
Yang et al. Cell Death and Disease          (2021) 12:262 

https://doi.org/10.1038/s41419-021-03552-8 Cell Death & Disease

ART ICLE Open Ac ce s s

Transcriptional profiling reveals the transcription
factor networks regulating the survival of striatal
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Abstract
The striatum is structurally highly diverse, and its organ functionality critically depends on normal embryonic
development. Although several studies have been conducted on the gene functional changes that occur during
striatal development, a system-wide analysis of the underlying molecular changes is lacking. Here, we present a
comprehensive transcriptome profile that allows us to explore the trajectory of striatal development and identify the
correlation between the striatal development and Huntington’s disease (HD). Furthermore, we applied an integrative
transcriptomic profiling approach based on machine learning to systematically map a global landscape of 277
transcription factor (TF) networks. Most of these TF networks are linked to biological processes, and some unannotated
genes provide information about the corresponding mechanisms. For example, we found that the Meis2 and Six3
were crucial for the survival of striatal neurons, which were verified using conditional knockout (CKO) mice. Finally, we
used RNA-Seq to speculate their downstream targets.

Introduction
The striatum is the major information processing center

in the basal ganglia circuits of the mammalian forebrain.
It is involved in multiple neurological functions ranging
from motor control, cognition, emotion, and reinforce-
ment to plasticity underlying learning and memory1. The
dysfunction of neurotransmission or neurodegeneration
of the striatum results in a number of neurological dis-
orders, including Huntington’s disease (HD), Parkinson’s
disease (PD), and obsessive–compulsive disorders2–4.
Thus, exploring the striatal development may provide new
insights for the treatment of these diseases.
Transcription factors (TFs) and genetic regulatory

networks (GRNs) are essential for the differentiation,

migration, and survival of striatal neurons. Currently,
most studies have focused on a few genes through specific
individual pathways to regulate striatal development.
Based on these efforts, the key roles of several transcrip-
tional factors (Gsx2, Dlx1/2, Sp8/9, Isl1, etc.) in control-
ling striatal development have been explored5–7. Although
our knowledge of striatal development has been enhanced
by substantial data from reports, their limited focus
hampers our understanding of the whole process in the
context of systems biology. In fact, TFs are highly
dynamic and interactive, and TF networks regulate striatal
development through highly coordinated expression
changes8. Thus, mapping the global landscape of TF
networks during striatal development may provide some
insights at the system level. Genes that belong to the
similarity functional network may be co-expressed in the
temporal logic and, thus, should have similar expression
profiles to a certain extent9–11. Correlation analysis
between these expression profiles has become the premise
of the guilt-by-association approach, which is used to
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identify genes co-expressed with known genes (probes) to
achieve a specific function or expression pattern12. This
strategy of using a priori knowledge and data integration
can further enhance the elucidation of gene regulatory
functions12. By using known functional annotations as
labels for given genes, one can determine the extent to
which the network summarizes the information by using
a machine learning model to classify these genes as
belonging to a provided function based on their correla-
tion in the co-expression network13.
In the present work, we analyzed the developmental

process of the striatum from a macro-scale perspective
and found that HD was closely related to the later stage of
striatal development. Furthermore, we provided the global
landscape of 277 TF networks in striatal development
based on machine learning, and these TF networks can be
used to infer potential TF functions. For example, our
results showed that Six3 and Meis2 were included in the
TF networks involved in neuronal apoptosis processes.
Using conditional knockout (CKO) mice, we verified that
Six3 and Meis2 are indeed involved in the neuron apop-
totic processes during striatal development. These results

further validate the rationality of our global landscape of
TF networks. Furthermore, we predicted the downstream
targets of Six3 and Meis2 by analyzing the RNA-Seq data
of the Six3 and Meis2 CKO mice, respectively. In con-
clusion, this study provides global TF networks, which
offer valuable assets and provide direct insight into the
molecular details of the striatal developmental process,
enabling us to better understand the striatal development
and its related diseases.

Results
Systematic analysis of striatal development based on
transcriptomes
To investigate the changes of gene expression during

striatal development, we performed RNA-Seq from the
early stage to the adult stage (Fig. 1). After calculating the
normalized gene expression levels as the fragments per
kilobase of the transcript per million mapped reads
(FPKM; see ‘Methods’), we first performed a correlation
analysis of the experimental data between five time points.
We found that all data showed good consistency and a
high degree of correlation (R= 0.95–0.99) between the

Fig. 1 Overview of the experimental design. Firstly, five time points of mRNA in the striatum or LGE of developing mice were measured using
RNA-Seq. Then, the raw transcriptome data were pre-processed to obtain the DEGs, which were divided into two parts (see ‘Methods’): PEGs and
CEGs. Secondarily, the functional TF networks of CEGs were predicted based on co-expression analysis and machine learning. We annotate the
homologous and disease genes from existing databases and test the functional significance of these TF networks. Finally, the hub TFs in the related
TF networks were predicted based on the ARACNE algorithm and CKO mice were constructed to further verify the hub TFs and infer their GRN.
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temporally adjacent experiments (Fig. S1A, B). After pre-
processing the raw data (see ‘Methods’), a list of 15,443
genes was compiled from all five time points (Fig. S1C;
Table S1).
To further investigate the developmental status of the

striatum from E13.5 to P60, we obtained the differentially
expressed genes (DEGs) (see ‘Methods’). We identified all
8861 DEGs, including 882 (10%) TFs (Fig. 2A; Table S2),
and then performed biological process and KEGG path-
way enrichment analysis to assign the genes to functional
categories (Table S2). The functions of these DEGs were
significantly enriched in biological processes, including
the “regulation of cell cycle” (E13.5–E16.5), “regulation of
synapse organization and axonogenesis” (E16.5–P0),
“regulation of ion transmembrane transport” (P0–P14),
“positive regulation of intrinsic apoptotic signaling path-
way and ATP synthesis” (P14-P60), and other biological

processes (Fig. S2A). The functions of these DEGs were
significantly enriched in pathways including the “cell cycle
and Hippo signaling pathway” (E13.5–E16.5), “axon gui-
dance and cAMP signaling pathway” (E16.5–P0), “calcium
signaling pathway and MAPK signaling pathway”
(P0–P14), “Huntington disease and Alzheimer disease”
(P14–P60), and other pathways (Fig. S2B). Throughout
the whole process of striatal development, our results
indicated that cell division gradually decreased. In con-
trast, neuronal differentiation, synapse organization, and
the dopamine signaling pathway were gradually enhanced
from E13.5 to P14 (Fig. 2B). Interestingly, we found that
the significantly altered genes from P14 to P60 are
strongly associated with Huntington’s disease in the
striatum (Fig. 2C). Therefore, our transcriptome dataset
and a collected transcriptome dataset of HD (see ‘Meth-
ods’) obtained from 38 patients14 enabled us to analyze

Fig. 2 Striatal development and correlation analysis with HD. A Expression patterns of DEGs between two adjacent time points. The number of
genes and TFs are shown on the right. B The patterning of striatal development in mice. C Histogram of DEGs (FDR < 0.05) in the striatum from P14
to P60. The top ten significant KEGG pathways of these DEGs are displayed. D Two-tailed hypergeometric tests were conducted to determine
whether there is a significant overlap of altered genes on a specific pathway between striatal development and HD. Correlations on seven pathways
between striatal development and HD. E The number of significantly altered and overlapping genes on seven signaling pathways in striatal
development and HD. The genes (FDR < 0.05) differentially expressed in striatal development and HD (adjusted P < 0.05). F Temporal expression
patterns of 57 overlapping genes across five time points.
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the correlation between striatal development and HD at
the mRNA level. To correlate striatal development with
HD at the level of pathways, we listed all gene products
that were detected in two studies and counted the number
of significantly altered gene products in one of the seven
pathways known to be involved in striatal development
and HD (Fig. 2D; Table S3). Two-tailed hypergeometric
statistical tests (see ‘Methods’) were carried out to
determine whether there was a significant overlap of
altered gene products on a specific pathway between
striatal development and HD (Fig. 2E, F). Importantly, all
pathways exhibited high correlations (–log10 P value >
1.3). Hence, these analyses provided evidence that striatal
development was closely associated with HD processes.

Co-expression analysis identified interrelated functional
modules of continuously expressed genes
To further provide insights into functional transitions

during striatal development, we divided the sum of DEGs
obtained into periodically expressed genes (PEGs) and
continuously expressed genes (CEGs) (see ‘Methods’; Table
S4). We used all 1257 PEGs, including 115 (9%) TFs from
E13.5 to P60, and then performed biological process
enrichment to assign the genes to functional categories
(Fig. S3A, B). Our results show that the PEG biological
process is in line with our delineative striatal development
model in Fig. 2B. We applied weighted gene co-expression
network analysis (WGCNA)15 to obtain a system-wide
understanding of groups of CEGs (7095 genes, including
740 TFs) (Table S5) whose co-expression patterns are
highly correlated during striatal development. The soft-
threshold power of WGCNA was defined as 13 and the
scale-free topology index was >0.85 (Fig. S4A). In total, six
distinct co-expression modules were identified that showed
a diverse trend of gene expression, and each module was
assigned a color name (Fig. 3A; Table S5). Then, to show
the trends in gene expression, the genes from each module
were grouped into two trend clusters using the fuzzy
c-means algorithm16 (Fig. 3A; see ‘Methods’). Clearly, each
module contained not only positively correlated genes but
also negatively correlated genes. Next, the network heat-
map plot further suggested those main modules were
independent from each other (Fig. S4B).
In addition, biological process and KEGG enrichment

analysis of the gene members in each module revealed
distinct biological functions and pathways (Fig. S5A, B;
Table S5). Intriguingly, genes in the orange module were
continuously increased or decreased at the five time
points (Fig. 3A). Genes in this module are enriched
in “mitotic nuclear division” and “DNA replication”
(Fig. S5A, B), which is consistent with cell division and
neuronal differentiation during striatal development.
Many genes are essential for striatal medium spiny neu-
ron (MSN) proliferation and differentiation, including

Gsx2, Dlx1/2, and Sp9, which were defined in this module
(Fig. 3B). Genes in the red module were enriched in
pathways related to “synapse organization”, “regulation
of transmembrane transporter activity”, and “neuro-
transmitter transport”, and all were related to synaptic
transmission (Fig. S5A). Some genes were essential for
striatal development, including Zfhx3, Adora2a, Ppp1r1b,
and Drd2, which were defined in this module (Fig. 3B).
Finally, we selected genes randomly and verified the
expression trends of these genes (Zfhx3, Penk, Drd1,
Tac1, and Isl1) by in situ hybridization (Fig. 3C). Our
results showed that the expression trends of these
genes were correct according to our co-expression mod-
ules. Altogether, these results not only make it possible to
understand the dynamic events during striatal develop-
ment but may also help to identify key factors.

Global map of potential functional TF networks based on
machine learning
From our previous analysis, we identified transcriptional

regulators that exhibited clear temporal dynamics. The
core of the processes that regulate striatal development and
function is the transcriptional circuitry. This prompted us
to focus on TF expression in our time series. We identified
740 differentially expressed TFs from six CEG co-
expression modules (Fig. 4A; Table S5), and these TFs
were used to predict functional TF networks based on
machine learning. Using the co-expression of TFs with
optimized parameter settings and known functional sets
(Table S6), machine learning was performed by the fol-
lowing steps (see ‘Methods’): correlation metrics were
calculated (five algorithms), machine learning predicted
interactions, and high-confidence interactions were clus-
tered into functional networks (Fig. S6A). The output of
machine learning was well organized and ready for use in
the subsequent analysis to predict functional TF networks
(Fig. 4B). The distribution of the interaction network node
degree distribution followed a power law (Fig. S6B), which
has certain biological significance, and this phenomenon is
also widely confirmed17. The high proportions of human
homologous TFs18 and nervous system disease TFs19 in the
mice involved in these networks suggested that the sub-
sequent analysis was likely to provide a reference for
human striatum studies (Fig. S6C, D). Afterward, we parted
the network using the ClusterONE algorithm to partition
the TF networks for downstream analysis20. To assess the
physiological significance of the putative striatum func-
tional networks, we analyzed the TF networks for coherent
biological functions based on GO annotations. We found
that almost all of the TF networks in striatal development
were significantly enriched for associations with essential
processes (Table S7). To prove that the predicted TF net-
works obtained through machine learning have more bio-
logical significance than just co-expression analysis, we
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used the method of comparison with a random model to
assess the accuracy of the predicted TF networks (see
‘Methods’). For each module, which was measured as the
biological process enrichment adjusted p-value distribu-
tion, there was markedly higher significance for the func-
tion of putative TF networks compared to the same
number of randomized networks of TFs in the network
that were not predicted (Figs. 4C and S7). Therefore, 277
putative TF networks were identified from five co-
expression modules (Fig. 4D; Table S7).
Afterward, we roughly predicted some novel TF

functions. For example, we predicted that TF network 1
was enriched in the “neural apoptosis process” with high
significance (adjusted P 9.85E–06) (Fig. 4E). Likewise, we
predicted that TF network 2 was enriched in “central
nervous system neuron differentiation” with high sig-
nificance (adjusted P 4.97E–13) (Fig. 4E). In this TF
network, these TFs (Ascl1, Gsx2, Dlx1, Lhx8, Sox1, Sufu,
Arx, Sall1, and Sall3) have been reported to be associated
with cell differentiation5,21–29. We also predicted other
functional TF networks enriched in “cell fate commit-
ment”, “axonogenesis”, and “cell–cell signaling by wnt”
(Fig. 4E). These functional TF networks can provide us
with rich treasures for predicting novel functional genes,

which will be helpful for researchers carrying out work
related to the striatum, including exploring the core
transcriptional regulators and constructing transcrip-
tional regulatory networks.

CKO of putative TFs leads to abnormal apoptosis in striatal
neurons
Neuronal apoptosis is very important in the develop-

ment of the nervous system, and the striatum is no
exception. Abnormal neuronal apoptosis leads to many
neurological diseases, such as HD and Parkinson’s disease,
which are closely related to the striatum. Therefore, it is
necessary to explore neuronal apoptosis during striatal
development, which will provide new insights and ideas
for researchers. Next, we mainly verified the predicted
neuronal apoptosis-related TFs to further confirm that
our global landscape of TF networks was reliable. The TF
network mentioned above (Fig. 4E), is significantly enri-
ched for biological processes including three main cate-
gories “neuron apoptotic process” (Fig. 5A) based on the
GO term relationships using BiNGO30. To test this
hypothesis, we selected several core factors: Zfhx3, Six3,
and Meis2 (Fig. 5B), in the center of the network, all of
which were poorly studied in “regulation of neuron

Fig. 3 Co-expression analysis of differentially expressed continuous genes. A Hierarchical clustering dendrogram based on the dynamic hybrid
tree cut algorithm shows co-expression modules of continuous genes that are color coded. The co-expressed genes are rearranged, and fuzzy
c-means clustering identifies two distinct temporal patterns of each co-expression module. The x-axis represents five developmental points, while the
y-axis represents log2-transformed, normalized intensity ratios. The number of genes and TFs in each module is shown on the right. B Expression
pattern of reported striatal development genes at five time points. C The expression patterns of striatal development genes were verified by in situ
hybridization at five time points. Scale bars: 100 μm in c.

Yang et al. Cell Death and Disease          (2021) 12:262 Page 5 of 14

Official journal of the Cell Death Differentiation Association



apoptotic process” in the striatum. Recently, the TF Zfhx3
was reported to induce abnormal cell apoptosis in the
striatum during the first postnatal week31. However,
whether Six3 and Meis2 are involved in the cell apoptosis
of striatal MSNs is largely unknown.

To investigate whether Six3 plays a functional role in
striatal MSN apoptosis, we conditionally deleted the Six3
gene in the LGE using Dlx5/6-Cre lines (henceforth
described as Six3-CKO). Cre recombinase was robustly
expressed in the LGE and Six3 was removed from the

Fig. 4 Predicted potential functional TF networks based on machine learning. A Expression patterns of 740 differentially expressed continuous
TFs from different co-expression modules. B Receiver operating characteristic of differentially expressed continuous TFs from each co-expression
module. The AUC is used to assess the quality of machine learning. The AUC of the diagonal is 0.5. C Functional significance distribution of predicted
TF networks and random TF networks. D Schematic of the global atlas of inferred functional TF networks in striatal development. E Example of TF
networks with different functions of known and unknown subunits. The width of the edges increases with the increase of correlation score. The
shape of the node represents whether it is a homologous TF to human (circular node for homology to humans, triangle node for unique in mouse).
The color of the node border represents whether the TFs are associated with nervous system disease (black border for disease TFs, gray border for
non-disease TFs). The black node indicates potential functional TFs. Expression patterns of representative TF networks are shown on the right by
heatmap.
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striatum32. Next, we performed immunostaining of
cleaved Caspase-3 at P0. Our results showed that the
cleaved Caspase-3 positive cells were increased approxi-
mately twofold in the Six3-CKO mice compared with
their littermate controls (Fig. 5C, D). To investigate the
potential mechanism by which Six3 affects neuronal

apoptosis in the striatum, we performed RNA-Seq ana-
lysis at P0 between Six3-CKO mice and their littermate
controls. Our RNA-Seq data revealed ∼431 DEGs in the
Six3-CKO mice (220 downregulated and 211 upregulated
RNA expression) and then performed biological process
enrichment of these DEGs to functional categories

Fig. 5 Novel functions of Six3 predicted from TF networks. A Part of the BiNGO results for a TF network, as visualized in Cytoscape. Red categories
are the most significantly overrepresented. Yellow nodes are not significantly overrepresented, which include orange nodes in the context of the GO
hierarchy. The size of a node is proportional to the number of genes in the test network annotated to the corresponding GO category. B Topological
representation of the reconstructed “regulation of neuron apoptotic process” TF regulatory network using ARACNE. TFs are represented as nodes and
inferred interactions as edges. Gray nodes indicate the known functional TFs. Potential functional TFs are colored orange. The degree of orange
nodes is shown on the right. C The expression of cleaved Caspase-3 in Six3-CKO striatum increases significantly compared to controls at P0. Scale
bars: 100 μm in c. D Histogram showing that the number of cleaved Caspase-3+ cells was increased in Six3-CKO mice. (Student’s t test, ***P < 0.001,
n= 3 mice per group, mean ± SEM). Lv lateral ventricle. Str striatum. E Histogram of DEGs in the LGE at P0 between control and Six3-CKO mice. The
16 DEGs associated with “regulation of neuron apoptotic process” are shown. F A GRN of these “regulation of neuron apoptotic process” genes was
inferred by Genie3. The edge direction represents the regulatory interaction from regulatory genes to target genes. Node size and color are
proportional to the number of genes (in-degree and out-degree). G Key downstream genes that are candidates for regulating the neuron apoptotic
process. The significantly changed genes in Six3-CKO mice versus wild-type mice are shown. Genes are colored by their importance (degree) in the
“regulation of neuron apoptotic process” GRN, and the gene font size increases with its degree.
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(Fig. 5E; Supplementary Table 8), suggesting that Six3
plays a key role in regulating neuronal apoptosis of the
LGE at P0 (regulation of neuron apoptotic process/
adjusted P: 5.45E–05/ 16 DEGs). To further explore the
potential hub downstream factors for regulating neuronal
apoptosis of Six3, we constructed the GRN of 16 sig-
nificantly changed genes using Genie3 (see Supplemen-
tary Methods), which predicted the directed regulatory
links from genes to genes (Fig. 5F). To determine which
genes might be controlled by Six3 in the striatum, we also
measured the static network parameter of this GRN.
Adora2a was thought to have high pleiotropic effects and
play essential roles in regulating neuronal apoptosis
(Fig. 5G). Changes in Adora2a were expected to have
larger biological impacts than those occurring in genes in
the network periphery. This suggests that Adora2a may be
a potential hub downstream factor for Six3 to regulate
neuronal apoptosis. Adora2a is highly expressed in D2-
type MSNs and is involved in cell apoptosis33,34. These
findings suggest that Six3 regulated striatal MSN apop-
tosis by regulating the expression of Adora2a.
To further verify the rationality of our global landscape

of TF networks and confirm whether Meis2 was involved
in striatal MSN apoptosis, we designed the Meis2 targeting
vector to generate the Meis2Flox allele through the strategy
of homologous recombination (Fig. 6A). To analyze whe-
ther Meis2 plays a functional role in MSN apoptosis, we
used Dlx5/6-Cre to conditionally knockout Meis2 (hen-
ceforth described as Meis2-CKO) in the striatum. Our
results showed that Meis2 mRNA expression was com-
pletely lost in the LGE or striatum in Meis2-CKO mice
compared with that in their controls by in situ hybridi-
zation (Fig. 6B). Note that the expression of Meis2 in the
striatum was completely lost but the expression of Meis2
in the cortex remained. Next, we performed immunos-
taining of cleaved Caspase-3 at P0. There were more
cleaved Caspase-3 positive cells in the Meis2-CKO mice
than in their controls (Fig. 6C, D). In order to investigate
the potential mechanism of Meis2 affecting neuronal
apoptosis in the LGE or striatum, we performed RNA-Seq
analysis at E16.5 between Meis2-CKO mice and their lit-
termate controls. Our RNA-Seq revealed that ∼858 DEGs
in Meis2-CKO mice (632 downregulated and 226 upre-
gulated RNA expression) and then performed biological
process enrichment of these DEGs to functional categories
(Fig. 6E; Supplementary Table 9), suggesting that Meis2
plays a key role in neuronal apoptosis of the striatum
(regulation of neuron apoptotic process/ adjusted P:
9.65E–05/ 22 DEGs). To further explore the potential hub
downstream factors for regulating neuronal apoptosis of
Meis2, we constructed the GRN of 22 significantly chan-
ged genes using Genie3 (see Supplementary Methods),
which predicted the directed regulatory links from genes
to genes (Fig. 6F). To determine which genes might be

controlled by Meis2 in the striatum, we also measured the
static network parameter of this GRN. Isl1 and Adora2a
were thought to have high pleiotropic effects and play
essential roles in regulating neuronal apoptosis (Fig. 6G).
Changes in Isl1 or Adora2a were expected to have larger
biological impacts than those occurring in genes in the
network periphery. Our results suggest that Isl1 and
Adora2a may be potential downstream factors for Meis2
to regulate the neuronal apoptosis. In fact, Isl1 and
Adora2a have been reported to be expressed in D1-type
and D2-type MSNs and regulate cell apoptosis in the
striatum6,33,34. Altogether, these results indicated that
the transcriptional factors Six3 and Meis2 are the hub
genes in the transcriptional network for the survival of
striatal MSNs.

Discussion
In this study, we presented the panoramic overview of

the developing mouse striatum from embryonic to adult
stage. Quantitative analysis of 15,443 gene products
allows us to explore the trajectory of striatal development
and identify the correlation between the striatal devel-
opment and HD. More importantly, we provided the
global landscape of 277 TF networks based on co-
expression analysis and machine learning models. Fur-
thermore, we identified the hub TFs Six3 and Meis2
which are involved in regulating the apoptosis of striatal
neurons. Finally, using conditional knockout (CKO) mice
and RNA-Seq data, we verified that Six3 and Meis2
indeed regulated neuronal apoptosis and inferred their
downstream targets during striatal development. There-
fore, our study provides a resource to understand striatal
development and its connection to the striatal disease.
During mouse striatal development, our preliminary

bioinformatic analysis suggested that cell division gradu-
ally decreased, but neuronal differentiation, synapse
organization, and the dopamine signaling pathway gra-
dually increased. It is worth mentioning that the DEGs in
the striatum from P14 to P60 are closely related to HD.
This phenomenon inspired us to investigate whether
there is experimental evidence for a connection between
striatal development and HD. By comparing the mRNA
expression of striatal development with that of HD14, we
found that a noticeable number of pathway regulators in
HD are also differentially expressed in different striatal
development stages. Moreover, we identified statistically
significant networks of overlapping genes in seven path-
ways between striatal development and HD, which sug-
gests that HD is closely relative to striatal development.
The main motivation behind this study was the identi-

fication of networks of co-expressed TFs, with an inherent
expression distribution corresponding to discrete biolo-
gical processes associated with striatal development.
Firstly, individual pair-wise TF associations were scored
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based on the temporal expression profile similarity mea-
sured during striatal development. Next, we used an
integrative computational scoring procedure to derive TF
interactions. The support vector machine learning clas-
sifier used was trained on correlation scores obtained for
reference annotated TF sets35, and we combined all of the
input co-expression data with previously published TF

interaction evidence36. Measurements of the overall per-
formance showed a high area under the curve for the TF
co-expression data. The final filtered 277 TF networks
consist of 655 transcription factors. From these TF net-
works, we identified transcriptional regulators across all
networks, including Ascl1, Gsx2 and Dlx1, which were
highly co-expressed in the LGE during the development

Fig. 6 Meis2 regulates neuronal apoptotic processes in the striatum. A The generation of the Meis2Flox allele. The Meis2 gene-targeting vector
was designed to delete exon 8 of Meis2. B Deletion of the Meis2 gene was confirmed at the mRNA level by in situ hybridization. C The
immunofluorescence staining of cleaved Caspase-3 in Meis2-CKO striatum and controls at P0. Scale bars: 100 μm in b and c. D Histogram showing
that cleaved Caspase-3+ cells were increased in Meis2-CKO at P0. (Student’s t test, ***P < 0.001, n= 3 mice per group, mean ± SEM). Lv lateral
ventricle. Str striatum. E Histogram of DEGs in the LGE between control and Meis2-CKO mice at P0. The 18 DEGs associated with “regulation of
neuron apoptotic process” are shown. F A GRN of these “regulation of neuron apoptotic process” genes was inferred by Genie3. The edge direction
represents the regulatory interaction from regulatory genes to target genes. Node size and color are proportional to the number of genes (in-degree
and out-degree). G The significantly changed genes in Meis2-CKO mice compared to control mice are shown which are candidates for regulating the
neuron apoptotic process. Genes are colored by their importance (degree) in the “regulation of neuron apoptotic process” GRN, and the gene font
size increases with its degree.
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of the striatum, along with their co-expressed targets.
Deletion of the expression of these genes leads to abnormal
differentiation of striatal MSNs5,22,28. Thus, these TF net-
works can be used to speculate novel gene functions during
striatal development. For example, we identified two key
factors (Six3 and Meis2) from one TF network related to
neuronal apoptosis. Since neuronal apoptosis is one of the
major events in striatal development, we further explored
the possible downstream factors of these novel functional
genes to elucidate their potential mechanisms underlying
neuronal apoptosis. We generated Meis2-CKO mice for
the first time. Using Meis2-CKO mice to perform RNA-
Seq, we predicted that Isl1 and Adora2a were regulated by
Meis2 in regulating the neuronal apoptosis. These findings
were supported by the previous reports6,33,34. Moreover,
Using the same approach, we speculated that Six3 regu-
lated the survival of striatal neurons by regulating the
expression of Adora2a. Adora2a is highly expressed in D2-
type MSNs and is involved in cell apoptosis33,34. This raises
the exciting potential to identify more critical factors from
our data and deepen our understanding of the regulation of
striatal development.

Methods
Animals and tissue collection
The mouse genetic background was CD1 in this study.

The Dlx5/6-Cre and Six3F/F mice were previously
described21,37. We generated Meis2F/+ mice in this study.
The details of the targeting construct are shown in Fig. 6.
Briefly, we first generated Meis2 knockout mice via the
ESC targeting system. The cassette is composed of an FRT
site followed by a LacZ sequence and a loxP site. This first
loxP site is followed by neomycin under the control of the
human beta-actin promoter, SV40 polyA, a second FRT
site, and a second loxP site. A third loxP site is inserted
downstream of the targeted exon 8. Exon 8 is thus flanked
by the loxP site. A “conditional ready” (floxed) allele can
be created by flp (ACT-flp) recombinase expression in
mice carrying this allele. Subsequent Cre expression
results in knockout mice. The Mesi2F/F mouse genotype
was identified by PCR (Polymerase Chain Reaction). The
primers were as follows: Meis2-loxp F1: TGTCAAACAT
TGCCATCCAAACAGT, and Meis2-loxp F2: TCATGGA
GAAGACAGCGCTGGT. Mice were group-housed with
approximately three mice in each cage on a 12-h light/
dark cycle, with ad libitum chow and water. The day of
vaginal plug detection was calculated as E0.5, and the day
of birth was considered as P0. Both males and females
were used in all experiments. All animal experiments
described in this study were approved in accordance with
institutional guidelines at Fudan University Shanghai
Medical College.
RNA-Seq analysis was performed as previously descri-

bed38. For the temporal transcriptome analysis, the whole

LGE or striatum was separated from embryonic to adult
mice. The LGE or striatum was collected at five time
points: E13.5, E16.5, P0, P14, and P60. Each time point
had three biological replicates, but we obtained only two
successful biological replicates at P14. The whole LGE or
striatum tissues were washed twice with ice-cold HBSS
(Hanks’ Balanced Salt Solution) to remove blood, quick-
frozen in liquid nitrogen, and then stored at –80 °C for
total RNA extraction. The striatum (including the VZ,
SVZ, and MZ-striatum) of the Dlx5/6-Cre; Six3F/F (hen-
ceforth described as Six3-CKO) mice and their Dlx5/6-
Cre littermates (henceforth described as controls) were
dissected at P0 (n= 3 mice, each group). The LGE or
striatum (including the VZ, SVZ, and MZ-striatum) of the
Dlx5/6-Cre; Meis2F/F (henceforth described as Meis2-
CKO) mice and their Dlx5/6-Cre littermates (henceforth
described as controls) were dissected at E16.5 (n= 3 mice,
each group).

Immunohistochemistry
Mice were anesthetized with an intraperitoneal injection

of ketamine (100mg per kg) and transcardially perfused
with a fixative solution containing 4% paraformaldehyde
(PFA). The brains were post-fixed in 4% PFA at 4 °C
overnight. Sections of 20 μm thickness were used for
immunostaining. The sections were washed with 0.05M
TBS for 10min, incubated in Triton-X-100 (0.5% in 0.05M
TBS) for 30min at room temperature (RT), and then
incubated with block solution (10% donkey serum +0.5%
Triton-X-100 in 0.05M TBS, pH= 7.2) for 2 h at RT.
Primary antibodies against cleaved Caspase-3 (1:500; Cell
Signaling, 9661, 43) were diluted in 10% donkey serum
block solution, incubated overnight at 4 °C, and then rinsed
three times with 0.05M TBS. Secondary antibodies (from
Jackson, 1:500) matching the appropriate species were
incubated for 3 h at RT. The fluorescently stained sections
were then washed three times with 0.05M TBS. This was
followed by 4′,6-diamidino-2-phenylindole (DAPI) (Sigma,
200 ng/ml) staining for 3min, and the sections were then
coverslipped with Gel/Mount (Biomeda, Foster City, CA).
Fluorescence images were collected with an Olympus-
BX61VS microscope using 10× and 20× objectives.

In situ RNA hybridization
In situ RNA hybridization experiments were performed

using digoxigenin labeled riboprobes on 20 μm frozen
sections as previously described31,32 or made from cDNAs
amplified by PCR using the following primers:
Drd1 Fwd: GGCATTTGGAGAGATGTGGCACCAG.
Drd1 Rev: AGATAGCCCAATACCTGTCCACGCT.
Meis2 Fwd: CGATGGGTTAGACAACAGCGTAGCT

TCACCTG.
Meis2 Rev: ATGGCTTGGCAAATATGATGCATTGG

GTCCATG.
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Isl1 Fwd: ATGGGAGACATGGGCGATCC.
Isl1 Rev: CATGCCTCAATAGGACTGGCTACC.
Penk Fwd: TCGGAAGGACAGGATGTCATCA.
Penk Rev: CGTCAGGAGAGATGAGGTAACAAAC.
Tac1 Fwd: CCCCTGAACGCACTATCTATTC.
Tac1 Rev: TAGAGTCAAATACCGAAGTCTCAG.
Zfhx3 Fwd: CGATCTGGCCCAGCTCTACCA.
Zfhx3 Rev: CTGTAAGCCTGCGAGGGCATAG.

Quantification
DAPI staining was used to define the striatal area for

quantification. Brain regions were identified using a
mouse brain atlas39 and sections equivalent to the fol-
lowing coordinates: the most-rostral section, 2.19 mm; the
most-caudal section, 3.03 mm, n= 3 mice for each gen-
otype, 4 sections per mouse). Schema chart was shown in
Fig. S8. For quantification of Caspase-3 positive cells in
entire striatum at P0, four 20-μm thick coronal sections
from rostral, intermediate, and caudal levels of the stria-
tum were analyzed. We counted all Caspase-3 positive
cells in the striatum.

RNA sequencing and data processing
The total RNA was extracted from the LGE or striatum

tissues and treated with deoxyribonuclease I (DNase I).
mRNA was isolated by Oligo Magnetic Beads and cut into
small fragments that served as templates for cDNA synth-
esis. Once short cDNA fragments were purified, they were
extended with single-nucleotide adenines, ligated with sui-
table adapters, and amplified by PCR before they were
sequenced. High-throughput RNA sequencing (RNA-Seq)
experiments were carried out using the Illumina compre-
hensive next-generation sequencing (NGS) technique. The
raw data were filtered and processed by FastQC software
(Version 0.11.5, available online at the website: http://www.
bioinformatics.babraham.ac.uk/projects/fastqc). Low-quality
RNA-Seq reads were removed if they had a Phred quality
score of less than 20 or had less than 50 nucleotides. The
filtered reads were mapped onto the mouse reference gen-
ome (GRCm38.p2.genome, released on 12/10/2013) using
HISAT2 software (Version 2.1.0). Assembly and quantifi-
cation of the transcripts were accomplished with StringTie
software (Version 1.3.1) using the mouse genome annota-
tion file as the reference (gencode.vM2. annotation, available
at the GENCODE website). The number of FPKM was
used for the measurement of the relative abundances of the
transcripts.
The Pearson correlation coefficient was calculated

between biological replicates with the normalized
expression levels of log2 (FPKM value +1). The missing
value defaulted to 0. The comparison of the two biological
replicates showed that the expression values between
them were highly correlated (average R= 0.98). Hence,
the average FPKM value of the two replicates was taken as

the expression level for the sample at each time point.
However, prior to this point, the transcription was per-
formed at least twice in biological repetitions. Afterward,
to reduce the influence of transcription noise, a gene was
defined as expressed if its FPKM value was ≥1 at least at a
time point.
The read counts were utilized for differential expression

analyses using the edgeR package in R. A key feature of
the edgeR package is the use of weighted likelihood
methods to implement a flexible empirical Bayes
approach in the absence of easily tractable sampling dis-
tributions40. Gene expression data between adjacent time
points (E13.5–16.5, E16.5–P0, P0–P14, and P14–P60)
were used for differential analysis. The false discovery rate
(FDR) was controlled by the Benjamini and Hochberg
(BH) algorithm. Unless otherwise specified, genes with an
FDR <0.01 and a fold-change (FC) >2 or <0.5 were judged
to be differentially expressed. Also, the DEGs were divided
into two parts: PEGs (the genes differentially expressed
between only two adjacent time points) and CEGs (the
genes differentially expressed between at least three
adjacent time points).
Hierarchical clustering was performed by the pheatmap

package in R. Additionally, the transformed and normal-
ized gene expression values were calculated by dividing
their expression levels at different time points by their
maximum observed FPKM for hierarchical clustering.

Referenced datasets
We obtained microarray gene expression profiling data

from the following GEO datasets (http://www.ncbi.nlm.
nih.gov/geo/): GSE3790, which includes human post-
mortem striatal tissue from 38 HD-gene-positive cases
and 32 age- and sex-matched controls14 (more informa-
tion in Supplementary Table 11). HD cases were analyzed
according to the presence or absence of disease symptoms
and Vonsattel pathological grade (scale= 0–4). According
to the Vonsattel scale, two neuropathologists with special
interest and expertize in HD pathology graded the cor-
responding formalin-fixed and paraffin-embedded cau-
date section of HD cases. This grading scale is based on
the overall pattern of caudate nucleus neuropathology, the
number and proportion of neurons and astrocytes. Some
cases were cross-referenced to confirm the consistency
of the scoring procedure. DNA was extracted from all
patients and controls, and the CAG repeat length allele in
IT15 (HD gene) was genotyped. The Affymetrix micro-
arrays, we downloaded the gene expression matrix to
identify the DEGs (adjusted P < 0.05) by using the limma
package.

Functional annotation GO term analysis
Functional annotation for the expressed gene list was

performed with the clusterProfiler, GO.db, DOSE, org.
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Mm.eg.db, and org.Hs.eg.db packages in R. The adjusted
p value method was controlled by the BH algorithm. GO
terms with adjusted p values < 0.05 were judged to be
significant terms. The enrichGO function was used to
perform the GO enrichment and the enrichKEGG func-
tion was used to make KEGG enrichment.

Two-tailed hypergeometric statistical test
Two-tailed hypergeometric statistical tests were carried

out by R (the phyper function, lower.tail= F) to determine
whether there was significant overlapping (p value < 0.05)
of the number of DEGs on a specific pathway between
striatal development (P14 to P60) and HD. In the appli-
cation of the phyper function, the total number of genes
involved in the pathway was from the KEGG database.

Weighted gene co-expression network analysis
Weighted gene co-expression network analysis was

performed using the R package WGCNA15. The log2
(FPKM value +1) transformed data were used to generate
a matrix of the Pearson correlations between all pairs of
genes across the samples. The value β= 13 was chosen as
the saturation level for a soft threshold of the correlation
matrix based on the criterion of approximate scale-free
topology. To minimize the effects of noise and spurious
connections, the correlation matrix was transformed to
the topological overlap matrix using the “TOMsimilarity”
function15. The topological overlap matrix was then used
to group highly co-expressed genes by performing average
linkage hierarchical clustering. The dynamic hybrid tree-
cut algorithm was used to cut the hierarchal clustering
tree15, and the modules were defined as the branches
resulting from this tree cutting. The minimum module
size was defined as 30, and the threshold for the merging
of similar modules was defined as 0.35.
Then, to show trends in gene expression, the genes from

each module were grouped into clusters using the Mfuzz
package in R with the fuzzy c-means algorithm16. Before
clustering, standardization of the expression values of
every gene was carried out, so that the average expression
value for each gene was 0, and the standardization
deviation of its expression profile was 1.

Processing of machine learning
Genes that belong to the similarity functional network

may be co-expressed in the temporal logic and, thus,
should have similar expression profiles to a certain extent.
The exploration of the similarity between gene expression
profiles can be transformed into the exploration of the
correlations between them. At the same time, the corre-
lations between known functional gene sets can be taken
as an internal reference. Through machine learning, it is
possible to explore the similar functional networks and the
diversity of gene functions to a certain extent. For now,

machine learning of correlations between substances has
been used to search for potentially relevant substances,
such as the components of protein complexes in their
natural state35,41,42. Therefore, we hope to explore similar
functional gene networks and gene functional diversity on
a large scale to some extent.
We applied several methods to measure the similarity of

two gene expression profiles to emphasize multiple gene
expression profile features. We treated each expression
profile as a vector consisting of the observed FPKM for a
particular gene across the corresponding temporal logic,
and a complete co-expression experiment was stored as a
matrix in which the rows and columns represent genes
and times, respectively. To measure the co-expression
profile similarity between two genes, we employed various
correlation metrics that ranged from simple scores to
more sophisticated metrics based on information theory.
The Jaccard score (Jaccard) computes the ratio of how
often genes are expressed at the same time point and how
often genes are detected at all times. Thus, the Jaccard
score between two genes was calculated by counting the
number of time points that contained both genes and
dividing the result by the number of time points that
included at least one of the two genes. The Pearson cor-
relation coefficient (PCC) is used to measure the similarity
of two gene co-expression profiles. The PCC was calcu-
lated using the vector of the raw FPKM. Mutual infor-
mation (MI) considers both linear and nonlinear
dependencies between vectors. The Bayes correlation
(Bayes) was proposed to process RNA-seq gene expres-
sion data based on sequence counts for various genes
under different conditions. Here, we applied the same
method for the FPKM for various genes across the tem-
poral logic. For the Apex score (Apex), most genes tend to
be expressed at a specific time, and thus, the time point
that contains the largest amount of a particular gene is
typically also the most critical time for that gene. Thus,
two genes are considered to be more likely to have similar
functions if the time points containing the largest recor-
ded amounts of these genes across all times are the same.
These correlation coefficients were all between 0–1

(except the Apex, which was either 0 or 1). To reduce the
operation time, we reserved the pairs with the maximum
correlation scores (gene co-expression pairs in all four
different correlation measures) ≥0.75/0.85. Afterward, the
correlation vectors were input into a supervised machine
learning model (random forest algorithm) that was both
trained to predict new gene pairs and benchmarked against
reference positive (annotated) gene groupings (that is, the
enrichment of each module of genes in the GO database)
(Table S10) and negative gene groupings (that is, combi-
nations of genes with distinct enrichments in each gene
module). The additional supporting evidence (for example,
functional interactions inferred from co-expression) was
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integrated from public sources TRRUST236, thereby pro-
ducing richer and more accurate interaction networks.
Finally, network partitioning to define gene network
membership was applied by ClusterONE20. Afterward, to
prove that the co-expressed gene networks obtained
through machine learning had more biological sig-
nificance, the functional significance of the randomly
generated gene networks was compared. A randomly
generated gene network is a random sampling of the genes
involved in machine learning, and random sampling
ensures that the number of gene networks and the total
number of genes in each gene network are consistent. We
conducted a total of 100 random samplings, conducted
enrichment analysis of the results of each random sam-
pling, and calculated its average frequency in each sig-
nificance stage to exclude the contingency of random
sampling.

Static network analysis and gene regulatory network
prediction
The reconstructed network was imported into the

Cytoscape43 software package for subsequent analyses.
The network was analyzed based on the topological
parameters, i.e., the number of nodes, diameter, radius,
centralization, density, heterogeneity, number of con-
nected components, number of the shortest paths, char-
acteristic path length, and average number of neighbors,
and central parameters (i.e., the node degree distribution
and neighborhood connectivity distribution) using the
Network Analyzer plugin.
To infer the gene regulatory network, given the

expression profiles and the list of genes, putative reg-
ulatory links from genes to all other genes were estimated
using Genie344 with default parameters, and only the top
25% of regulatory links with a prediction weight were
retained for constructing a GRN. For each node (gene) in
the network, the in- and out-degrees represented the
number of edges (regulatory links) directed to and from
this node, respectively.

Annotation of genes using existing datasets
The transcription factor annotation integrated three

databases (Table S10), which were TRRUST2, TFdb, and
GO. TRRUST2 (https://www.grnpedia.org/trrust/) is a
manually curated database of human and mouse tran-
scriptional regulatory networks36. TFdb (http://genome.
gsc.riken.jp/TFdb/) is a database containing mouse tran-
scription factor genes and their related genes. The genes
are annotated in the Gene Ontology database as
GO:0003700, “DNA-binding TF activity”.
The disease annotation was from the DisGeNET

(https://www.disgenet.org/) database, which is a discovery
platform containing one of the largest publicly available
collections of genes and variants associated with human

diseases19. The genes annotated in the DisGeNET data-
base as Nervous System Diseases, Mental Disorders,
Behavior and Behavior Mechanism were collected as
custom nervous system-associated disease databases
(Table S10).
The homologous annotation was from the Brain Atlas

(https://www.proteinatlas.org/humanproteome/brain),
which explores protein expression in the mammalian
brain by the visualization and integration of data from
three mammalian species (human, pig, and mouse)18.
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