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Theory of optical responses in clean multi-band
superconductors
Junyeong Ahn 1,2✉ & Naoto Nagaosa2,3✉

Electromagnetic responses in superconductors provide valuable information on the pairing

symmetry as well as physical quantities such as the superfluid density. However, at the

superconducting gap energy scale, optical excitations of the Bogoliugov quasiparticles are

forbidden in conventional Bardeen-Cooper-Schrieffer superconductors when momentum is

conserved. Accordingly, far-infrared optical responses have been understood in the frame-

work of a dirty-limit theory by Mattis and Bardeen for over 60 years. Here we show, by

investigating the selection rules imposed by particle-hole symmetry and unitary symmetries,

that intrinsic momentum-conserving optical excitations can occur in clean multi-band

superconductors when one of the following three conditions is satisfied: (i) inversion sym-

metry breaking, (ii) symmetry protection of the Bogoliubov Fermi surfaces, or (iii) simply

finite spin-orbit coupling with unbroken time reversal and inversion symmetries. This result

indicates that clean-limit optical responses are common beyond the straightforward case of

broken inversion symmetry. We apply our theory to optical responses in FeSe, a clean multi-

band superconductor with inversion symmetry and significant spin-orbit coupling. This result

paves the way for studying clean-limit superconductors through optical measurements.
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Optical studies have been very important in super-
conductivity research since the superconducting gap was
first observed by far-infrared optical measurements1. Not

only does the optical absorption gap directly reveal the super-
conducting gap size, but also the loss of spectral weight of the
optical conductivity in the superconducting transition shows the
superfluid density2–4. Optical responses in superconductors are
well understood by the dirty-limit theory of Mattis and Bardeen5

and its extensions to arbitrary purity6,7. Impurity is essential in
the Mattis–Bardeen theory because Bogoliubov quasiparticles
cannot be excited by uniform light when momentum is conserved
in the Bardeen–Cooper–Schrieffer (BCS) model8,9. In this para-
digm, optical responses are due to impurity scattering and
correspond to the Drude responses remaining in the super-
conducting state. They are thus completely described within a
single-band model such as the BCS model and approaches the
Drude formula as the photon energy increases above the gap
[Fig. 1].

On the other hand, there have been cumulative studies
revealing the relevance of multiband effects in superconductivity.
Strong gap anisotropy and multiple gap signatures due to orbital-
dependent pairing have been observed in various super-
conductors, including elemental metals Nb, Ta, V, and Pb10,11,
compound MgB212, strontium titanates13, iron pnictides and
chalcogenides14–16, and heavy fermion compounds17,18. Multi-
band effects are also considered to be important in the super-
conductivity of strontium ruthenates19,20, some half-Heusler
compounds with J= 3/2 degrees of freedom21–23, and twisted
bilayer graphene24–26. This raises the question of whether multi-
band effects can modify the optical responses. However, there has
been no observation of a significant deviation from the
Mattis–Bardeen theory in any materials.

In this work, we challenge the Mattis–Bardeen paradigm by
showing that a significant portion of the far-infrared optical
response in a clean multiband superconductor FeSe is due to

intrinsic momentum-conserving excitations. We show that such
intrinsic optical excitations are allowed by multiband effects. To
establish the criteria for nonzero intrinsic responses system-
atically, we present a tenfold way classification of optical excita-
tions as well as selection rules due to unitary symmetries. Here,
the tenfold way classification is by three symmetry operations T,
C, and S that leave momentum invariant27, whereas the original
tenfold classification by Altland and Zirnbauer28,29 is by three
spatially local symmetries, including time reversal T, particle–hole
conjugation C, and chiral S symmetries [see Table 1]. Since T and
C reverses the momentum, the combination of them with spatial
inversion P (or any other momentum-reversing unitary opera-
tion) defines T and C. In this classification, C symmetry is the key
player that imposes a new selection rule. We find that the absence
of intrinsic optical excitations in single-band models can be
attributed to C symmetry in the superconducting state.

As real materials are always accompanied by disorder, intrinsic
responses coexist with disorder-mediated responses. A super-
conductor is considered to be clean when the mean free path l is
larger than the superconducting coherence length ξ0 and to be
dirty when l is smaller than ξ0. We show that the crossover from
disorder-mediated to intrinsic optical responses occurs at a very
clean regime l � ðkFξ0Þ2α�2ξ0 � ξ0, as illustrated in Fig. 1b,
where kF is the Fermi wave number, and 0 ≤ α ≤ 1 is a degree of
multi-band pairing explained below. When l goes above this
value, the optical conductivity follows the ω−1 behavior of the
intrinsic response, deviating from the Drude-like ω−2 behavior
[Fig. 1d, e]. We discuss the optical response of superconducting
FeSe, which is closest to this crossover regime.

Results
Setting. Our theory is based on the mean-field theory of super-
conductors. We assume uniform illumination of light at zero
temperature and the conservation of momentum. In momentum
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Fig. 1 Dirty and clean optical responses. a Band structure in the Bogoliubov de-Gennes (BdG) formalism. Superconducting pairing opens the bandgap at
the Fermi level EF by mixing electron (red) and hole (blue) bands as shown in (b). ck and cy�k indicate the electron and hole annihilation operators,
respectively. b Optical excitations in dirty and clean limits by spatially uniform light (q= 0) across the superconducting gap 2Δ. The momentum transfer p
− k in the left figure is supplied from the impurity potential. The crossover from dirty to clean optical responses occurs when the mean free path l exceeds
the superconducting coherence length ξ0 by a factor xc ¼ ðkFξ0Þ2α�2. Here, kF is the Fermi wave number, and α is a degree of multiband pairing (see the
text above Eq. (6) for its more precise definition). The red and blue colors schematically represent the electron–hole band mixing in the superconducting
state. c Real part of the optical conductivity in clean systems (x > 1). σs= σdis+ σint in the superconducting state is the sum of disorder-mediated and
intrinsic parts. σint∝ω−1 is insensitive to x while σdis∝ x−1ω−2 depends significantly on x. The Drude conductivity in the normal state σn is also shown as
dashed lines. d, e Ratio of superconducting and normal state conductivities. d Disorder-mediated part. e Intrinsic part.
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space, the single-particle mean-field Hamiltonian has the
Bogoliubov-de Gennes (BdG) form

HðkÞ ¼ hðkÞ ΔðkÞ
�Δ�ð�kÞ �hT ð�kÞ

� �
ð1Þ

in the basis of the Nambu spinor defined by Ψ̂ ¼ ð̂cρsk; ĉyρs�kÞ
T
,

where ĉρsk is the electronic quasiparticle annihilation operator with
orbital ρ and spin s= ↑,↓ indices. Here, h(k) is the normal-state
Hamiltonian, and the pairing function ΔðkÞ / ckc�k

� �
satisfies Δ

(k)=−ΔT(−k) due to Fermi statistics of electrons. The BdG
Hamiltonian always has particle–hole symmetry CH(k)C−1 = −H
(−k) under C= τxK, where τx is a Pauli matrix for the particle–hole
indices and K is the complex conjugation operator.

The electromagnetic field couples to the normal-state Hamil-
tonian through the minimal coupling k ! k þ e

_A, where q=−e
(+e) for the electron (hole) sector. It follows that the velocity
operator is

VaðkÞ ¼ 1
e
∂H
∂Aa

����
A¼0

¼ 1
_

∂kahðkÞ 0

0 ∂ka ½hTð�kÞ�

 !
: ð2Þ

Matrix elements of this operator are important in our analysis
because they describe the transition amplitudes. In the clean limit,
the real part of the optical conductivity tensor is given by

σcaðωÞ ¼ πe2

2_ω

Z
k

X
n;m

f nmðkÞVc
nmðkÞVa

mnðkÞδðω� ωmnðkÞÞ; ð3Þ

where ω is the frequency of light, fnm= fn− fm is the difference
between the Fermi distribution of the nth band fn,
Va

mn ¼ mjVajnh i, and ωmn= ωm− ωn, where H nj i ¼ _ωn nj i9,30.
The delta function is replaced by the Lorentzian distribution
when the mean free path is finite.

Selection rules. Equation (3) is positive-semidefinite when c= a.
Therefore, interband transitions are completely forbidden only
when symmetries impose Va

mnðkÞ ¼ 0 at every k30. The relevant
symmetry operators should be k-local (k→ k). A unitary sym-
metry imposes selection rules by λm(k)= λV(k)λn(k), where λm,n

and λV are symmetry eigenvalues of m,n states, and the velocity

operator, respectively. We always have λV= 1 because k-local
symmetry operations leave Va invariant, as one might expect
because the velocity operator should transform like k. The
selection rules thus simply become

Va
mnðkÞ ¼ 0 when λmðkÞ ≠ λnðkÞ; ð4Þ

meaning that optical excitations are forbidden between two dif-
ferent eigenspaces [Fig. 2a].

Let us consider the transition between two states in the same
eigenspace of the unitary symmetry group. The remaining k-local
symmetries come in three types: anti-unitary T, anti-unitary anti-
symmetry C, and unitary anti-symmetry S, where anti-symmetry
means that the operator anti-commutes with the Hamiltonian.
They form ten EAZ symmetry classes27–29,31 shown in Table 1. T
(or C) comes as a combination of T (or C) with a k-reversing
unitary operator such as spatial inversion P in any dimensions or
twofold rotation C2z in two dimensions. S is the combination TC
up to a phase factor. We find that only C-type symmetry can
additionally exclude transition channels within an eigenspace of
the unitary symmetry group. By using that C is anti-unitary and
that the velocity operator is invariant under C as shown in the
“Methods” section 1, we have

C � nkjVaðkÞjnkh i ¼ 0 when C2 ¼ �1: ð5Þ
This constrains, in particular, the lowest-energy excitations, as

illustrated in Fig. 2b, c. If bands are nondegenerate in each
eigenspace, Eq. (5) indicates that the excitations across the gap are
forbidden when C2 ¼ �1 [Fig. 2b]. See class C and CI in Table 1.

We find that the absence of optical excitations in single-band
metal models, described by a two-band BdG Hamiltonian, can be
attributed to the existence of C ¼ iτyK symmetry. A single-band
metal has the C symmetry in the superconducting state, independent
of the pairing symmetry, when it has symmetry ξ(k)= ξ(k) in the
normal state, where h(k)= ξ(k) is the 1 × 1 Hamiltonian. Since the
formation of Cooper pairs at the Fermi level requires such a
symmetry relating k and −k, it means that typically no optical
excitations can occur in superconductors originating from single-
band metals. One can extend this result to show the absence of
optical excitations in multiband systems satisfying a generalized
single-band pairing condition, the so-called zero superconducting
fitness condition (see section 2 in the “Methods”).

We have three ways of generating nontrivial optical excitations
in an eigenspace. When bands are nondegenerate within an
eigenspace, one can (i) break C symmetry (EAZ class A, AI, AII,
and AIII) or (ii) realize C2 ¼ þ1 (class D and BDI). (iii) Or, when
bands are Kramers degenerate due to T symmetry satisfying
T2 ¼ �1, lowest-energy excitations are generally allowed irre-
spective of the sign of C2 (class DIII and CII). The first condition
(i) just means breaking inversion symmetry when other unitary
symmetries do not exist, which was demonstrated in ref. 30. The
second (ii) implies that the superconductor may host stable
BFSs27,32. Since C2 ¼ þ1 protects 0D Z2 topological charges,
Z2-stable nodal surfaces/lines/points in 3D/2D/1D can appear
after superconducting pairing on the Fermi surfaces, respectively,
which we call as BFSs without distinguishing their dimension. Let
us note that these are twofold degenerate BFSs. On the other
hand, a stable nondegenerate BFS can appear in the EAZ classes
A, AI, and AII. For instance, a superconductor with broken
inversion and time-reversal symmetries can host stable BFSs33–36.
Their stability is guaranteed by the change of the number of
occupied BdG bands across the BFS, which is a Z topological
charge. Since these classes correspond to the case (i), the
symmetry protection of the stable BFSs, whether it is twofold
degenerate or not, indicates that the lowest-energy optical
excitations are possible. The last possibility (iii) is realized in T-

Table 1 Tenfold way classification of the lowest optical
excitations in superconductors.

EAZ class T2 C2 S2 Lowest
excitation

BFS stability

A 0 0 0 Yes* Z
AI 1 0 0 Yes* Z
AII − 1 0 0 Yes* Z
AIII 0 0 1 Yes 0
D 0 1 0 Yes Z2
BDI 1 1 1 Yes Z2
C 0 − 1 0 No 0
CI 1 − 1 1 No 0
DIII − 1 1 1 Yes 0
CII − 1 − 1 1 Yes 0

Anti-unitary T, anti-unitary anti-symmetry C, and unitary anti-symmetry S operators that do not
change the momentum define ten effective Altland–Zirnbauer (EAZ) symmetry classes at a
given generic momentum. 0 in the second set of columns indicates that no corresponding
symmetry exists within the eigenspace of interest. When both T and C symmetries exist,
S ¼ TC in classes BDI and CII (S ¼ iTC in classes CI and DIII) when we choose the convention
TC ¼ CT. In classes A, AI, and AII, the lowest possible excitation energy within an eigenspace
may not correspond to the direct superconducting gap, because the states with the lowest
positive and the highest negative energies may have different symmetry eigenvalues. The
asterisk (*) in the third column means that the excitation cannot occur when there is only one
band in an eigenspace. The last column shows the stability of Bogoliubov Fermi surfaces (BFSs),
meaning nodal surface/line/point in 3D/2D/1D superconductors.
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and P-symmetric systems with spin–orbit coupling. Because of
the twofold band degeneracy imposed by T ¼ PT symmetry,
there are two excitation channels where nj i at energy −∣E∣ can be
excited to +∣E∣ as shown in Fig. 2d. Even when one channel from
nj i to PC nj i is excluded by (PC)2=−1, there exits another
channel from nj i to PTðPC nj iÞ ¼ TC nj i. In the absence of
spin–orbit coupling, each spin sector forms nondegenerate states
so that conditions (i) and (ii) apply [see Fig. 2e and section 3 in
the “Methods”].

Crossover to clean-limit optical responses. In real materials, the
disorder is present even in very clean samples. We thus need to
compare the magnitude of the disorder-mediated and intrinsic
responses to characterize the detectability of the latter. We esti-
mate the magnitude of the intrinsic response by counting the
dimension of the conductivity tensor in Eq. (3), which gives

σ intðωÞ ’ e2
h

1
_ω

ð2ΔÞ2
EF

kd�2
F α2 above the gap, where kF and EF are the

Fermi wave number and Fermi energy. Here, 0 ≤ α ≤ 1 is the ratio
between the dominant pairing Δ and the pairing that are
responsible for the optical conductivity. Comparing this with the
disorder-mediated response, we obtain

σ intðωÞ
σdisðωÞ

’ ω

2Δ
l
ξ0

2Δ
EF

� �2

α2 ð6Þ

above the superconducting gap, where we use that σdis(ω) ≈
σn(ω)5,7 as shown in Fig. 1d, where σn is the Drude conductivity
in the normal state (see section 5 in the Methods). We thus find
that σint≳ σdis at ℏω ~ 2Δ when

x � l=ξ0 > xc ¼ ðkFξ0Þ2α�2: ð7Þ
Since xc≫ 1 in general because kFξ0 ~ EF/Δ≫ 1 (EF/Δ is about

104 for pure metals and 102 for most unconventional super-
conductors), the clean limit for optical responses is realized in
samples much cleaner than that are usually thought to be clean,

just satisfying x > 1. This explains how the Mattis–Bardeen-type
theories have successfully calculated optical conductivity even in
clean superconductors.

Application to FeSe. In FeSe, however, intrinsic optical responses
can make up a significant portion of the observed signal in far-
infrared optical measurements. FeSe is a clean quasi-two-
dimensional material that has a remarkably large ratio Δ/EF≳
0.137 with significant spin–orbit coupling comparable to the
Fermi energy38 and strongly orbital-dependent pairing14, such
that α ~1 is expected. It, therefore, satisfies all the requirements
for significant intrinsic optical responses. Here, we use the low-
energy model of FeSe in ref. 39 to demonstrate our theory,
focusing on the Fermi surface near Γ= (0, 0) for simplicity (see
section 6 in the “Methods”).

We consider six constant pairing functions Δ1, Δ2, Δ3, Δ4a, Δ4b,
and Δ5 that preserve time-reversal symmetry whose matrix forms
and symmetries are given in the “Methods” and Table 2. All of
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Fig. 2 Selection rules in clean superconductors. a Selection rule by unitary symmetry. λ1,2 are eigenvalues of a k-local unitary symmetry operator. No
optical excitation occurs between two states with different eigenvalues. b Selection rule by C symmetry. The case with C ¼ PC is shown. No optical
transition occurs between PC-related states when (PC)2=−1. c Optical excitation channels in C-symmetric superconductors in the clean limit. At low
photon energies comparable to the superconducting gap 2Δ, the relevant excitations are spectrum-inversion-symmetric (SIS) ones, i.e., from energy −E to
E. For nondegenerate bands, they are transitions between C-related pairs. d, e Optical excitations in spin-degenerate systems with and without spin–orbit
coupling, respectively. (here, the order of d and e has been changed in order to match the label in the figure.) In d, T ¼ PT symmetry with (PT)2=−1
imposes Kramers degeneracy. As a state nj i can be excited to one of two SIS states, PC nj i and PTðPC nj iÞ ¼ TC nj i, the excitation from nj i is possible even
when one transition channel, from nj i to PC nj i, is blocked by (PC)2=−1. The same applies to the excitation from PT nj i. In e, the boxes labeled up and
down indicate the spin up and down eigenspace (sz= ℏ/2 and− ℏ/2, respectively). Since C reverses the spin (the anti-particle of a spin-up electron carries
the down spin) while P does not change the spin, PC reverses the spin. Its combination with the spin rotation around the y axis, which is iσy for spin-singlet
pairing, acts within a sz sector. For spin-triplet pairing, the spin rotation around the y-axis acts on the particle and hole sector with an opposite sign due to
the spin carried by the Cooper pair, so the additional τz is introduced (see section 3 in the “Methods”). Optical excitations are forbidden when C defined
within a spin sector, which is −iPCσy for singlet pairing (−iPCτzσy for triplet pairing), satisfies C2 ¼ �1. EF is the Fermi level in all figures.

Table 2 Properties of time-reversal-symmetric constant
pairing functions in a 2D model of FeSe at Γ.

Δ Matrix mx my mz c4z Node Lowest
excitation

~Δ1 iσy + + + + Gapped No
~Δ2 ρziσy + + + − Gapped Yes
~Δ3 ρyσziσy + + + + Gapped Yes
~Δ4a ρyσxiσy − + − ~Δ4b Line Yes
~Δ4b ρyσyiσy + − − �~Δ4a Line Yes
~Δ5 ρxiσy − − + − Point Yes

Here, ~Δ1 ¼ Δ1 iσy , ~Δ2 ¼ Δ2ρz iσy , ~Δ3 ¼ Δ3ρyσz iσy , ~Δ4a ¼ Δ4aρyσx iσy , ~Δ4b ¼ Δ4bρyσy iσy , and
~Δ5 ¼ Δ5ρx iσy . The second column shows the result of transformation ugΔu

T
g by g=mx, my, mz or

c4z. The signs + and − mean +Δ and −Δ, respectively.
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them have even parity, but spin-triplet pairing can occur due to
their multi-orbital nature (Δ3 and Δ4a,4b). As we show in the
“Methods” section 7, for even parity pairing, optical transitions
are not forbidden within each Mz eigenspace in spin–orbit
coupled systems. For Δi= 1,2,3,5 pairing, C symmetry does not
exist within a mirror sector. On the other hand, for Δi= 4a,4b, C
symmetry exists but satisfies C2 ¼ 1 in each mirror sector. In
accordance with our analysis, all multi-band pairing Δi= 2,3,4a,4b,5

allow for non-zero optical responses [Fig. 3a–d]. In the case of
Δi= 4a,4b, and Δ5 pairing, optical conductivity tensors are non-
zero down to zero frequency because of their gapless spectrum
due to the BFS and Dirac points, respectively [Fig. 3d, e].

In experiments, a highly anisotropic pairing gap was observed14,15,
having a sinusoidal shape with 2–3meV peak at ky= 0 and almost
zero deep at kx= 0. Supposing that the gap function belongs to the
trivial representation of the symmetry group, we can obtain a similar
anisotropic gap with various combinations of Δ1, Δ2, and Δ3. For
example, we obtain (i) Δ1= 4.09meV, Δ2= 4.82meV, and Δ3=
1.93meV and (ii) Δ1= 8.98meV, Δ2= 9.39meV, and Δ3= 0meV,
respectively, by least-square-fitting with and without spin–orbit
coupled pairing Δ3 to the function ΔðθÞ ¼ j2:06þ 1:42 cosð2θÞ �
0:44 cosð4θÞj derived from experimental data15. See Fig. 3e. Despite
the huge difference in pairing functions for (i) and (ii), the obtained
conductivity is quite similar, as shown in Fig. 3f–h. When ℏτ−1=
0.1meV (l/ξ0 ~ 102), the xx component of the intrinsic optical
conductivity in the superconducting state σxxint exceeds the Drude
conductivity in the normal state σxxn at around ℏω ~2meV in both
cases. Since the disorder-mediated response in the superconducting
state is comparable to the normal-state response σn, the intrinsic
response dominates above ℏω ~2meV along the x direction.

Discussion
Our theory establishes the existence of the true clean-limit optical
responses beyond the Mattis–Bardeen theory in multiband

superconductors. While we focus on linear responses in the
current work, our classification of optical transitions applies to
nonlinear optical responses also30. Since nonlinear optical con-
ductivity tensors have more components than the linear coun-
terpart, they give richer information on the symmetry of the
system. For instance, it is hard to detect inversion symmetry
breaking from linear optical responses. On the other hand, since
second-order optical responses are allowed only when inversion
symmetry is broken, they directly reveal the presence of inversion
symmetry30. As such, various optical measurements can be used
in the study of clean multiband superconductors. We anticipate
an immediate impact of our work on the optical study of the
exotic superconductivity in FeSe. Furthermore, our theory may be
relevant to the recently discovered 2D superconductivities
reaching Δ/EF > 0.1 in twisted trilayer graphene40,41 and ZrNCl42.
As the synthesis of extremely clean superconductors advances
further, our results will become relevant to more materials.

Methods
Selection rule by C symmetry. Equation (5) can be simply derived as follows.

C � nkjVaðkÞnk� � ¼ CVaðkÞ � nkjC2 � nk� �
¼ C2 C � nkjCVaðkÞC�1jnk� �
¼ ϵC;VC

2 C � nkjVaðkÞjnk� �
:

ð8Þ

We use that C is a anti-unitary operator in the first line, use that C2 ¼ ± 1 is a
number, and Va is Hermitian in the second line, and define ϵC;V ¼ ± 1 by

CVaðkÞC�1 ¼ ϵC;VV
aðkÞ in the third line. Let us recall that VaðkÞ ¼ τz∂kaHðkÞ

for a BdG Hamiltonian H(k). C anti-commutes with τz because C anti-commutes
with τz while a physical unitary operator Ug that combine to define C ¼ UgC

commutes with τz. Since the C symmetry condition imposes CHðkÞC�1 ¼ �HðkÞ,
we obtain ϵC;V ¼ 1, i.e., C commutes with Va(k). Equation (5) then follows.

We note that normal-state systems with an emergent C symmetry follow a
different selection rule because they satisfy ϵC;v ¼ �1. The difference comes from
the fact that, in the normal state, all quasi-particles are electronic quasi-particles that
couple to the gauge field with the equal charge −e (i.e., the emergent C does not
reverse the gauging charge). In this case, the velocity operator is vaðkÞ ¼ ∂ka hðkÞ,
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Fig. 3 Optical conductivity in a model of superconducting FeSe near Γ at zero temperature. Model parameters in the normal state are adapted from
ref. 39 (see section 6 in the Methods). The xx and yy components of the conductivity tensor is shown in red and blue, respectively, in (a–d, f, g). a–d
Nonzero intrinsic optical conductivity tensors for each constant pairing function. See Methods and Table 2 for the matrix form and symmetries of the six
constant pairing functions Δ1–Δ4a, Δ4b, and Δ5. The case of the Δ1 pairing is not shown as the conductivity is identically zero. e Superconducting gap similar
to the experimentally observed gap. FS and the ellipse enclosing it represent the Fermi surface. Red and blue curves correspond to the choice of pairing
functions (i) Δ1= 4.09meV, Δ2= 4.82meV, and Δ3= 1.93 meV or (ii) Δ1= 8.98meV, Δ2= 9.39meV, and Δ3= 0meV, respectively. They are least-
square fits with and without Δ3 to ΔðθÞ ¼ j2:06þ 1:42 cosð2θÞ � 0:44 cosð4θÞj (shown as a black curve) that was obtained in ref. 15 from experimental
data. f, g Conductivity with pairing functions used in (e). σint is the internal optical conductivity in the superconducting state (solid lines), and σn is the
Drude conductivity in the normal state (dashed lines). The disorder-mediated conductivity in the superconducting state is expected to be comparable to σn.
h Ratio of σint and σn. Red and blue curves are for parameters in (f), and magenta and cyan are for parameters in (g). xx and yy indicate the component of
the conductivity tensor. σxy and σyx are not shown in all plots because they vanish due to Mx symmetry.
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where h is the C-symmetric normal-state Hamiltonian, so that CvaðkÞC�1 ¼
∂kaChðkÞC

�1 ¼ �vaðkÞ. The selection rule is then C � nkjvaðkÞjnkh i ¼ 0 when

C2 ¼ þ1, which is opposite to the superconducting case.

Optical excitations with a single-band condition. Let us suppose that the normal
state is described by a single band, i.e., h(k)= ξ(k) is a 1 × 1 matrix. We consider
the normal state having time-reversal symmetry or inversion symmetry (or other
symmetries whose action is equivalent to them43) because only then pairing
between two electrons ck and c−k effectively occurs at the Fermi level. Then, ξ(k)=
ξ(−k) such that Va(k)= ℏ−1∂aξ(k)τ0 has vanishing inter-band matrix components
for all k, where τ0 is the 2 × 2 identity matrix with the particle–hole indices. It
follows that superconductivity in a single-band metal cannot exhibit nontrivial
optical conductivity in the clean limit. The same is true when the band has spin
degeneracy at every k, because h(k)= ξ(k)σ0 is again proportional to the identity
matrix such that the velocity operator is diagonal.

These constraints can be understood from the C symmetry. Let us note that no
identity term appears in the BdG Hamiltonian because we consider ξ(k)= ξ(−k).
Thus, general two-band BdG Hamiltonian takes the form H= gxτx+ gyτy+ gzτz. It
always satisfies CHðkÞC�1 ¼ �HðkÞ for C ¼ iτyK , which satisfies C2 ¼ �1. This
symmetry blocks optical transitions by Eq. (5). Let us consider the case where
bands are twofold degenerate due to T2 ¼ �1 symmetry of the BdG Hamiltonian,
where σy is an effective-spin Pauli matrix. As we assume time reversal or inversion
symmetry, we also have C and S symmetries. We consider two cases with C2 ¼ 1
and C2 ¼ �1 by taking {T ¼ iσyK , C ¼ τxK , S= τxσy} and {T ¼ iτzσyK , C ¼
iτyK , S= τxσy}, respectively, such that H= ξτzσ0+ Δsτyσy, and H ¼ ξτzσ0þ
ðΔt � σyiσyτþ þ h:c:Þ, where τ+= (τx+ iτy)/2. Since these correspond to the spin-
singlet and spin-triplet pairing, there is a continuous spin rotation symmetry
around an axis, such that the spin around the axis is a good quantum number. Each
spin sector is thus described by a two-band BdG Hamiltonian having a C symmetry
C2 ¼ �1.

We can extend the above results to show that the lowest-energy excitations,
from− E to E, are forbidden when a multi-band system satisfies the zero
superconducting fitness20,44 condition, i.e., [h(k), Δ*(−k)]= 0, which always holds
when Δ(k) or h(k) is proportional to the identity matrix. After we take
simultaneous eigenstates of h(k) and Δ*(−k), the BdG Hamiltonian decomposes
into a set of 2 × 2 blocks (4 × 4 blocks, in the presence of spin degeneracy), each of
which correspond to a single-band superconductivity. It follows that transitions
between two states with energies −E and E are forbidden.

Let us explain it in more detail. When the zero superconducting fitness
condition is satisfied, one can take eigenstates αkj i that satisfy
hðkÞ αkj i ¼ ξαðkÞ αkj i, Δ�ð�kÞ αkj i ¼ Δ�

αð�kÞ αkj i. In this basis, the BdG
Hamiltonian is diagonalized into blocks labeled by α:

HαðkÞ ¼
ξαðkÞ ΔαðkÞ

�Δ�
αð�kÞ �ξαð�kÞ;

� �
ð9Þ

where the basis states (1 0)T and (0 1)T correspond to αkj i and α� kj i� ,
respectively. We assume either time reversal symmetry or inversion symmetry of
the normal states, such that ξα(k)= ξα(−k).

The energy eigenstates of the BdG Hamiltonian are then

α;þ; kj i ¼ cos θαðkÞ αkj i
sin θαðkÞ α� kj i�

� �
;

α;�; kj i ¼ � sin θαðkÞ αkj i
cos θαðkÞ α� kj i�

� �
;

ð10Þ

where cos θαðkÞ ¼ ξαðkÞ=Eα;þðkÞ, sin θαðkÞ ¼ ΔαðkÞ=Eα;þðkÞ, and
Eα; ± ðkÞ ¼ ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2αðkÞ þ Δ2

αðkÞ
q

. We have

α;þ; kjvajβ;�; kh i ¼ cos θðkÞ sin θðkÞ vaαβðkÞ þ vaβαð�kÞ
h i

¼ 0 ð for α ¼ βÞ;
ð11Þ

where the normal-state velocity operator

vaαβðkÞ ¼ _�1 αkj∂ahðkÞjβkh i ð12Þ

satisfy vaααðkÞ ¼ �vaααð�kÞ due to either time-reversal or inversion symmetry.
Thus, assuming nondegenerate states, we immediately see that all transitions from
Eα,−(k) to Eα,+(k)=−Eα,−(k) are forbidden because of the vanishing velocity
matrix elements.

The transition between two states with energies −E and E is forbidden even
when spin (or pseudo-spin in spin–orbit coupled systems) degeneracy exists. Spin
degeneracy can be imposed either by PT symmetry or spin rotation symmetry. In
either case, the normal-state velocity matrix element between two spin-degenerate
states αkj i and βkj i vanishes by symmetry, i.e., vaαβðkÞ ¼ 0. Let us first consider the
case where the degeneracy is due to PT symmetry satisfying (PT)2=− 1. Then we
have vaα;β¼PTαðkÞ ¼ �vaα;PTαðkÞ: When spin rotation symmetry exists, the

constraint

va"#ðkÞ ¼ 0 ð13Þ
simply follows from the spin-rotation invariance of the velocity operator. Equation
(11) then shows α;þ; kjvajβ;�; kh i ¼ 0 for α and β related by either PT or a spin
rotation. Combining this with α;þ; kjvajα;�; kh i ¼ 0, we see that all transition
channels from Eα,−= Eβ,− to −Eα,−=−Eβ,− are forbidden.

Optical excitations with spin rotation symmetries. Let us consider the EAZ
classes within spin sectors for example. We first assume that time reversal, spatial
inversion, a spin U(1) rotation and a spin π rotation (around an axis perpendicular
to the U(1) axis) symmetries are all present. Let us take energy eigenstates such that
they carry a definite spin along the z direction. In the case of triplet pairing, this
means that we take the z-direction as the triplet spin direction because continuous
spin rotation symmetries around other directions are broken. Within each spin
sector, bands are nondegenerate at generic momenta. As we show in Fig. 2d, PC flips
the spin because of particles-hole conjugation. However, the combination of spin π
rotation, which is −iσy for singlet pairing (−iτzσy for triplet pairing), and PC acts
within a spin sector, so symmetry under this C-type operation constraints optical
excitations through Eq. (5). Optical excitations between C-related pairs are allowed
when C2 ¼ ð�iσyPCÞ2 ¼ �ðPCÞ2 ¼ 1 and C2 ¼ ð�iτzσyPCÞ2 ¼ ðPCÞ2 ¼ 1,
respectively, for singlet and triplet pairing, where BFSs are stable. Since (PC)2=+1
(−1) for even- and odd-parity pairing (see section 4 in the “Methods” below), this
requires exotic odd-parity singlet pairing or even-parity triplet pairing, which is
possible only when multi-orbital pairing, e.g., an orbital triplet, is realized. Alter-
natively, if inversion symmetry is broken or spin–orbit coupling is not negligible,
optical excitations are allowed with fully gapped superconductivity. Let us note that
sz-preserving spin-orbit coupling is enough to allow optical excitations, because it
breaks spin rotation symmetries around other axes such that C / iσyPC is broken in
each spin sector. In general, spin–orbit coupling breaks all spin rotation symmetries,
so two excitation channels are allowed [Fig. 2e].

Symmetry operator and pairing symmetry. Let ug be a unitary operator that acts
on space as g:k→ gk. Suppose that it is a symmetry operator of the normal state,
i.e.

ughðkÞu�1
g ¼ hðgkÞ; ð14Þ

and the pairing function has eigenvalues eiθg under Ug, i.e.

ugΔðkÞuTg ¼ eiθgΔðgkÞ: ð15Þ
Due to the non-trivial symmetry transformation of the pairing function, the

BdG Hamiltonian is symmetric under

Ug ¼
ug 0

0 eiθg u�g

 !
; ð16Þ

which rotates the hole sector by eiθg more

UgHðkÞU�1
g ¼ HðgkÞ: ð17Þ

Ug satisfies the following commutation relation with the particle–hole
conjugation operator C

UgC ¼ eiθg CUg : ð18Þ
Let us take two examples.

1. Ug= P is spatial inversion: eiθg ¼ þ1 and −1 indicates even-parity and odd-
parity pairing. Thus, PC=+CP (PC=−CP) for even-parity (odd-parity)
pairing.

2. Ug is a spin rotation around the y-axis by π: eiθg ¼ þ1 always for a spin-
singlet pairing, and eiθg ¼ þ1 (−1) when the pairing function is a spin-
triplet with its spin parallel (perpendicular) to the y-axis.

Estimates of disorder-mediated and intrinsic responses in the clean regime.
The disorder-mediated response in the superconducting state is comparable to the
Drude response in the normal state. When the light frequency ω is much larger
than the inverse relaxation time Γ, which is the case in the clean regime ℏΓ≪ Δ≲
ℏω, the Drude conductivity is σnðωÞ ¼ σ0

Γ2

ω2 þ Γ2
� σ0

Γ2

ω2. Here, σ0 ¼ ne2τ
m �

e2
h k

d�2
F ð_�1EFτÞ is the DC conductivity, where m ¼ _2k2F=ð2EF Þ, and n � kdF . Since

σdis ~σn, we have

σdisðωÞ �
e2

h
kd�2
F

EF

2Δ
ξ0
l

� �
2Δ
_ω

� �2

; ð19Þ

where we use EF ~ ℏvFkF, Δ � _vFξ
�1
0 , and l= vFΓ−1.

To estimate the intrinsic response. let us note that the inter-band velocity
operator is linear in the leading order of Δ0=EF , where Δ

0 is the largest multiband
pairing that is allowed to generate interband transitions by the selection rules in
Eqs. (4) and (5). The conductivity tensor in Eq. (3) is thus proportional to Δ02.
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Using that the delta function has the dimension ω−1, and using the Fermi energy
and wave number as other scales, we obtain

σ intðωÞ �
e2

h
1
_ω

ð2ΔÞ2
EF

kd�2
F α2; ð20Þ

where α ¼ Δ0=Δj j is equal to or smaller than one since Δ is the dominant pairing
strength by definition. It follows that

σ intðωÞ
σdisðωÞ

� ω

2Δ
l
ξ0

2Δ
EF

� �2

α2: ð21Þ

above the superconducting gap frequency.

FeSe model at the Γ point. If we regard FeSe as a 2D system, it has three Fermi
surfaces around Γ= (0, 0), X= (π, 0), and Y= (0, π), respectively, in the 1-Fe
Brillouin zone16. Here, we consider the Fermi surface near Γ. The Fermi surface of
FeSe at Γ consists mainly of two orbital degrees of freedom dyz and dxz, so we take

ψðkÞ ¼ dyzðkÞ; dxzðkÞ
� 	T

as the basis state. At zero temperature, the normal-state

Hamiltonian has the form

hΓ ¼ h0 þ hnem þ hSOC; ð22Þ
where h0 ¼ ϵΓ � Aðk2x þ k2yÞ þ Bðk2x � k2yÞρz � 2Ckxkyρx is the most general spin-
less Hamiltonian in the tetragonal phase up to second order in k, hnem=−Dρz is
the constant part of the nematic terms that develops below Tnem ~90 K45–47,
and hSOC= λρyσz is the constant spin–orbit coupling. Here, ρi=x,y,z and σi=x,y,z

are the Pauli matrices for orbital and spin degrees of freedom, respectively. h0 and
hSOC have tetragonal D4h symmetry under mirror mx=−iρzσx, my= iρzσy, and
mz=−iσz, and fourfold rotation c4z ¼ iρye

�iπ4σz , while hnem breaks c4z symmetry
down to c2z symmetry. All have time-reversal t= iσyK symmetry. In our numerical
calculations, we take parameters used in ref. 39, which are ϵΓ=−9 meV, A=
700 meVÅ2, B= C= 484 meVÅ2, D= 15 meV, and λ= 10 meV.

The bulk FeSe shows superconductivity below 8 K without a sign of time-
reversal symmetry breaking16,45. We consider constant pairing functions invariant
under time reversal. Since there are six 4 × 4 matrices that are invariant under t=
iσyK, the pairing function has the form

ΔðkÞ ¼ Δ1 þ Δ2ρz þ Δ3ρyσz

�

þ Δ4aρyσx þ Δ4bρyσy þ Δ5ρx

	
iσy ;

ð23Þ

where Δ1, Δ2, Δ3, Δ4a, Δ4b, and Δ5 are all independent of k. The pairing symmetry
of each term under the D4h point group is shown in Table 2. Let us note that all are
even-parity pairing, i.e., invariant under p=mxmymz= 1. The orbital-singlet
nature of Δ3 and Δ4a,4b allows them to be spin triplet even though they have even
parity.

Optical excitations in Mz, P, and T-symmetric 2D superconductors. In two-
dimensional systems perpendicular to the z axis, Mz symmetry divides eigenstates
into two distinct eigenspaces with Mz eigenvalues λ= ±i. It imposes a
selection rule.

Let MzC= ηCMz, where η= ±1, and Mz nj i ¼ λn nj i. Then,
MzPC nj i ¼ ηPCMz nj i ¼ ηPCλn nj i ¼ ηλ�nPC nj i ¼ �ηλnPC nj i. Thus, nj i and
PC nj i has the different eigenvalues when η= 1 and has same eigenvalues when
η=−1. In the former case, the optical transition from nj i to PC nj i is forbidden by
Mz symmetry because they are indifferent eigenspaces (and the velocity operator
does not change the eigenspace), but the transition from nj i to S nj i is allowed. On
the other hand, in the latter case, the transition from nj i to PC nj i within the same
mirror sector is forbidden when the pairing is odd-parity such that (PC)2=−1.

In summary, optical transitions between particle-hole- and chiral-related states
are forbidden in P and T-symmetric systems when MzC=−CMz and PC=−CP.
Similar constraints can appear in one-dimensional systems also due to mirror
symmetries.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.
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