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Impacts of long-term temperature change and
variability on electricity investments
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Long-term temperature change and variability are expected to have significant impacts on
future electric capacity and investments. This study improves upon past studies by accounting
for hourly and monthly dynamics of electricity use, long-term socioeconomic drivers, and
interactions of the electric sector with rest of the economy for a comprehensive analysis of
temperature change impacts on cooling and heating services and their corresponding impact
on electric capacity and investments. Using the United States as an example, here we show
that under a scenario consistent with a socioeconomic pathway 2 (SSP2) and representative
concentration pathway 8.5 (RCP 8.5), mean temperature changes drive increases in annual
electricity demands by 0.5-8% across states in 2100. But more importantly, peak temperature
changes drive increases in capital investments by 3-22%. Moreover, temperature-induced
capital investments are highly sensitive to both long-term socioeconomic assumptions and
spatial heterogeneity of fuel prices and capital stock characteristics, which underscores the
importance of a comprehensive approach to inform long-term electric sector planning.

TJoint Global Change Research Institute (JGCRI), Pacific Northwest National Laboratory (PNNL), College Park, MD, USA. 2 Pacific Northwest National
Laboratory (PNNL), Richland, WA, USA. ®email: zarrar.khan@pnnl.gov

| (2021)12:1643 | https://doi.org/10.1038/s41467-021-21785-1 | www.nature.com/naturecommunications 1


http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-21785-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-21785-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-21785-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-21785-1&domain=pdf
http://orcid.org/0000-0002-8147-8553
http://orcid.org/0000-0002-8147-8553
http://orcid.org/0000-0002-8147-8553
http://orcid.org/0000-0002-8147-8553
http://orcid.org/0000-0002-8147-8553
http://orcid.org/0000-0002-3565-7526
http://orcid.org/0000-0002-3565-7526
http://orcid.org/0000-0002-3565-7526
http://orcid.org/0000-0002-3565-7526
http://orcid.org/0000-0002-3565-7526
http://orcid.org/0000-0003-3992-1061
http://orcid.org/0000-0003-3992-1061
http://orcid.org/0000-0003-3992-1061
http://orcid.org/0000-0003-3992-1061
http://orcid.org/0000-0003-3992-1061
mailto:zarrar.khan@pnnl.gov
www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

ong-term temperature change and its spatial and temporal

variability are expected to have significant impacts on heating

and cooling demands in buildings!~1° and consequently, on
electric sector capacity and capital investments!!. A comprehen-
sive understanding of these impacts is required to ensure the
instantaneous balancing of electricity generation and load while at
the same time expanding electric infrastructure to meet future
energy needs. Many previous studies have advanced the general
understanding of the impacts of long-term temperature changes
on electric sector capacity and investment requirements, both
globally and for individual countries!>12. However, previous
studies have one or a combination of three methodological lim-
itations that could limit a comprehensive understanding of these
impacts. First, studies based on multisector models typically focus
on annual electricity demands without capturing the effects of
temperature change at subannual scales, such as daily and seasonal
peak demands!>12-17 (Supplementary Note 1). Second, studies
using econometric and empirical methods typically do not
account for changes in socioeconomics (population, income),
technological advances, fuel prices, and infrastructure (e.g.,
transportation infrastructure) development®11:18-23 Finally, stu-
dies using power-sector focused tools do not account for multi-
sectoral interactions, including the impacts of broader
socioeconomic trends on energy service demands, economic
competition among fuels to meet those demands (e.g., competition
between electricity and natural gas use for heating in buildings),
and implications of global commodity and fuel markets24-27,

We examine the implications of long-term temperature change
and its spatial and temporal variability on electric sector capacity
and capital investment requirements by addressing the above
limitations. For the purposes of our study, we focus on the United
States (U.S.) as an example because electricity demand is pro-
jected to increase significantly (up to 60% from 2015 to 2050) in
the coming decades?®2?, and the U.S. is characterized by a wide
variation in climate conditions and electricity fuel mixes. Addi-
tionally, a comprehensive understanding of temperature-induced
increases in capacity at the state-level and their fuel compositions
within the context of broader socioeconomic development and
multisectoral interactions is lacking in the literature.

We show that even though temperature-induced increases in
national annual electricity generation in 2100 may be small
(0.5-8.3% across states in 2100), the increases in installed capacity
(3-20%) and corresponding capital investments (3-22%) could be
significant. This difference in temperature impacts suggests that
planning for future electricity systems based only on annual
impacts on electricity supplies and demands could grossly
underestimate system-wide economic implications of long-term
temperature changes. We also show that the spatial distributions
of temperature-induced increases in capacity and investments are
heterogeneous across the U.S. and are driven by a number of
factors, including socioeconomic development, electricity trade,
regional fuel prices, resource endowments, and heterogeneity in
fuel mixes of existing capital stock, and capital stock turnover
rates. Furthermore, these impacts could be highly sensitive to
assumptions about future state-level socioeconomic trends alone,
which affect the development and interactions of other sectors
(e.g., industry, and transport) with the electric sector. Hence, not
accounting for broader socioeconomic evolution and multisector
dynamics could result in under- or over-estimations of electric
capacity investments.

Results

Scenarios and temperature input data. Our central analysis is
based on two variants of the RCP 8.5 scenario, namely, RCP 8.5
w/o temperature impacts and RCP 8.5 w/ temperature impacts30.

Our assumptions in these scenarios are broadly consistent with
the Shared Socioeconomic Pathway SSP2 scenario!32 and
assume middle-of-the-road socioeconomic and technological
development throughout the century and across the globe. The
two scenarios lead to cumulative global emissions (2010 to 2100)
of 5139 and 5142 Gt CO, eq. for RCP 8.5 w/ and w/o temperature
impacts, respectively. These values are consistent with cumulative
global emission estimates from the Intergovernmental Panel on
Climate Change (IPCC) Fifth Assessment Report (AR5)33 for
RCP 8.5 scenarios between 5130 and 7010 Gt CO, eq... We note
that while the RCP 8.5 scenario may not be reflective of a
business-as-usual scenario4, it is a well-established scenario
explored in detail in the literature3>3¢, We construct these sce-
narios using a modified version of Global Change Assessment
Model (GCAM)-USA, a global multisector human-Earth systems
model with state-level details in the U.S. that fully endogenizes
the impacts of temperature change on the provision of buildings
cooling and heating service demands, subannual (monthly day
and night) electricity load profiles, and associated electric capacity
and investment requirements (Methods)3”. We focus only on the
above impacts since they have been argued to be the most
important?’. We reserve a detailed analysis of other impacts,
including climate impacts on energy resources, agricultural yields,
and water availability for future work. We also do not account for
state-level policies such as SB100383% and renewable portfolio
standards#%-41, and other policies, which might alter some of the
results in this study. Although we provide a qualitative discussion
on some of these issues, we leave a detailed exploration of these
impacts and policies for future research. The model also includes
a representation of electricity trade across the U.S. Trade is
calibrated to historic levels reflecting existing conditions and
transmission capabilities. Future trade changes in response to
relative price differentials between states and regions
(“Methods”).

As the names suggest, the RCP 8.5 w/o temperature impacts
scenario does not include any impacts of future temperature
changes (assuming constant climate throughout the century)
while the RCP 8.5 w/ temperature impacts scenario includes
temperature changes and the corresponding impacts on sub-
annual (monthly day and night) electricity demands, load
profiles, and capacity investments. As discussed below and in
the Methods section, these impacts are modeled to capture spatial
heterogeneity in climate conditions, service demands, socio-
economic development, electricity use, and capital stock char-
acteristics within the U.S. We note that the evolution of the
electric sector and temperature impacts could very well be
different depending on socioeconomic assumptions and the RCP
scenario chosen. In subsequent sections, we investigate the
implications of alternative socioeconomic assumptions (SSP3 and
SSP5) as sensitivity cases; however, the full exploration of all
combinations of SSP and RCP scenarios is beyond the scope of
this study.

In the RCP 8.5 w/o temperature impacts scenario, we use
spatially gridded (1/8th of a degree), hourly temperature
projections through 2100 for the RCP 8.5 scenario to estimate
heating degree hours (HDH) and cooling degree hours (CDH) by
state (Methods)*2. The state-level CDH and HDH are then used
as inputs into GCAM-USA to calculate heating and cooling
service demands. Figure 1 shows the annual mean and peak
projections in 2015 and 2100 for CDH and HDH in the U.S.
Between 2015 and 2100, mean and peak CDH increase, while
HDH decrease. In addition, changes in the peak and mean CDH
and HDH are different and not uniform across states. For
example, increases in annual mean CDH from 2015 to 2100 range
from 30% in Arizona to 170% in Wyoming while decreases
during the same time period for mean HDH range from 13% in
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Fig. 1 Annual mean and peak degree hours under RCP 8.5 w/ temperature impacts scenario in 2015 and 2100. a Cooling degree hours (CDH) b Heating
degree hours (HDH). Degree hours are calculated as the difference in temperature in (°F) from a threshold temperature of 65 °F in a given hour. Cooling
and heating degree hours correspond, respectively, to positive and negative differences. Mean and peak degree hours are calculated as the average and
maximum difference over the full year. See “Methods” for more calculations and details.

Florida to 45% in Arizona. In contrast, increases in peak CDH
range from 25% (Florida) to 125% (Massachusetts) while
decreases in peak HDH range from 0% (Florida) to 65%
(California). Broadly, these changes suggest that long-term
temperature changes are expected to have heterogeneous impacts
on electric sector capacity and investment requirements across
the U.S. Additionally, these projections also suggest that increases
in annual electricity demand due to increases in mean CDH could
be offset by decreases in annual electricity demand due to
decreases in mean HDH. However, increases in peak electricity
demands in a year, which are largely determined by increases in
peak CDH will not be offset by a corresponding decrease in peak
HDH because the hours corresponding to the peak CDH and
peak HDH do not coincide (CDH peaks during summer while
HDH peaks during winter months) (Supplementary Note 2). This
suggests an important implication for electric capacity require-
ments to supply these demands since capacity requirements are
driven by peak demands in a year rather than the mean.

Subannual electricity demand and generation dynamics. In
order to study temperature impacts on the electric sector at
subannual scales, we divide each year into 25 time-segments with
one segment per day and night in each month and one annual
super-peak segment that corresponds to the top 10 h in the year

(“Methods”). Our approach to modeling the 25 segments respects
chronology (see Wise et al.37 and “Methods”). In addition, the
number of hours in each segment are determined by the esti-
mated hours of sunlight for each month and state. Solar-based
technologies are not permitted to be dispatched in the night
segments. While heating and cooling make up a relatively small
part of the total annual electricity demand (5% and 10% in 2015
and 4% and 7% in 2100, respectively) (Supplementary Fig. 2 and
Supplementary Fig. 3), they are more significant in the summer
and winter months with cooling accounting for 34% of the load in
the super-peak segment in 2015 and 26% in 2100 (Fig. 2a). In
addition, a clear seasonal trend exists, with higher demands in the
summer months (June to August) driven by cooling, as well as in
the winter (November to February) driven by heating (Fig. 2a).
When temperature impacts are included, national electricity loads
increase in almost all time-segments throughout the year due to
increases in cooling load (Fig. 2b).

The increase in load of approximately 150 GW in the super-
peak segment (Fig. 2b) due to temperature changes in turn
requires investments in additional capacity (Fig. 3 and Supple-
mentary Note 3). The installed capacity is then dispatched in the
25 segments to meet demand in each segment (Fig. 2¢, d). The
dispatch of the installed capacity occurs according to a linearly
optimal least-cost approach in which technologies with lowest
variable cost of operation (that includes fuel, operations, and
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Fig. 2 Electricity demand load (GW) and generation (TWh) in 2100. a Electricity demand load (GW) by segment and end-use service in 2100 under RCP
8.5 w/0 temperature impacts scenario; b Difference in electricity demand load (GW) by segment and service in 2100 under RCP 8.5 w/ temperature
impacts relative to RCP 8.5 w/0 temperature impacts scenario; ¢ Electricity generation (TWh) by segment and fuel in 2100 under RCP 8.5 w/0
temperature impacts scenario; d Difference in electricity generation (TWh) by segment and fuel in 2100 under RCP 8.5 w/ temperature impacts relative to
RCP 8.5 w/0 temperature impacts scenario. Note that scales in the four panels are different. Also, units in a and b are in GW and in ¢ and d are in TWh.
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Fig. 3 Electricity generation (TWh), installed capacity (GW), and capital investments (billion 2015 $) from 2015 to 2100 for RCP 8.5 w/ and w/o
temperature impacts. a U.S. total electricity generation (TWh), b installed capacity (GW), and ¢ Cumulative capital investments (Billion 2015 USD), from
2015 to 2100 under RCP 8.5 w/0o (red) and w/ (blue) temperature impacts. Note: Capital investments are in undiscounted USD. See Supplementary
Table 2 for discounted values.

maintenance costs) are dispatched first (Supplementary Note 4).  generation increases by 54% between 2015 and 2100 while
Ultimately, the increased electricity demand under the RCP 8.5 installed capacity increases by 40% corresponding to cumulative
w/ temperature impacts compared to RCP 8.5 w/o temperature capital investments of USD 6 trillion over this period (Fig. 3).
impacts is met by a mix of fuel sources and technologies. These changes are a response to the RCP 8.5 and SSP2
Figure 2d also shows an interesting investment and dispatch assumptions used in this scenario. When temperature impacts are
dynamic. Owing to their low variable costs, the additional coal, included in the RCP 8.5 w/ temperature impacts scenario,
nuclear, and renewable capacity that is built to meet the increased national electricity generation in 2100 increases by 5% (with the
load is dispatched in all segments. In turn, this displaces some range across states being 0.5-8%, Supplementary Note 5) com-
generation from some gas capacity in the segments with lower pared to the RCP 8.5 w/o temperature impacts scenario. How-
demands. ever, installed capacity in 2100 and corresponding cumulative

capital investments over the century increase by 14% and 16%,

respectively (with the range across states being 3-20% for
National installed capacity and capital investments. In the RCP  installed capacity and 3-22% for cumulative capital investments,
8.5 w/o temperature impacts scenario, national electricity —Supplementary Note 5). This difference in temperature impacts
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on generation and capacity highlights the fundamental forces
driving power-sector evolution. While impacts on annual gen-
eration are largely driven by changes in mean cooling and heating
demands (which partially offset each other as discussed earlier),
impacts on capacity are driven by peak demands (which could be
heating or cooling demands depending on the state). It is
important to note that these results are in response to a single
temperature projection, which lies in the middle of the full
ensemble of the Coupled Model Intercomparison Project 5
(CMIP5) models (see Methods and Supplementary Note 13).
Ensemble member maximum temperatures reach 24 °F greater
than and up to 34 °F less than the values used in our analysis and
will have corresponding implications on the results.
Temperature-induced increases in capital investments accu-
mulate to an additional USD 1 trillion nationally by the end of the
century (note that these are undiscounted investments. See
Supplementary Note 6 for a table showing capital investments
when considering different discount rates. Higher discount rates
could imply lower economic implications). This corresponds to
about an additional 10 billion USD per year on average nationally
(the range across states is from 0 to 4 billion/year) (Supplemen-
tary Note 6). While our quantitative results are broadly consistent
with previous studies based on other methodologies, they also
corroborate the qualitative insights obtained from previous
studies that investment implications of long-term temperature
changes could be nontrivial and that focusing solely on annual
electricity generation impacts could significantly underestimate
overall economic implications of long-term temperature change.

Distribution of capacity and capital investments across fuels
and states. Temperature-induced increases in electric capacity
and capital investments vary across fuels. The largest increases in
capacity are in gas, followed by coal, and solar, while the largest
increases in capital investments are in gas followed by solar, wind,
and coal (Table 1; see Supplementary Note 7 for state-level
installed capacity and cumulative investments by fuel across
scenarios). Temperature-induced increases in electric capacity
and investments also vary spatially across the U.S. (Fig. 4a-d).
The largest increases in installed capacity and investments in
2100 are concentrated in California (CA) (18GW, 18%; 71 billion
USD, 22%), Illinois (IL) (13.6GW, 18%; 67 billion USD, 22%),
Pennsylvania (PA) (13.8GW, 16%, 57 billion USD, 15%), and
Texas (TX) (13.2GW, 9%; 39 billion USD, 10%). These spatial
differences in temperature-induced increases in capacity and
capital investments are driven by heterogeneity in socioeconomic
development, regional fuel prices (which are assumed to be het-
erogeneous across the U.S. in this analysis), fuel mix of existing
capital stocks, the rate of capital stock turnover, and the avail-
ability and costs of renewable resources such as solar and wind
across states. For example, the largest temperature-induced gas
investments occur in CA and TX where gas prices are relatively
lower and population and economic growths are relatively high.
Similarly, the largest temperature-induced wind investments
occur in mid-western states (e.g., IL), where wind resources are
abundant. Note that our scenarios assume no new coal invest-
ment until after 2030. Alternative subannual and spatial dispatch
patterns are possible under different technology assumptions (see
Supplementary Note 3 for results based on a sensitivity case with
no new coal investment allowed throughout the century).
Interestingly, although temperature-induced increases in
capacity and capital investments are largely driven by increases
in cooling demand, their spatial distribution does not exactly
mirror that of peak CDH (Fig. 1a). This is because, electricity
trade serves as an important flexibility mechanism for states to
respond to temperature-induced increases in service demands.

Electricity trade enables domestic demands to be met by installing
capacity elsewhere in the U.S. (Supplementary Note 8). For
example, electricity exports from TX in 2100 increase by 128% in
the RCP 8.5 w/ temperature impacts scenario relative to the RCP
8.5 w/o temperature impacts scenario, suggesting that some of the
temperature-induced increases in capacity and investments in TX
discussed earlier could be used to supply the increased demand in
other states. These results highlight a role for flexibility
mechanisms such as electricity trade in influencing
temperature-induced investments. In addition, although we do
not explore it in this study, the results suggest that alternative
trade patterns and transmission infrastructure development could
have important implications for temperature-induced capacity
and investments.

Sensitivity analysis. Temperature-induced increases in capacity
and capital investments could be sensitive to many assumptions,
including socioeconomic development, technology availability
and costs, fuel prices, and electricity trade. While a full uncer-
tainty analysis is beyond the scope of this paper, we demonstrate
how our results vary in response to changes in two key socio-
economic parameters, namely, population and economic growth
(Table 2). We construct two sensitivity cases—one with low-
population and economic growth corresponding to SSP3
assumptions and the other with high-population and economic
growth corresponding to SSP53143, Population assumptions in
SSP3 and SSP5 correspond to 265 and 714 million in 2100 (—42%
and +55% deviation from the central assumptions) while the
mean economic growth rate assumptions from 2015 to 2100
correspond to 0.4% and 2.4% (—64% and +104% deviation from
central assumptions) (see Supplementary Note 9 for detailed
assumptions). Alternative population and economic growth
assumptions in these scenarios would result in different service
demands in all energy end-use sectors (buildings, transportation,
and industry) and consequently, affect energy prices, the eco-
nomic competition across various fuels, including electricity that
supply those demands, and hence, electric capacity and invest-
ments. These scenarios are run with and without temperature
impacts as in the case for the core scenarios to calculate
temperature-induced increases in electric capacity and capital
investments (Table 2).

Results from the sensitivity analysis suggest that temperature-
induced increases in capacity and capital investments could be
highly sensitive to socioeconomic assumptions alone. For
example, temperature-induced capital investments are 34%
(California) to 65% (Montana) higher across the U.S. under the
SSP5 population and economic growth assumptions and 27%
(Rhode Island) to 36% (Florida, Montana, Nevada) lower under
SSP3 assumptions. These results suggest that holding technology,
and infrastructure constant and ignoring dynamically evolving
prices and fuel substitution as is the case with many previous
studies®11-23 could potentially under- or over-estimate capacity
and investment needs depending on the socioeconomic trajectory
that society ultimately lands into. Alternative population and
economic growth assumptions in these scenarios would result in
different service demands in all energy end-use sectors (buildings,
transportation, and industry) and consequently, affect energy
prices and the economic competition across various fuels,
including electricity that supplies those demands. This would in
turn affect electric capacity and investments. For example, under
the SSP5 population and economic growth assumptions, building
floorspace and transportation vehicle-miles-traveled are, respec-
tively, 50-70% and 16-70% greater across the U.S. compared to
our central assumptions in the year 2100. This results in,
respectively, 48-67%, 40-61%, 43-67% increase in buildings,
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Table 1 Temperature-induced increases in cumulative capital investments (2015-2100; billion USD) by state and fuel.
State Code Biomass Coal Gas Nuclear Refined liquids Solar Wind Total
California CA 1 5 38 2 1 13 6 71
Illinois IL 1 12 23 3 1 16 12 67
Pennsylvania PA 1 6 18 3 2 15 12 57
Washington WA 1 9 16 2 1 8 2 39
Georgia GA 0 2 19 1 1 7 8 39
Texas X 0 2 30 0 1 3 2 39
Missouri MO 0 5 10 1 1 7 10 35
Ohio OH 0 2 19 1 1 7 4 34
Alabama AL 0 4 13 1 1 7 7 34
New York NY 1 3 10 2 1 9 8 33
Arizona AZ 0 4 16 1 1 5 5 32
North Carolina NC 0 2 16 1 1 6 3 29
Indiana IN 0 3 n 1 0 6 6 28
Wisconsin WI 0 4 8 1 0 6 7 27
Michigan Ml 0 3 10 1 0 6 6 26
Kentucky KY 0 3 9 1 0 5 7 26
Louisiana LA 0 2 14 1 1 5 2 25
South Carolina SC 0 2 12 1 0 4 3 23
Tennessee TN 0 1 n 1 0 4 5 23
Virginia VA 0 2 13 1 0 4 2 22
New Jersey NJ 0 2 7 1 1 5 3 19
Oklahoma OK 0 2 9 1 1 3 3 19
West Virginia WV 0 2 6 1 0 4 4 17
Mississippi MS 0 1 9 1 0 3 2 17
Maryland MD 0 2 5 1 0 4 4 17
Oregon OR 0 4 6 1 0 3 2 16
Arkansas AR 0 1 8 1 0 3 3 16
Colorado Cco 0 2 7 0 0 2 3 16
Nevada NV 0 3 5 1 0 2 3 14
Massachusetts MA 0 1 5 0 0 2 2 12
Kansas KS 0 1 4 1 0 4 2 12
Florida FL 0 1 7 1 0 2 1 n
Minnesota MN 0 1 5 0 0 2 2 n
lowa IA 0 1 5 0 0 2 2 n
Utah uT 0 1 5 0 0 1 2 10
New Mexico NM 0 2 3 0 0 2 1 10
Wyoming WY 0 1 4 0 0 1 2 9
Connecticut CT 0 1 3 1 0 2 2 8
Montana MT 0 2 3 0 0 1 2 8
Nebraska NE 0 1 2 0 0 1 1 6
|daho ID 0 1 2 0 0 1 1 5
North Dakota ND 0 1 2 0 0 1 1 5
New Hampshire NH 0 0 1 0 0 1 1 5
Maine ME 0 0 1 0 0 1 1 4
Delaware DE 0 0 1 0 0 1 1 4
South Dakota SD 0 0 1 0 0 0 1 3
Rhode Island RI 0 0 1 0 0 1 0 2
Vermont VT 0 0 0 0 0 0 0 1
US Total USA 12 12 435 40 20 197 169 993
See Supplementary Note 7 for detailed tables by scenario and temperature-induced increases in capacity (notes: capital investments are in undiscounted USD. See Supplementary Table 2 for discounted
values).

transportation, and industrial final energy consumption. Conse-
quently, annual electricity consumption in these sectors are
50-73%, 50-101%, 54-78% higher. Likewise, under the SSP3
population and economic growth assumptions, building floor-
space and transportation vehicle-miles-traveled are 41-49% and
36-59% lower across the U.S. compared to our central
assumptions in the year 2100, resulting in 43-50%, 45-56%,
41-53% reduction in buildings, transportation, and industrial
final energy consumption and consequently, 43-51%, 38-55%,
47-56% reduction in annual electricity consumption. More
broadly, these results highlight the importance of accounting
for broader socioeconomic evolution, and its impacts on

multisectoral interactions in order to plan for adequate capacity
to meet future demands.

Discussion

Our study underlines the need for electric sector capacity
expansion planning and modeling to account for impacts of
temperature changes not only on mean or annual electricity
supplies and demands but also on peak electricity loads and
subannual electricity demand profiles, which drive capacity and
investment requirements. Our study also underscores the need
for such planning to account for broader socioeconomic drivers
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Installed Capacity in 2100 (GW)

a) RCP 8.5 w/o temperature impacts b) Difference RCP 8.5 w/ temperature impacts
GW GW
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Fig. 4 Spatial distribution by state of install capacity (GW) and cumulative capital investments (billion USD) in 2100. a 2100 installed capacity under
RCP 8.5 w/0 temperature impacts scenario. b Difference in installed capacity in RCP 8.5 w/ temperature impacts scenario relative to RCP 8.5 w/o
temperature impacts scenario. € 2015-2100 cumulative capital investments (billion USD) under RCP 8.5 w/0 temperature impacts scenario. d Difference in
cumulative investments in RCP 8.5 w/ temperature impacts scenario relative to RCP 8.5 w/o temperature impacts scenario.

(such as population, income, technology costs and fuel prices), as
well as the development and interactions of other sectors (such as
resources, industry, and transport) with the electric sector since
these could affect electricity demand and hence, electric capacity
and investment requirements. Accounting for all of the above
factors simultaneously is important to plan for a long-term
electricity system that is reliable with sufficient capacity to meet
demands at all times of the year.

Our study has several caveats, some of which lend themselves
to future work. Foremost, this study did not explore alternative
climate scenarios (e.g., RCP4.5). Alternative climate scenarios
could entail drastic energy system transformations such as a shift
toward renewables, nuclear, and CCS technologies. In addition,
such scenarios could entail complex multisectoral dynamics
including a shift toward bioenergy requiring drastic changes in
the land-use and water systems*4, and implications for renewable
energy integration and storage?®. Exploring alternative climate
scenarios and associated dynamics could be a promising area of
future research. Likewise, future research could also explore the
implications of including state-level policies such as RPSs, and
SB100, and transportation policies such as CAFE standards that
could have implications for the deployment of electric vehicles
and hence, electricity demand and investments. Including such
policies could result in alternative investment patterns compared
to the results in this study (e.g., greater investments in renew-
ables). Future studies could also explore the implications of
varying the reserve margin, which was fixed at 15% for
this study.

These caveats notwithstanding, our results suggest a role for
flexibility mechanisms such as electricity trade in influencing some
of the temperature-induced impacts. We find that states with high-
temperature-induced capital investments do not necessarily corre-
spond to those with high increases in peak temperatures because
electricity trade facilitates investments in other states depending on
prevailing market conditions. Future studies could explore the
implications of alternative trade patterns and transmission
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infrastructure development. Future studies could also explore the
role of electricity storage?®47, load-levelling, or demand-side
response measures*®4 in affecting temperature-induced capacity
and capital investments and their spatial and temporal distributions.
Finally, future studies could examine the implications of elec-
trification in the transport sector and the implications of electric
vehicle penetration, and battery charging patterns on amplifying or
mitigating temperature-induced impacts.

Methods

Global Change A sment Model (GCAM)-USA. This study was conducted
using a version (v4.1) of the GCAM with state-level detail in the U.S. and improved
power-sector representation®?-33, GCAM-USA is a dynamic-recursive human-
Earth systems model that combines representations and interactions of the global
economy, energy system, climate, agriculture, water and land-use. GCAM-USA has
been used extensively for a wide range of applications to explore the implications of
changes in key driving forces such as technology and economic growth on national
and international policies and pathways>4-2. GCAM-USA represents the global
economy by disaggregating the world into 32 geopolitical regions (with state-level
detail for the energy and economic systems in the U.S.), 235 river basins and 384
agro-ecological land-use regions. The model tracks electricity production from
primary fuels including coal, natural gas, biomass, nuclear, wind, solar, and geo-
thermal, as well as power plant capital stock by technology and vintage over the
lifetime of the technology. The demand for electricity is endogenous and is
represented by technologies in the buildings (residential and commercial), trans-
portation, and industrial sectors.

The version of GCAM-USA used in this study is a significantly improved
version compared to previous studies®’. Most importantly, this version
endogenizes the electricity supply and demand response to changing temperature
through the buildings sector (Fig. 5). In short, the inputs into our model include
hourly temperature, which are translated into heating degree hour (HDH) and
cooling degree hour (CDH) inputs (as described further in the “Methods” section),
as well as annual GDP and population assumptions (in addition to a host of other
multisectoral assumptions about technology and resource characteristics). In each
future model time step, the model simultaneously and endogenously performs the
following operations:

i. Exogenous GDP and population assumptions are used to calculate annual
floorspace demands.

Heating and cooling service demand per unit of floorspace are calculated in
25 monthly day/night time-segments (including a “super-peak” segment
corresponding to the segment with the maximum load) using exogenously

ii.
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Table 2 Sensitivity of temperature-induced installed capacity in 2100 and cumulative capital investments (2015-2100) to
socioeconomic assumptions.
SSP2 SSP3 SSP5 SSP2 SSP3 SSP5
capacity (GW) capacity (GW) capacity (GW) cum. invest cum. invest cum. invest
Diff. w/ & w.o temp Diff. w/ & w.o temp Diff. w/ & w.o temp (bill. USD) (bill. USD) (bill. USD)
impacts impacts impacts Diff. w/ & w.o Diff. w/ & w.o Diff. w/ & w.o
temp impacts temp impacts temp impacts
National USA 241 125 404 993 669 1480
Alabama AL 9 5 15 34 23 50
Arkansas AR 4 2 7 16 n 25
Arizona AZ 8 4 14 32 21 47
California CA 18 10 26 71 50 95
Colorado coO 4 2 7 16 n 24
Connecticut cT 2 1 3 8 6 12
Delaware DE 1 0 1 4 2 5
Florida FL 3 1 5 1 7 17
Georgia GA 9 5 17 39 26 60
lowa 1A 2 1 4 n 7 17
Idaho ID 1 1 2 5 3 8
lllinois IL 14 7 23 67 46 99
Indiana IN 6 3 10 28 18 42
Kansas KS 3 1 4 12 8 17
Kentucky Ky 5 2 10 26 17 41
Louisiana LA 6 3 n 25 17 36
Massachusetts MA 2 1 4 12 8 17
Maryland MD 4 2 6 17 n 24
Maine ME 1 0 1 4 2 6
Michigan Ml 6 3 10 26 18 40
Minnesota MN 3 1 4 n 7 16
Missouri MO 7 3 12 35 24 55
Mississippi MS 4 2 7 17 12 26
Montana MT 2 1 4 8 5 13
North Carolina NC 8 4 12 29 20 43
North Dakota ND 1 1 2 5 3 8
Nebraska NE 1 1 2 6 4 9
New Hampshire NH 1 0 2 5 3 7
New Jersey NJ 5 3 8 19 13 27
New Mexico NM 2 1 4 10 7 15
Nevada NV 4 2 7 14 9 23
New York NY 8 4 13 33 22 47
Ohio OH 7 3 13 34 23 51
Oklahoma oK 4 2 7 19 13 28
Oregon OR 5 3 8 16 n 25
Pennsylvania PA 14 7 23 57 38 83
Rhode Island RI 0 0 1 2 1 3
South Carolina  SC 6 3 10 23 15 34
South Dakota SD 1 0 1 3 2 4
Tennessee TN 5 3 10 23 15 36
Texas ™ 13 8 19 39 27 53
Utah ut 3 1 5 10 6 15
Virginia VA 6 3 9 22 15 32
Vermont VT 0 0 1 1 1 2
Washington WA 1 6 19 39 26 62
Wisconsin WI 5 3 9 27 19 40
West Virginia WV 4 2 6 17 n 26
Wyoming Wy 2 1 4 9 6 15

ii.

assumed HDH and CDH, thus capturing changing subannual load profiles
in the future in response to temperature.

Demands for other services (e.g. lighting, appliances, other buildings
services) per unit floorspace in each of the 25 time-segments are calculated
using exogenously assumed load profiles.

Annual service demands in transportation and industry are calculated using
exogenous GDP and population assumptions. These are disaggregated into
the 25 time-segments using exogenously assumed load profiles.

Energy to meet service demands is supplied through a variety of
technologies including those that are driven by electricity, gas, refined
liquids, biomass, and hydrogen. In the context of buildings services, energy
is mostly supplied by electricity and gas.

vi.

vii.

A linear least-cost routine is performed to dispatch capacity to meet total
electrical energy demands (that equals the sum of demands from buildings,
transportation, and industry) in each of the 25 time-segments.

The total capacity requirement is calculated to be 15% higher than the load
in the “super-peak” segment (that is the segment with the maximum load).
See more details about this assumption below.

viii. A nonlinear logit-based calculation is used to a estimate the mix of capacity

investments taking into account existing stock and any retirements.

Note that our model represents the temperature change impacts on total

heating and cooling service demands that includes those supplied by electricity
(cooling, and heating), and gas (heating) in addition to impacts at subannual
scales for the electricity component. In this improved version of the model, we
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Fig. 5 GCAM-USA Advances. Conceptual diagram showing new advances

also resolve the demands in transportation and industrial sectors at the scale of
25 subannual (monthly day/night) time-segment units. However, we assume
fixed load profiles for these sectors—that is, the shape of the load curve for the
transportation and industrial sectors do not change over time. In contrast, the
version of the model used in the Wise et al. study resolved demands in the
buildings, industrial, and transportation sectors only at the annual scale and
assumed a fixed load profile to perform the investment and dispatch algorithms
on the supply side (see Supplementary Note 14 for details on model
developments).

As mentioned above, in this version of the model the year is split into 25 time-
segments (one for each month -day and night and a super-peak segment
accounting for the top 10 h in the year) (Supplementary Note 10). Our 25 segment
approach is similar to the one used in the National Renewable Energy Laboratory’s
ReEDS capacity expansion model®? and respects chronology. Specifically, we define
24 segments corresponding to day and night in each month of the year. However,
to ensure that the annual peak is considered, we first bin the top 10 h of loads into a
“super-peak” segment for each grid region, resulting in a total of 25 segments in
each year. We then construct a modified load duration curve by sorting the time-
segments in the order of increasing average load in each segment to evaluate
capacity needs. Loads in these segments are calculated for each state within 15 grid-
regions (we combine the states into 15 electric grid-regions to reflect electricity
market and planning areas) (Supplementary Note 11). A linearly optimal least-cost
approach is used to dispatch capacity to meet electricity demand. Further details of
this approach are provided in Wise et al.3’.

In our model, the total capacity in a model period is calculated to be 15% higher
than load in the “super-peak” segment. This assumption of a 15% reserve margin
constraint is reflective of real-world constraints as imposed by regulatory
authorities such as the North American Electric Reliability Corporation (NERC)%4.
The 15% assumption is also consistent with assumptions made in other U.S.
capacity expansion models as a way of addressing planning for uncertainty in
demands in a deterministic model®®. New capacity choices are made in the four
investment segments based on relative levelized capital, operational and
maintenance (O&M), and fuel costs using a logit modeling approach that reflects a
nonlinear distribution of costs that avoids a “winner-take-all” response. While
capital and O&M costs are based on exogenous assumptions®®, fuel costs are
calculated endogenously based on supply curves (see Supplementary Note 12 for
results using alternative cost pathways).

We note that the model is a myopic, dynamic-recursive, and based on partial
equilibrium concepts!'>¢7. Investments in a given model period are determined by
capital stock, cost assumptions and prices in the same period. For instance, investors
planning in 2030 do not know what is going to happen in future periods (e.g., 2035) in
terms of climate or demand. However, the model does implicitly assume perfect
knowledge of subannual loads (that is, loads within a model period). For example,
investment decisions in the 2030 time period are based on peak loads in 2030
(calculated using HDH and CDH for 2030). This assumption is well-suited to answer
our research objective, which is to estimate capacity requirements to meet electricity
demands driven by future temperature changes. We reserve an exploration of issues
related to the response of investors to short-term shocks, system resilience to surprises,
and unserved demand® for future work.

The model also includes a representation of inter-state and inter-grid electricity
trade at the scale of the 25 time-segments. Within a grid region, we assume
unconstrained trade and, therefore, common prices across states in a grid region.
We model trade across grid-regions using a nonlinear logit-based formulation?”.
Net interregional trade is calibrated to historical levels to reflect existing economic
conditions, as well as implied physical transmission capability. In future modeling
periods, trade can change from calibrated levels as relative regional electricity prices
change. For example, a region with a relative price increase (e.g., due to demand
growth) can import more from other regions. Our formulation implies that an
increasing differential in regional prices is required to expand trade, reflecting an
increasing marginal cost of building and maintaining expanded trade.

made to GCAM-USA for the current analysis.

Demand response to heating and cooling. Subannual load distribution has been
endogenized for heating and cooling demands in the buildings sectors in the
current version of the model. Other electricity demands are assumed to follow a
fixed load distribution for each state based on existing data from the Federal Energy
Regulatory Commission (FERC)?. The data analyzed for retail electricity use
across the buildings (residential and commercial), industry, transport and other
sectors in the U.S. showed that most of the inter-annual variability in the demands
comes from the buildings sector linked to heating and cooling with load shapes in
other sectors being relatively flat’1:72, We note that this can change in the future as
the transport sector becomes more electrified with an increasing number of electric
vehicles, however, these dynamics are left for future studies. The endogenous
demand response to heating and cooling is a function of floorspace (which is linked
to regional per-capita income and consistent across scenarios) and the heating and
cooling degree hours in each of the 25 time-segments as defined by Egs. (1) and (2)
and discussed in more detail in Clarke et al.”> and Zhou et al.”4. The unitless
calibration coefficients k are calculated within the model for each run as the ratio of
actual historical energy demand in the final historical year and the model estimate
using Egs. (1) and (2) and assumptions about consumer preference, building
characteristics, and HDH and CDH. The coefficients are then assumed to be
constant for all future years.

dy = ky (HDH - - R — 1G) {1—exp<—ln—2iﬂ )
He Py
In2 i
de = ke(CDH - - R— IG) [1—exp<ii>] @
ke Pe
where
H = heating
C = cooling

d = energy demand per unit of floorspace (GJ/m?)

k = unitless calibration coefficient

HDH = heating degree hours (hour °C)

CDH = cooling degree hours (hour °C),

1 = thermal conductance (GJ/m?2hour °C)

R = unitless average surface-to-floor area ratio

IG = internalgain [G]/m?]

u = region and sector-specific demand satiation

i = per-capita income

P = total price of service (weighted average of technologies used).

Heating and cooling degree hours. Heating and cooling degree hours are calcu-
lated based on population-weighted, high-resolution, bias-corrected, hourly tem-
perature projections from the Regional Earth System Model (RESM). RESM is based
on the Weather Research and Forecasting (WRF) model’® for the atmosphere and
Community Land Model (CLM)7° for the land, coupled through the flux coupler
(CPL7) of the Community Earth System Model (CESM)”’. To develop regional
climate scenarios for this study, the model was applied to a North America domain at
20 km grid resolution with lateral boundary conditions and sea-surface temperature
provided by CESM (CCSM4). The CESM simulations are part of the Coupled Model
Intercomparison Project Phase 5 (CMIP5) archive’8. For the current climate,
downscaling was performed for 1975-2004 using boundary conditions from a CESM
historical run. For the future, a simulation for 2005-2100 using CCSM4 for the
Representative Concentration Pathways RCP 8.5 was performed.

The bias-correction followed the Bias-Correction Spatial Disaggregation
(BCSD) method described by Wood et al.”. In brief, quantile mapping was used to
remove biases in the simulated monthly mean temperature and precipitation based
on monthly North America Land Data Assimilation System (NLDAS-2) data,
which is comparable to the grid spacing of the RESM simulations (20 km). The
same bias-correction was then applied to the hourly RESM model outputs. To bias
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correct the future climate simulations, a linear trend was fitted to the surface
temperature time series between 2005 and 2100 using linear regression and then
quantile mapping was applied to the residuals after removing the linear trend for
each grid cell.

The climate temperature inputs used in this study (which are derived from the
CESM-CCSM4 model) are compared against model outputs from the Coupled
Model Intercomparison Project 5 (CMIP5) in Supplementary Note 13. The CCSM4
ensemble member estimates temperatures, which lie in the middle of the range of
the CMIP5 ensemble members with ensemble member maximum temperatures
reaching 24 °F greater than the CCSM4 maximum and up to 34 °F less than the
CCSM4 minimum. Future temperature changes that are warmer or cooler than
CCSM4 inputs used in this study could change quantitative estimates of
temperature-induced capacity investments obtained in this study. A detailed
investigation of the implications of uncertainty in future temperature is left for
future studies.

The bias-corrected gridded temperature data was then converted to heating
degree hours (HDH) and cooling degree hours (CDH), defined as the summation
of temperature differences from a subjective reference temperature, which was set
at 65 °F (18 °C) based on the methodology used by National Ocean and
Atmospheric Administration (NOAA)®., HDH was then calculated as the sum of
the degrees below 65 °F (18 °C) and CDH was the sum of the degrees above 65 °F
(18 °C) within each time-segment for each grid cell. The HDH and CDH were then
aggregated and population-weighted for each state to produce the final inputs for
the model as shown in Egs. (3) and (4).

3" HDH, P,

HDH, = R (3)
2By
. CDH, P,
CDH; = Zlipl” (4)
j i
where
i= state
j=grid cell

HDH; = population-weighted heating degree hours in state i
CDH; = population-weighted cooling degree hours in state i
HDH;; = heating degree hours in grid cell j of state i
CDH;; = cooling degree hours in grid cell j of state i

P;; = population in grid cell j of state i

Data availability
All data generated or analyzed during this study are included in this published article and
its supplementary information files.

Code availability

The Global Change Assessment Model (GCAM) is an open-source model available at
https://github.com/JGCRI/gcam-core. The branch of the model with developments made
for this paper can be made available upon request. All charts and maps created in the
article were created using the open-source R package “Metis”, which is available at:
https://github.com/JGCRI/metis.
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