by the total number of respondents (52). Higher scores therefore 

indicate earlier use by more respondents. PE plasma exchange or immunoadsorption, HDCS 
high dose corticosteroids, IVIg intravenous immunoglobulin, RTX rituximab, CYC 
cyclophosphamide
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Fig. 2. 
How frequently do neurologists’ treat a first attack of MOGAD with oral corticosteroid 

therapy for greater than 3 months?
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Fig. 3. 
How frequently do neurologists start steroid-sparing maintenance therapy after an onset 

attack of MOGAD?
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Fig. 4. 
How frequently do neurologists start steroid-sparing maintenance therapy after two or more 

attacks of MOGAD?
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Fig. 5. 
Popularity of individual steroid-sparing maintenance therapies as first-, second- and third-

line treatments for a 38-year-old male with relapsing MOGAD. PE plasma exchange or 

immunoadsorption, IVIg intravenous immunoglobulin
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Fig. 6. 
Popularity of individual steroid-sparing maintenance therapies as first-, second- and third-

line treatments for a 6-year-old female with relapsing MOGAD. IVIg intravenous 

immunoglobulin
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Fig. 7. 
Neurologists’ preferences for individual steroid-sparing maintenance therapies to treat a 16-

year-old female with relapsing MOGAD. Respondents were asked to rank eight different 

maintenance therapies in order of preference. No rank was given if the respondent would not 

consider using that therapy. Rankings were then converted to mean scores. PE plasma 

exchange or immunoadsorption, IVIg intravenous immunoglobulin
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Fig. 8. 
Neurologists’ perceptions of the effectiveness of individual maintenance therapies at 

preventing relapses of MOGAD. Respondents were asked to rank ten different maintenance 

therapies in order of their perceived efficacy. No rank was given if the respondent had no 

experience of using that therapy in MOGAD. Rankings were then converted to mean scores. 

The percentage of respondents with experience of using each therapy is given in 

parentheses. PE plasma exchange or immunoadsorption, IVIg intravenous immunoglobulin; 

*Prednisolone dose up to 0.5 mg/kg/day
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