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Aptardi predicts polyadenylation sites in sample-
specific transcriptomes using high-throughput RNA
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Annotation of polyadenylation sites from short-read RNA sequencing alone is a challenging

computational task. Other algorithms rooted in DNA sequence predict potential poly-

adenylation sites; however, in vivo expression of a particular site varies based on a myriad of

conditions. Here, we introduce aptardi (alternative polyadenylation transcriptome analysis

from RNA-Seq data and DNA sequence information), which leverages both DNA sequence

and RNA sequencing in a machine learning paradigm to predict expressed polyadenylation

sites. Specifically, as input aptardi takes DNA nucleotide sequence, genome-aligned RNA-Seq

data, and an initial transcriptome. The program evaluates these initial transcripts to identify

expressed polyadenylation sites in the biological sample and refines transcript 3′-ends
accordingly. The average precision of the aptardi model is twice that of a standard tran-

scriptome assembler. In particular, the recall of the aptardi model (the proportion of true

polyadenylation sites detected by the algorithm) is improved by over three-fold. Also, the

model—trained using the Human Brain Reference RNA commercial standard—performs well

when applied to RNA-sequencing samples from different tissues and different mammalian

species. Finally, aptardi’s input is simple to compile and its output is easily amenable to

downstream analyses such as quantitation and differential expression.
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A lternative polyadenylation (APA) is gene regulation
mechanism by which a single gene encodes multiple RNA
isoforms with different polyadenylation (polyA) sites1 (i.e.,

different transcription stop sites/3′ termini). Most APA sites lead to
identical protein products but variable 3′ untranslated region
lengths2. APA has been associated with disease through many
transcripts displaying APA (e.g., cardiac hypertrophy3, oculophar-
yngeal muscular dystrophy4,5, breast cancer, and lung cancer6) and
APA in an individual transcript (e.g., Fabry disease7, amyotrophic
lateral sclerosis8, metachromatic leukodystrophy9, and facioscapu-
lohumeral muscular dystrophy10). Furthermore, differences in
expression of APA transcripts have been implicated in diseases11

and are recognized as risk factors in complex diseases12. Indeed,
research suggests individual susceptibility to complex diseases is
mainly owing to variation in gene regulation processes—such as
APA—rather than variation in protein-coding sequence13–16.
APA’s impact is expected given that it is pervasive, with >70% of
human genes subjected to APA17, and also far-reaching, as it
modulates mRNA stability, translation, nuclear export, and cellular
localization, as well as the localization of the encoded protein2,18—
often times through differences in microRNA binding availability.

APA patterns are tissue specific19,20, and “choice” of polyA
sites can be influenced by physiological, environment, and disease
states1,21. This dynamic may explain—at least in part—why
polyA sites are often under annotated22 and, furthermore, why
(the often times sparse) prior annotation is typically not relevant
to the given set of experimental conditions23. As a result, polyA
sites often need to be re-defined for the sample(s) of interest to
gain insight into the role of APA in various processes and diseases
(e.g., are certain APA transcripts biomarkers of, or therapeutic
targets for, a given disease state?). There are three broad
sequencing technologies utilized to identify polyA sites: (1) short-
read RNA sequencing (RNA-Seq), (2) direct 3′-end RNA
sequencing, and (3) DNA sequence, but each possesses inherent
limitations for sample-specific identification of polyA sites.

Next-generation RNA-Seq has become the standard technology
to profile the expressed transcriptome. The resulting short reads are
used by transcriptome assemblers to produce a genome-scale,
sample-specific transcriptome map. Transcriptome assembly has
proven a powerful approach to assess the transcriptome, but
accurate determination of polyA sites from short-read RNA-Seq
alone is a known shortcoming1,24–27. Unlike splice junctions that
can be precisely located via reads that span the junctions, polyA
sites are characterized by a gradual drop off in coverage28. For
assemblers that harness prior annotation to guide the reconstruc-
tion, often the annotated polyA site assumed by the assembler is not
correct22. Although many transcriptome assemblers have been
developed—each with its own design—to our knowledge none have
demonstrated competence at annotating 3′-ends. Some assemblers,
e.g., Cufflinks29/StringTie22, construct a minimum path RNA-Seq
cover to the position where there is zero read coverage to annotate
the 3′-end of a transcript28,30; but, since reads can be derived from
precursor mRNA31, this often results in an overestimation of polyA
sites. Others, e.g., Scripture32, calculate scan statistics above geno-
mic background to define transcript structures, but this approach
tends to produce biased estimates of polyA sites and, in general, is
not well-suited for defining 3′-ends33. Importantly, these strategies
are only capable of producing a single transcript stop site per intron
chain structure, which tends to be the distal polyA site, thereby
missing embedded proximal polyA sites, i.e., APA isoforms28. The
challenge of accurately identifying polyA sites is apparent to both
the developers and those evaluating assemblers by way of allowing
for error at 3′-end predictions when assessing accuracy22,34.

Acknowledging the challenges of annotating polyA sites and
design shortcomings of transcriptome assemblers to do so,
researchers have developed supplemental tools to characterize APA

dynamics from RNA-Seq. Chen et al.35 provided a comprehensive
critical review of these methods which we will briefly highlight here.
There are three main methods for characterizing polyA sites and/or
quantifying APA dynamics. Those that require a priori annotated
polyA sites, e.g., MISO36, QAPA37, and PARQ38, cannot identify de
novo polyA sites. Others such as Kleat39 and ContextMap 240

utilize reads with strings of adenosines not derived from a DNA
template, i.e., polyA tails. However, studies have demonstrated that
polyA reads are scarce in RNA-Seq data41,42, resulting in low
sensitivity and missing more weakly expressed polyA sites. Finally,
those that consider fluctuations in read coverage near the 3′-ends of
transcripts, e.g., DaPars43, APAtrap44, and TAPAS45, are largely
interested in single gene APA switching and/or quantifying differ-
ential APA usage between two groups of samples rather than
producing a complete transcriptome. Also—as noted by Chen
et al.35—these tools are not user-friendly; specific input formats are
required and outputs are not readily integrable into downstream
studies.

An alternative approach is to directly capture 3′-ends of mRNA
with sequencing technology e.g., PolyA-Seq46, 3′ READS47, PAS-
Seq27, etc. (see Shi17, Elkon et al.48, and Ji et al.49 for a complete
review). These methods are accurate at characterizing the geno-
mic locations of polyA sites; however, whereas RNA-Seq data are
widely available, 3′-sequencing data represents only a small
fraction of available sequencing data and is costly and labor
intensive to produce28,35.

A final category of algorithms has sought to capitalize on the
wealth of research connecting specific strings of DNA nucleo-
tides, or DNA sequence elements, to polyadenylation (see Tian
and Gaber50 for a detailed review). Most of these methods, e.g.,
DeepPASTA51, Omni-PolyA52, and Conv-Net53, deploy machine
learning but conspicuously do not consider in vivo expression.

To overcome current limitations, we introduce aptardi (APA
transcriptome analysis from RNA-Seq data and DNA sequence
information). Aptardi leverages the information afforded by DNA
nucleotide sequence information (from the appropriate reference
genome) and RNA-Seq, as well as the predilection of tran-
scriptome assemblers to accurately characterize splice junctions,
in a use-all-data, multi-omics approach to create a modified,
sample-specific transcriptome that includes information on
expressed polyA sites (Fig. 1). Specifically, harnessing the power
of (supervised) machine learning, we trained aptardi to detect
polyA sites from DNA nucleotide sequence and RNA-Seq read
coverage by training on polyA sites identified by 3′ sequencing.
Using what it learned, aptardi makes predictions from DNA
sequence and RNA-Seq alone, alleviating the burden of generat-
ing 3′-sequencing data. The program evaluates initial transcripts
in the input original transcriptome to identify expressed polyA
sites in the biological sample and refines transcript 3′-ends
accordingly and outputs its results to a modified transcriptome
(as a General Feature Format [GTF] file). Additionally, aptardi’s
input is simple to compile and its output is easily amenable to
downstream analyses such as quantitation and differential
expression.

Results
Construction of multi-omics model for identification of poly-
adenylation sites. The initial data set used for developing the
aptardi model was derived from Human Brain Reference54 (HBR)
RNA using Illumina’s TruSeq stranded mRNA sample prepara-
tion kit to generate 100 base, paired-end reads55. The tran-
scriptome reconstruction contained 113,923 transcripts (excluding
those from scaffold chromosomes) with 94,369 unique transcript
termini, and the corresponding PolyA-Seq data contained 94,322
polyA sites in this sample. Throughout this manuscript, we refer
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to the polyA sites identified from PolyA-Seq46 as “true” polyA
sites to distinguish them from polyA sites predicted by a com-
putational algorithm, but we acknowledge that there are false
negatives and false positives among the PolyA-Seq derived polyA
sites. After transcript processing (see Methods) and integration
with the PolyA-Seq data—generated from the same HBR RNA—
70,748 transcript models with 0–50 true polyA sites per transcript
model were used for learning and evaluating the aptardi predic-
tion model. The modified 3′-terminal exons of these transcript
models were binned into 100 base increments for machine
learning, and 14 RNA-Seq features, 12 DNA sequence-related
features, and one feature derived from the original transcriptome
were calculated for each bin.

As examples of DNA sequence-derived features, the presence of
the three strong polyA signals (5′-AATAAA-3′, 5′-ATTAAA-3′,
and 5′-AGTAAA-3′) in each 100 base bin as a function of whether
the bin also contained a polyA site are shown in Fig. 2a. Each strong
polyA signal demonstrated enrichment (AATAAA: χ2= 80,837, p
value < 0.0001; ATTAAA: χ2= 15,012, p value < 0.0001; AGTAAA:
χ2= 1378, p value < 0.0001). For instance, of the 100 base bins that
possessed a true polyA site via PolyA-Seq, over half also possessed
AATAAA. In contrast, only ~10% of bins that did not contain a
polyA site had the AATAAA signal. This enrichment was observed
for all binary features, i.e., all the DNA sequence features and the
original transcriptome end location feature (Supplementary Fig. 1a).
The strong polyA signals were also independently associated with
the presence of a polyA site. Likewise, the distribution of the
quantitative RNA-Seq features, e.g., the inter-bin RNA-Seq features
(Fig. 2b) differed based on the presence or absence of a true polyA
site (although no one feature distinguishes the true polyA sites
perfectly) and this was also seen for the intra-bin RNA-Seq features
(Supplementary Fig. 1b). Furthermore, features derived from DNA

sequence and RNA-Seq were independent of one another across
omics type but were often correlated within an omics category
(Fig. 2c).

When aptardi was built using only features derived from RNA-
Seq or only features derived from DNA sequence, the average
precision (AP) in the testing data set was significantly greater than
simply relying on the polyA sites identified in the original
transcriptome (Fig. 2d). Furthermore, when the RNA-Seq features
and the DNA sequence features were combined, the multi-omics
model had higher AP than either single-omics model (multi-omics
AP= 0.58, DNA-only AP= 0.41, RNA-only AP= 0.44). Using a
specific prediction threshold (probability > 0.5), the precision in the
multi-omics model (0.74) increased from the DNA-only model
(0.65) but only modestly increased from the RNA-only model
(0.71); however, the recall dramatically improved compared to
both single-omics models (multi-omics recall= 0.39, DNA-only
recall= 0.18, RNA-only= 0.24; Fig. 2e). The F-measure was
similarly greater in the multi-omics model than either single-
omics model (multi-omics= 0.51, DNA-only= 0.28, RNA-only=
0.36). In addition, performance results were consistent across five
random splits of the data for training/validation/testing, and the
results displayed above are the averages across the five splits.

The relative contributions of the individual DNA sequence
features were further explored by generating aptardi models for each
DNA sequence feature that either (1) included all other features but
the DNA sequence feature or (2) removed all other DNA-derived
features but the DNA sequence feature (i.e., all of the RNA-Seq
features and the original transcriptome feature were also still
included) and evaluating performance on the testing split. Unsurpris-
ingly, the greatest reduction in performance from leaving out any
single DNA sequence feature came from removing the canonical
polyA signal (AP= 0.52 vs 0.58 in full model, F-measure= 0.45 vs

Fig. 1 Overview for using aptardi. Aptardi requires three files as input: (1) FASTA file of DNA sequence with headers by chromosome, (2) sorted Binary
Alignment Map (BAM) file of reads aligned to the genome, and (3) General Feature Format (GTF) file of transcript structures. Blue boxes represent
software. Yellow writing/boxes indicate aptardi incorporation. Note transcript structures can be derived from a reference transcriptome (i.e., Ensembl
annotation) in lieu of the original transcriptome generated from a transcriptome assembler.
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0.52 in full model), and the greatest improvement by including any
single DNA sequence feature was from this feature as well
(AP= 0.54 vs 0.47 without any DNA-derived features, F-measure
= 0.47 vs 0.39 without any DNA-derived features).

Evaluation of the generalizability of aptardi. To evaluate the
generalizability of the aptardi prediction model, we asked two
questions: (1) does the performance of the aptardi prediction
model, built on the HBR data set, remain consistent across
diverse data sets, and (2) are the performances of prediction
models built on alternative data sets comparable to the aptardi
prediction model (built from the HBR data set)? To answer these
questions, we analyzed four alternative data sets. These data sets
were chosen because they had sufficient similarities and differ-
ences to assess the applicability of the aptardi prediction model
(Supplementary Table 1). Namely, an additional Human Brain
Reference RNA data set was included that was derived from the
same Human Brain Reference RNA sample but processed and
sequenced in another laboratory (2nd HBR), and this laboratory
also produced another data set we included from Universal
Human Reference (UHR) RNA56. To include a cross-species
comparison and to examine similar tissue across two genetically
different individuals, we also used data derived from two inbred
rat strains; the congenic Brown Norway strain with polydactyly-
luxate syndrome (BNLx/Cub; BNLx) and the spontaneously
hypertensive rat strain (SHR/OlaIpcv; SHR). All true polyA sites
were derived from 3′ sequencing PolyA-Seq data; true polyA sites
for the HBR and UHR data sets were from the same corre-
sponding RNA, whereas the true polyA sites for the two rat data
sets were derived from Sprague Dawley rat brain RNA46.

We first examined whether users can confidently apply the
aptardi prediction model, built from the HBR data set, on their
own data sets (i.e., on a data set not used to train the model) by
comparing its performance on the four alternative data sets not
used to train the model. The AP of the HBR-based aptardi
prediction model across the four other data sets ranged from 0.55
to 0.63, whereas the AP of this HBR aptardi prediction model on
its own HBR data set was 0.65 (Fig. 3; orange bars). Specifically,
its performance on the other human RNA samples (2nd HBR and
UHR) only differed in AP by two percentage points (AP= 0.63
for each), but on the BNLx and SHR rat brain data sets the HBR-
based aptardi prediction model performed more modestly (AP=
0.55 for each). Similar results were observed for F-measures
(HBR= 0.56, 2nd HBR= 0.51, UHR= 0.53, BNLx= 0.47, SHR
= 0.48). The major differences between the two rat data sets and
the HBR data set include species, strandedness of the library
preparation (rat samples were unstranded), and the inexact
matching between RNA-Seq and PolyA-Seq RNA sources.

Also for the four alternative data sets, we built data set-specific
prediction models and compared their performance on their own
data set to the performance of the HBR-based aptardi prediction
model on the given data set to demonstrate the robustness of the
machine learning pipeline used to build the aptardi prediction
model. For all four data sets, the increase in AP when the same data
set for training the prediction model is used for evaluating the
prediction model (as opposed to the performance of the HBR
aptardi prediction model on the same given data set) was minimal,
i.e., ≤2 percentage points (Fig. 3). Furthermore, the similarity
(within two percentage points) of the AP between the training,
testing, and analysis (i.e., not merging transcripts; see Methods) sets
demonstrate the aptardi prediction model is not prone to overfitting

Fig. 2 DNA sequence and RNA-sequencing (RNA-Seq) features are individually associated with polyadenylation (polyA) sites. a The percent of 100
base bins containing each of the three strong polyA signals stratified by the bin not containing (blue) or containing (orange) a polyA site. b Distribution of
the inter-bin RNA-Seq features for each 100 base bin stratified by the bin not containing (blue) or containing (orange) a polyA site (RNA-Seq ratio features
were standardized using the training set). c RNA-Seq features and DNA sequence features display little correlation (two-sided Pearson Product-Moment)
across omics type. The combination of RNA-Seq information and DNA sequence information improves d average precision, and e, precision and recall at a
specific prediction threshold (probability >0.50) over each separately. For both d and e, data are presented as mean values ±standard deviation on the test
set (n= 5 random train-validate-test splits). Data shown are from the Human Brain Reference data set.
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and, when these intra- and inter- model/data set comparisons with
the HBR data set were extended to each of the four data sets, similar
results were achieved (Supplementary Fig. 2).

Performance of aptardi on other true polyadenylation sites
data sets. Other polyA site data sets in the literature report polyA
sites aggregated from multiple samples and sources, such as
PolyASite 2.057 and PolyA_DB 358. Although aptardi was
designed to make sample-specific predictions, we evaluated the
performance of the aptardi prediction model (built from HBR) on
these more extensive true polyA sites data sets using the HBR
RNA-Seq data and hg38/GRCh38 human genome. For each
polyA site cluster listed by PolyASite 2.0, the representative polyA
site was used. PolyASite 2.0 and PolyA_DB 3 contained 569,005
and 289,998 annotated polyA sites leading to 102,774 and 86,685
polyA site bins, respectively (compared with 42,977 polyA site
bins using the HBR PolyA-Seq data) out of the 778,166 bins
produced from the transcript processing of HBR. As expected, the
precision increased (PolyASite 2.0= 0.85, PolyA_DB_3= 0.88)
and the recall decreased (PolyASite 2.0= 0.18, PolyA_DB= 0.22)
compared with the aptardi prediction model’s performance on its
testing data set (precision= 0.71, recall= 0.41).

Improvement of 3′-end annotation in the transcriptome map
by aptardi. The overarching goal of aptardi is to yield an updated,
sample/experiment-specific transcriptome map from the original
transcriptome with more accurately annotated 3′-ends of expres-
sed polyadenylated transcripts. As such, aptardi was primarily
benchmarked by comparing how it improved upon the recon-
struction generated by the popular assembler StringTie22. The
StringTie assembly also incorporated Ensembl59 (v.99) annota-
tion, which helps guide its reconstruction—especially at 3′-ends.
Note that aptardi outputs all original transcript structures from
the input transcriptome (i.e., original transcriptome) in addition to
those annotations identified by the program.

Of the 113,923 transcripts in the original transcriptome from
the HBR sample (i.e., StringTie used the HBR sample RNA-Seq
data and existing Ensembl annotation to generate the original
transcriptome), only 39,842 (35%) had a 3′ terminus that

corresponded to a true polyA site (±100 bases). When the
aptardi prediction model was incorporated, 27,853 transcript
annotations were added to the original transcriptome where the
polyA site/3′ terminus differed from its original transcript
structure. Of these additional 27,853 transcripts, 22,846 (82%)
matched the location of a true polyA site in the HBR PolyA-Seq
data (±100 bases), meaning the majority of aptardi transcript
structures incorporated into the original transcriptome had
accurate polyA site annotation (Fig. 4). Furthermore, the
confusion matrix of predictions made by the aptardi prediction
model on each 100 base increment (i.e., bin) improved the true
positive to false positive ratio compared to the original
transcriptome (produced by StringTie) while simultaneously
decreasing the number of false negatives in favor of true negatives
(Supplementary Fig. 3).

We next compared aptardi to TAPAS45—identified by Chen
et al.35 as the top performer for characterizing APA from RNA-
Seq—using the same 100 base distance cutoff to define true
positives (i.e., if a TAPAS prediction was within 100 bases of any
true polyA site in the HBR PolyA-Seq data it was considered a true
positive, otherwise it was a false positive). The aptardi pipeline
identified the 3′ termini correctly for 62,688 transcripts compared
to 3′ termini of 22,804 transcripts using TAPAS. Although the
number of transcripts with a false positive 3′ terminus was higher
in the aptardi modified transcriptome compared with TAPAS45

owing to annotations from the original transcriptome, the positive
predictive value was higher for the aptardi modified transcriptome
because it added many more true positive than false positive 3′
termini to the original transcriptome (aptardi modified transcrip-
tome= 0.44, TAPAS= 0.31). Finally, the aptardi pipeline captured
more unique true polyA sites (as identified by the HBR PolyA-Seq
data) compared with both TAPAS and the original transcriptome
(aptardi modified transcriptome= 29,327, TAPAS= 25,180, origi-
nal transcriptome= 23,685). Similar results were achieved when
adjusting the base distance cutoff for true positives and/or utilizing
the PolyASite 2.0 and PolyA_DB databases to define true polyA
sites (Supplementary Table 2).

A final comparison was made to APARENT60, which utilizes
only DNA sequence to make predictions. Its positive predictive
value was lower than that for aptardi for all databases at all base
distance cutoffs (Supplementary Table 2). Notably, although

Fig. 4 Incorporating aptardi transcripts into the original transcriptome
improves the ratio of true positive to false positive 3′ termini compared
with the original transcriptome and compared with the Tool for
Alternative Polyadenylation site AnalysiS (TAPAS) analysis on the
original transcriptome. Results from transcripts added by aptardi to the
original transcriptome are shaded in dark. Transcripts whose 3′ terminus
was plus or minus 100 bases of a true polyadenylation site from PolyA-Seq
data were considered a true positive and otherwise counted as a false
positive. Data shown are from the Human Brain Reference data set.

Fig. 3 The machine learning pipeline used to build aptardi is robust to
different data sets and the aptardi prediction model generated from the
Human Brain Reference data set is applicable across diverse data sets.
Blue bars indicate the performance of the data set-specific prediction model
on its own data set, i.e., the model was built and evaluated on a single data
set. Orange bars represent the performance of the aptardi prediction model
—built from the Human Brain Reference data set—on the given data set
(x axis).
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APARENT annotated more true polyA sites as defined in the
PolyASite 2.0 and PolyA_DB databases compared with all the
other methods (likely owing to its high number of overall
predictions), this increase was not observed when being
compared with aptardi and using the HBR PolyA-Seq data to
define the true polyA sites, which likely more accurately
represents the polyA sites being expressed in the corresponding
HBR RNA-Seq data (Supplementary Table 2).

Aptardi identifies sample-specific transcripts missed by current
transcriptome reconstruction methods. We next sought to
ascertain if aptardi could identify APA transcripts observed in a
previous study where differential APA expression was induced by
knocking down the cleavage and polyadenylation machinery
CFIm2561. In this study, the authors experimentally confirmed
expression of short APA transcript isoforms after CFIm25
knockdown for three genes capable of undergoing APA62,63—
CCND1, DICER1, and TIMP2—and used DaPars43 to computa-
tionally estimate the locations of polyA sites.

For each the control and knockdown RNA-Seq data set, the
aptardi modified transcriptome was compared with the original
transcriptome, which contained both Ensembl annotations and
sample-specific expressed transcripts identified through StringTie
reconstruction. In the control RNA-Seq data set, neither aptardi
nor the original transcriptome identified a shorter APA transcript
for CCND1 in agreement with the original study design; in the
knockdown treatment RNA-Seq data set, only aptardi recapitulated
the short APA isoform (Fig. 5a), demonstrating its sensitivity to
sample-specific data and its ability to improve upon current
annotation methods. Likewise, only aptardi identified the proximal
APA transcript for DICER1 (Fig. 5b). For TIMP2, multiple
transcript isoforms are annotated in Ensembl59, and StringTie22

retained all these transcripts in its reconstruction. In contrast,

aptardi annotated a short APA transcript only in the treatment
consistent with Masamha et al.61, again demonstrating its sample-
specific sensitivity (Fig. 5c). Finally, the locations of the proximal
transcripts for these genes identified by aptardi were similar to
the original study (CCND1: aptardi= chr11: 69,651,917, original
study= chr11: 69,651,578; DICER1: aptardi= chr11: 95,090,264,
original study= chr11: 95,090,400; TIMP2: aptardi= chr17:
78,855,465, original study= chr17: 78,855,601).

Comparison of aptardi predictions across mouse tissues. The
above study demonstrated aptardi’s ability to differentiate polyA
sites across samples; however, we extended this analysis by
comparing different mouse tissues—namely liver and brain—to
mimic subtle differences in polyA sites. Brain and liver RNA-Seq
data were procured from Li et al.64, true polyA sites were derived
again from PolyA-Seq data that were specific to brain and liver,
and the mouse reference mm10/GRCm38 genome was used for
DNA sequence for both tissues (see Mouse tissue analysis in
Methods for more details).

For the PolyA-Seq data, we identified polyA sites that (1) were
unique to either brain or liver, (2) were within the 3′ modified
terminal exon of a transcript in the StringTie generated original
transcriptome (i.e., made available to aptardi) for both tissues,
and (3) did not coincide with a previously annotated Ensembl
transcript end. Using these restrictions, we were able to focus on
unannotated polyA sites that differed across tissues but were
associated with genes/transcripts expressed in both tissues. This
resulted in 756 unannotated brain-specific sites and 1529
unannotated liver-specific sites. The StringTie pipeline was
able to capture three of the unannotated brain-specific sites
and four of the unannotated liver-specific sites. Including the
aptardi prediction model (built from HBR) in the transcript
discovery pipeline added 26 unannotated brain-specific sites (fold

Fig. 5 Aptardi displays sample-specific sensitivity when annotating transcription stop sites. RNA-sequencing (RNA-Seq) read densities for a CCND1,
b DICER1, and c TIMP2 after control (Control) siRNA treatment and CFIm25 knockdown (KD) in HeLa cells. Numbers on y axis indicate RNA-Seq read
coverage. After knockdown, each gene preferentially expresses a proximal alternative polyadenylation (APA) site compared to under control conditions.
Transcript structures shown are from RefSeq annotation (dark blue), where boxes and lines indicate exons and introns, respectively. Black vertical lines
indicate transcript stop sites identified in the original transcriptome, red vertical lines indicate transcript stop sites only identified in the aptardi modified
transcriptome and that match the original study’s findings, and blue vertical lines indicate transcript stop sites only identified in the aptardi modified
transcriptome that are not described in the original study. Graphics were generating using the UCSC Genome Browser (https://genome.ucsc.edu/) using
the hg38 human genome assembly.
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increase= 9) and 69 unannotated liver-specific sites (fold
increase= 17) Furthermore, only nine of these 26 additional
unannotated brain-specific polyA sites were also added to the
liver data using aptardi (i.e., aptardi did not distinguish the brain
from liver) and only 25 of these 69 unannotated liver-specific
polyA sites were identified by aptardi in the brain data.

Evaluation of the use of aptardi in a differential expression
pipeline. The influence of aptardi on differential expression
analysis was evaluated using the BNLx and SHR rat brain data sets
by evaluating transcripts identified as differentially expressed
between strains with the aptardi modified transcriptome
(p value ≤ 0.001) but not the original transcriptome derived from
the StringTie/Ensembl pipeline (p value ≥ 0.001). Note that since
aptardi incorporates transcripts into annotation, expression levels
of existing transcripts can also change, i.e., transcripts present in
both the aptardi modified transcriptome and the original tran-
scriptome may be identified as differentially expressed in one and
not the other. A total of 1166 out of 32,348 transcripts and 918 out
of 28,329 transcripts expressed above background were differen-
tially expressed (p value ≤ 0.001) using the aptardi modified
transcriptome and original transcriptome, respectively. A total of
40 transcripts that could be associated with an Ensembl gene
symbol were differentially expressed in the aptardi modified
transcriptome but not in the original transcriptome although they
had identical structures, including 3′-ends, in both (i.e., original
transcriptome transcripts). Furthermore, 54 aptardi transcripts

that could be associated with a gene symbol were differentially
expressed and NOT measured/identified in the original tran-
scriptome (Supplementary Data 1). The RNA-Seq read coverage
for six of these aptardi transcripts are depicted in Fig. 6. For Unc79
(Fig. 6a), Sf3b1 (Fig. 6b), Ptn (Fig. 6c), and Ap3b1 (Fig. 6d), the
original transcript was differentially expressed in the aptardi
modified transcriptome but not the original transcriptome, and
for Zdhhc22 (Fig. 6e) and RGD1559441 (Fig. 6f) the aptardi
transcript was differentially expressed. The RNA-Seq read cover-
age across these genes support the presence of the aptardi tran-
scripts and differential expression of the various isoforms between
strains. Moreover, these results demonstrate that aptardi is capable
of identifying both shortening and lengthening events—e.g., four
of the six genes were annotated with a shorter transcript by
aptardi and two of the six a longer one—as well as identifying
isoforms across a broad range of RNA-Seq coverage depths; the
peak coverage value for each gene ranged from ~200 to 8000.

Discussion
Aptardi leverages the information afforded by both DNA sequence
and short-read RNA-Seq to accurately annotate the polyA sites of
expressed transcripts in a biological sample. We first established the
applicability of aptardi by showing that (1) a prediction model
derived from a single data set performed well on data sets that differ
on technical issues and even species, (2) the process of training the
prediction model is generalizable across different types of RNA-Seq
data/DNA sequence, and (3) the algorithm is not prone to

Fig. 6 Incorporation of aptardi into differential expression analyses. RNA-sequencing (RNA-Seq) read densities for six genes in BNLx and SHR inbred rat
strains. Numbers on y axis indicate RNA-Seq read coverage. Read coverage represents the aggregate of three biological samples for each strain. Transcript
structures shown are from Ensembl annotation (dark red), where boxes and lines indicate exons and introns, respectively. Black vertical lines denote
transcript stop sites identified in the original transcriptome derived using StringTie, and red vertical lines indicate transcript stop sites identified in the
aptardi modified transcriptome only. No transcripts were identified as differentially expressed between strains in the original transcriptome (p > 0.001), but
at least one differentially expressed transcript for each gene was identified in the aptardi modified transcriptome (p≤ 0.001). For a Unc79, b Sf3b1, c Ptn,
and d Ap3b1 the original transcript isoform (black line) was differentially expressed in the aptardi modified transcriptome, and for e Zdhhc22 and
f RGD1559441 the aptardi transcript was differentially expressed (red line). Graphics were generating using the UCSC Genome Browser (https://genome.
ucsc.edu/) using the rn6 rat genome assembly.
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overfitting. Namely, we showed that the aptardi prediction model
provided for users (built from the HBR data set) performs equally
well on RNA-Seq data sets derived from different library prepara-
tions, organisms, and with different RNA-sequencing depths. We
note that aptardi performed modestly worse on the BNLx and SHR
data sets and hypothesize this is because the true polyA sites were
derived from the Sprague Dawley rat instead of the specific rat
strain. This is supported by the fact that prediction models built
from the BNLx and SHR data sets and tested on these same data
sets performed similarly to the aptardi prediction model built on the
HBR data set (Supplementary Fig. 2). However, we cannot rule out
the possibility that this is owing to the unstranded RNA-Seq for
these data sets and/or different species. Moreover, the comparable
results when models were built and evaluated on a single data set
versus models applied to different data sets from those used to train
the model suggest the data processing pipeline/prediction models
are generalizable. Finally, the similarity of the AP estimates between
training and testing sets demonstrate that aptardi is not prone to
overfitting. Overall, these results indicate aptardi can be broadly
used.

We next established that incorporating aptardi into current
transcriptome reconstruction methods improves annotation of 3′-
ends. This was done by comparing the aptardi modified tran-
scriptome to the original transcriptome assembled using the
power of both existing annotation via Ensembl and taking into
consideration RNA-Seq coverage via StringTie. Adding aptardi
transcripts increased the number of unique true polyA sites
captured by the transcriptome and furthermore increased the
ratio of true positive to false positive termini compared with the
original transcriptome. Aptardi also outperformed TAPAS in
these respects, and TAPAS was previously identified as the top
performer for identifying polyA sites from RNA-Seq35. Likewise,
aptardi produced greater positive predictive values compared to
the deep learning algorithm APARENT that utilizes DNA
sequence to make predictions and, furthermore, annotated more
polyA sites at 100 and 50 base distance cutoffs and nearly the
same at a base distance cutoff of 25 despite making many fewer
predictions.

Applying aptardi in control and CFIm25 knockdown RNA-Seq
data demonstrated its (1) sensitivity to sample-specific expression,
(2) ability to identify both shortening and lengthening APA
events, (3) competence across a broad range of RNA-Seq coverage
depths, and (4) ability to improve upon current reconstruction
methods. Of interest, in the control for TIMP2, aptardi identified
several 3′-ends close to the annotated distal transcript that were
not noted in the original study61. The RNA-Seq from the control
sample displays uneven coverage in this region, meaning aptardi
may have uncovered additional, previously unknown isoforms
(Fig. 5c). Of note, the library preparation for these RNA-Seq data
were unstranded (unlike the data used to generate aptardi), further
supporting aptardi’s broad applicability. These results also high-
light potential weaknesses of aptardi. For instance, aptardi incor-
porates a single 3′-end into multiple transcripts for each gene
listed because it does not distinguish transcripts overlapping the
same genomic region. This may be somewhat mitigated by cur-
ating a more-selective input transcriptome. Here the entire
Ensembl annotation was provided, which includes many “pseudo”
transcripts (e.g., retained introns, nonsense-mediated decay, and
isoforms only identified computationally), and these transcripts
often overlap manually identified mRNAs. Second, aptardi will
add polyA sites for a transcript regardless of if another transcript
isoform from the same gene already has a transcript stop site at
the given location, as is the case for TIMP2. As a result, it is
possible that aptardi incorporates a transcript stop site belonging
to a different transcript.

The sample-specific sensitivity of aptardi was also evaluated
using RNA-Seq from brain and liver mouse tissues and evaluating
its ability to identify polyA sites unique to each tissue. Aptardi
successfully annotated tissue-specific polyA sites not previously
reported in Ensembl annotation or discovered by StringTie
reconstruction. Furthermore, aptardi was able to provide a sig-
nificant fold increase in polyA site annotation compared with
StringTie, exemplifying its sensitivity. Although the overall
number of polyA sites detected was modest, this was likely owing
to the low sequencing depths of the samples (Supplementary
Table 3). As a result, many polyA sites reported in the PolyA-Seq
data—which was sequenced at much greater depths—were likely
not detectable here. Indeed, the reference mouse Ensembl genome
annotated a greater number of both overall polyA sites (brain=
14,630, liver= 13,209) and tissue-specific polyA sites (brain =
5144, liver= 3668) compared with the StringTie pipeline (overall:
brain= 11,285, liver= 9572; tissue-specific: brain= 3468, liver=
2331). StringTie removes guide transcripts (in this case Ensembl
transcripts) below a minimum coverage threshold (one when
using default settings), suggesting many PolyA-Seq polyA sites—
including those in the 3′ modified terminal exons that aptardi did
not annotate—were not detectable here.

We further examined how incorporating aptardi into down-
stream transcriptome analyses such as differential expression may
alter the interpretation of results. We found that multiple isoforms
—some of which were already present in the original transcriptome
and some of which were transcripts identified by aptardi—were
differentially expressed between BNLx and SHR recombinant
inbred rats only when using the aptardi modified transcriptome.
Some of these transcripts are derived from genes that have also been
implicated in phenotypes related to the SHR rat, such as greater
sensitivity to addictive drugs65 and increased voluntary ethanol
consumption66. For instance, expression of Ptn—which has verified
APA sites67—is modulated by amphetamine in rat nucleus
accumbens68. Furthermore, Unc79 knockout mice displayed
hypersensitivity to ethanol, e.g., increased preference for and con-
sumption of alcohol66. Undoubtedly, further investigation is needed
to elucidate the role of Ptn and Unc79 APA on addiction pheno-
types, but these preliminary results demonstrate how aptardi may
help unravel the genetic architecture of complex diseases. Of note,
although Ensembl annotation provides two transcript isoforms for
Ap3b1, StringTie assembly resulted in inclusion of the longer iso-
form only, highlighting the difficulty of current assembly methods
for identifying 3′-ends of transcripts embedded in a longer version.
However, aptardi identified a shorter transcript within 100 bases of
the original Ensembl annotation for the shorter transcript that is
likewise supported by the RNA-Seq data (Fig. 6d).

Also of note, aptardi is easily integrable into existing analyses
pipelines. For instance, unlike current supplemental methods
designed for APA detection from RNA-Seq, no additional data
manipulation is required prior to running the program. The input
files are readily available (e.g., reference genome and reference
transcriptome) or already generated during the course of tran-
scriptomic analysis (e.g., RNA-Seq data and a reconstructed
transcriptome). The output GTF file can be used in the same
manner as other annotation files (e.g., those accessed via Ensembl
or generated via a transcriptome assembler such as StringTie).
Moreover, the program can be seamlessly integrated into a single
operation with upstream transcriptome assembly and downstream
analyses (e.g. quantitation) via piping to make for streamlined
analysis. Finally, there is also the option of constructing a pre-
diction model using the aptardi architecture, which increases the
breadth of its applicability to diverse data sources.

An additional perceived limitation may be that aptardi makes
predictions on 100 base bins (for positive predictions, it annotates
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the transcript stop site as the 3′ most base in the given 100 base
bin). However, this concern is partially mitigated because the
precise location of polyA sites can “wiggle” by up to 30 nucleo-
tides for what is considered a single isoform, i.e., not an APA
event50, and as such researchers often group polyA sites within 30
bases into a single site46. Furthermore, few 100 base bins con-
tained multiple polyA sites (Supplementary Table 4). Another
potential limitation is that upstream exons are not subjected to
aptardi analysis, effectively eliminating the possibility of identi-
fying coding APA; fortunately, the vast majority of APA sites do
not result in a change within the protein-coding region2. Finally,
the manually engineered DNA sequence features may not apply
to taxa outside of mammals50 and will require further research.

Transcriptome profiling is one of the most-utilized approaches
for investigating human diseases at the molecular level, yielding
important insights into many pathologies. A prerequisite for these
studies is a representative transcriptome map. Aptardi incorporates
APA transcripts to produce a more-accurate transcriptome map,
thereby enabling future research into the role of APA transcripts—
as well as other transcripts unencumbered by convoluted annota-
tion with APA transcripts–in human health and disease.

Methods
Aptardi design. The overall goal of aptardi is to accurately identify the polyA sites of
expressed transcripts in a given biological sample. Specifically, aptardi analyzes the
modified 3′-terminal exon (see the Transcript processing section below for details on
3′-terminal exon modification) of previously annotated transcripts and, using relevant
RNA-Seq data and DNA sequence in a machine learning environment, identifies
locations of expressed polyA sites in the region. Aptardi then annotates the 3′-termini
to match these locations and outputs these transcript structures to the transcriptome
(in GTF format) that can be easily incorporated into downstream analyses. Note that
aptardi does not evaluate the intron chain structure of transcripts, i.e., it only
examines the modified 3′ terminal exon of each transcript structure and alters the 3′
terminus location(s) accordingly. Also, note that aptardi outputs all original transcript
structures from the original transcriptome in addition to transcripts identified
through its analysis, i.e., the program only adds transcripts.

Data sets. A total of five unique data sets, hereafter referred to as HBR, 2nd HBR,
UHR, BNLx, and SHR, were subjected to aptardi’s machine learning pipeline. In
addition to RNA-Seq measurements, each data set required DNA sequence, a
transcriptome, and—since each was used to build a machine learning model—a
“gold standard” data source providing locations of expressed, i.e., “true” polyA
sites. HBR, 2nd HBR, and UHR are well-established RNA reference samples from
the MAQC/SEQC consortium54 (see RNA-sequencing data sets for more details).
BNLx and SHR represent two inbred rat strains: the congenic Brown Norway strain
with polydactyly-luxate syndrome (BNLx/Cub) and the spontaneous hypertensive
rat strain (SHR/OlaIpcv), respectively.

DNA sequence data sets. For BNLx and SHR, strain-specific genomes were
generated from the rn6/Rnor_6.0 version of the rat genome69 and are publicly
available on the PhenoGen website. The human reference genome (hg38/GRCh38),
accessed via the UCSC Genome Browser70, was utilized for the HBR, 2nd HBR,
and UHR DNA sequence data sets.

RNA-sequencing data sets. The HBR and 2nd HBR RNA-Seq data sets were
derived from the Human Brain Reference (multiple brain regions of 12 donors,
Ambion, p/n AM6050), and the UHR RNA-Seq data set was derived from the
Universal Human Reference (10 pooled cancer lines, Stratagene, p/n 740000). Each of
these data sets were accessed from the Sequence Read Archive (SRA) using the SRA
Toolkit (v.2.8.2) as publicly available data (HBR55: Accession: PRJNA510978, SRA
runs: SRR8360036-37; 2nd HBR and UHR56: Accession: PRJNA362835, 2nd HBR
SRA runs: SRR5236425-30, UHR SRA runs: SRR5236455-60; BNLx and SHR71:
Accession: GSE166117, BNLx: GSM5061950-52, SHR: GSM5061947-49). In brief, all
libraries were generated with the TruSeq stranded (HBR, 2nd HBR, UHR) or
unstranded (BNLx and SHR) mRNA sample preparation kit (Illumina), sequenced on
a HiSeq2500 Instrument (Illumina), and sequencing results processed to FASTQ files.
The HBR RNA-Seq data set originated from 1 µg RNA starting material, whereas 100
ng input was used for 2nd HBR and UHR RNA-Seq data sets. For more detailed
descriptions on these publicly available data, see Palomares et al.55 (HBR) and
Schuierer et al.56 (2nd HBR and UHR). For BNLx and SHR, RNA‐seq libraries
prepared from the polyA+ fraction were constructed using the Illumina TruSeq RNA
Sample Preparation kit from 1 μg of brain RNA in accordance with the manu-
facturer’s instructions. Four μL of a 1:100 dilution of either ERCC Spike-In Mix 1 or
Mix 2 (ThermoFisher Scientific) were added to each extracted RNA sample. An

Agilent Technologies Bioanalyzer 2100 (Agilent Technologies) was utilized to assess
sequencing library quality. RNA samples from three biological replicates per strain
were processed and sequenced71. All reads were paired-end but differed in read length
(HBR, BNLx, and SHR: 2 × 100, 2nd HBR and UHR: 2 × 75). Individual FASTQ files
were assessed for quality using FastQC (v.0.11.4, https://www.bioinformatics.
babraham.ac.uk/projects/fastqc/) and, if necessary, reads were trimmed with
cutadapt72 (v.1.9.1). For the purpose of read coverage used by the aptardi algorithm,
reads from technical replicates (HBR= 2, 2nd HBR= 3, UHR= 3) or biological
replicates (BNLx= 3, SHR= 3) were concatenated and aligned to their respective
genomes (see DNA sequence data sets section for more details) using HISAT273

(v.2.1.0) with the–rna-strandness (when appropriate) and–dta options specified as
recommended for transcriptome assembly with StringTie22 (see Transcriptome data
sets below for more details) and otherwise default arguments (see Supplementary
Table 5 for alignment results). After alignment, SAMtools74 (v.1.9) was used to
remove unmapped reads and convert the output to a sorted Binary Alignment Map
(BAM) file required as input by aptardi.

True polyadenylation sites data sets. True polyA sites (i.e., labels for machine
learning) were taken from Derti et al.46 for all data sets. Namely, total RNA from
the same UHR and HBR RNA reference samples, as well as brain total RNA from
the Sprague Dawley rat (Zyagen, p/n RR-201), were subjected to PolyA-Seq ana-
lysis to identify the genomic locations of expressed polyA sites in each sample (for
more information, see Derti et al.46). High-quality filtered polyA sites from each
RNA sample were accessed using the UCSC Table Browser75, and liftOver76 (from
the UCSC Genome Browser Group) was used to convert the genomic coordinates
to the most recent human genome assembly (hg38/GRCh38) for the HBR and
UHR samples, or rat genome assembly (rn6/Rnor_6.0) for the rat brain sample.
PolyA sites identified in the HBR and UHR RNA reference samples were used for
the corresponding HBR, 2nd HBR and UHR data sets, and those identified in the
rat brain were used for both BNLx and SHR. Derti et al.46 uploaded technical
replicates to UCSC Table Browser for each RNA sample; however, as polyA sites
within 30 bases were clustered into the single site with greatest expression, and
since this was done separately for each data set, we utilized only a single data set for
each sample, i.e., technical replicates were not combined.

Original transcriptome generation. StringTie22 (v.1.3.5) was used to reconstruct
the transcriptome expressed in each data set from their RNA-Seq data, hereafter
referred to as the original transcriptome. Ensembl59 (v.99) reference annotation
from the respective species was provided to guide the StringTie reconstruction. We
note that a user can simply use reference annotation directly, i.e., Ensembl
annotation, in lieu of performing transcriptome assembly that takes into account
expression, i.e., StringTie. If the RNA-Seq data were stranded, the read orientation
was specified as an argument to StringTie. Transcript structures from scaffold
chromosomes and unstranded contigs, if present, were removed.

The data processing pipeline
Transcript processing. Using the original transcriptome, the 3′ terminal exons of
transcripts were isolated. Each transcript’s 3′ terminal exon was extended 10,000
bases plus two times the bin size (i.e., 10,200 bases for the default 100 base bin size)
similar to what has been done previously43,44. Extensions overlapping any neigh-
boring transcripts (on the same strand) were shortened to remove the overlap.
RNA-Seq coverage at single-nucleotide resolution was obtained via bedtools gen-
omecov (BEDtools77; v2.29.2) and, similar to the criteria employed by Ye et al.44

and Miura et al.78, used to refine each of these 3′ terminal exons, hereafter referred
to as modified 3′ terminal exons (see Supplementary Methods for more details.)
The refinement step either shortened the extended 3′ terminal exon or kept it the
same length to give the modified 3′ terminal exon.

Feature extraction. Features were engineered in 100 base increments along the
modified 3′ terminal exon, referred to hereafter as bins. For each bin, a total of 27
features were engineered and can be broadly classified as being derived from DNA
sequence or RNA-Seq data. In both cases, information from the local environment,
i.e., the 100 bases upstream and downstream the bin, as well as the bin itself,
(300 bases total) was used.

DNA sequence features. The choice of DNA sequence features was made through
a combination of an exhaustive literature review25,50,79–86 and evaluation of
other algorithms that use DNA sequence to predict polyA sites52,53,87,88. Per-
haps the most well-known indicator of polyadenylation is the polyadenylation
signal (PAS), a conserved hexamer located ~10–35 nucleotides upstream the
polyA site. Overrepresented sequences of DNA, or DNA sequence elements, also
influence polyadenylation, and the location of these sequences are often
described relative to the PAS. As such, DNA sequence features were engineered
by first identifying the presence of several known PAS’s. Specifically, for each
bin, a six base sliding window scanned a predefined region to detect the pre-
sence or absence (binary indicator of 1/−1) of (1) the canonical PAS
(AATAAA), (2) its major variant (ATTAAA), (3) a second common variant
(AGTAAA), and (4) any one of nine other minor variants (AAGAAA, AAAA
AG, AATACA, TATAAA, GATAAA, AATATA, CATAAA, AATAGA25,50,79,80)
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for four total PAS features. Subsequently, regions relative to the PAS (if present,
otherwise predefined regions relative to the current bin) were likewise scanned
using a sliding window approach to determine frequency of the following
known DNA sequence elements: (1) a G-rich region downstream the PAS, (2) a
downstream region near the PAS enriched in TTT, (3) a downstream region
near the PAS enriched in GT/TG, and (4) a downstream region near the PAS
enriched in GTGT/TGTG, (5) a T-rich region immediately downstream of the
PAS, (6) a T-rich region upstream the PAS, (7) a TGTA/TATA-rich region
upstream the PAS, and (8) a AT-rich region upstream and downstream the
PAS25,50,81–86 for an additional eight features (12 DNA sequence features total).
If the frequency of the given DNA sequence element was above an enrichment
threshold, the feature was encoded 1, otherwise −1. (See Supplementary
Methods for more details.)

RNA-sequencing features. From the RNA-Seq data, coverage at single-nucleotide
resolution was determined using BEDtools77 (v2.29.2). The approach for
designing RNA-Seq features was to exploit localized fluctuations in RNA read
coverage similar to that implemented by tools designed for APA-specific analysis
from RNA-Seq data43–45. Intuitively, upstream but in close proximity to the end
of a transcript, coverage is expected to begin to decrease gradually until its end.
As a result, changes in expression were utilized when designing RNA-Seq fea-
tures in two scenarios: (1) intra- and (2) inter-bin. In both cases, three regions
were defined: an upstream region, a middle region, and a downstream region
(Supplementary Fig. 4). Changes in expression between these regions were
quantified using various mathematical combinations of coverage values in each
region to generate 14 unique features (see Supplementary Methods for more
details). To account for local variability in RNA-Seq coverage, median coverage
values in each region were used.

A final feature was derived from the original transcriptome. If the 3′ base of any
annotated transcript from the original reconstruction was located within a bin, this
feature was encoded 1, otherwise −1. Supplementary Fig. 5 summarizes the data
processing pipeline prior to machine learning.

Building aptardi. The machine learning task is two class classification (polyA site or
no polyA site) of each 100 base bin. Supervised learning was used where labels for
training were provided from the polyA sites data sets (see PolyA sites data sets for
more details). A bidirectional long short term memory recurrent neural network
(biLSTM)89–92 was implemented using the Keras (v.2.3.1) wrapper for TensorFlow
(v.2.0.0). This machine learning paradigm was chosen because of its design to analyze
sequential data, i.e., it takes into account all the 100 base bins of a given transcript
when learning model parameters for each individual bin. Each direction of the
biLSTM consisted of 20 nodes (40 total), and this layer was followed by a fully
connected dense layer with a sigmoid activation function that outputs a probability
value. Of note, the biLSTM outperformed traditional classifiers such as Random
Forest (RF) and Support Vector Machine (SVM) models (biLSTM: AP= 0.58, F-
measure= 0.52; RF: AP= 0.42, F-measure= 0.39; SVM: AP= 0.37, F-measure=
0.33; numbers shown are on the testing set using the HBR data set).

Training aptardi. To prevent duplicate bins, overlapping modified 3′ terminal
exons were merged prior to training. In addition, all merged modified 3′ terminal
exons were masked to a length of 300 bins (30,000 bases total) to generate equal
lengths, which is required for the sequential model. A total of 778,166 bins were
present, of which 42,977 possessed a polyA site out of 94,322 polyA sites annotated
by the PolyA-Seq data (for the HBR data set). Merged modified 3′ terminal exons
were split into 60/20/20 training, validation, testing sets, respectively. Quantitative
measures were standardized using the training set, and the training set was used to
build the model in 25 epochs. Owing to the high imbalance of the data, class
weights were used during training. Model weights were optimized using a binary
cross entropy loss function and Adam93 optimizer. Precision and recall metrics on
the training and validation sets were monitored during training to prevent over-
fitting, and the model that produced the minimum loss was kept. For evaluation
purposes (see Results), individual prediction models were generated from each of
the five data sets.

Evaluating aptardi. Precision, recall, and F-measure at the default probability
threshold (0.5) were used to evaluate model performance defined as follows:

P ¼ Tp

Tp þ Fp
ð1Þ

R ¼ Tp

Tp þ Fn
ð2Þ

F ¼ 2*
ðP � RÞ
ðP þ RÞ ð3Þ

where Tp = true positive, Fp = false positive, Fn = false negative, P = precision,
R = recall, and F = F-measure

To generalize model performance over the range of probability thresholds, AP
was used in place of the receiver operating curve owing to the highly imbalanced
nature of the data94 (far fewer bins with polyA sites than bins without a polyA site):

AP ¼
X

n

ðRn � Rn�1ÞPn ð4Þ

where AP = average precision and Rn and Pn are the precision and recall at the nth
threshold, respectively.

Integrating aptardi results with the original transcriptome. For 100 base bins
where a polyA site is predicted, transcript structures are annotated to the 3′ most
base position unless either (1) the input transcript’s stop site is already in the region
or (2) the 3′ most base position is within 100 bases of the input transcript’s stop
site. Any aptardi transcript structures were added to the original transcriptome,
and this aptardi modified transcriptome was outputted as a GTF file.

Choice of bin size. To assess the impact of bin size, 25, 50, and 150 base bins were
used to train the aptardi prediction model on the HBR data set in an otherwise
identical manner to the original 100 base bin. The AP on the testing set was 0.41,
0.51, and 0.61 for the 25, 50, and 150 base bins, respectively, compared with 0.58
for the original 100 base bin. In addition, the F-measure on the testing set was 0.35,
0.46, and 0.52, respectively, compared with 0.52 for the for the original 100 base
bin. Based on these results, 100 base bins were utilized to build the pre-existing
aptardi prediction model. Higher resolution bin sizes may be appropriate
depending on the data set (e.g., RNA-Seq library preparation), species, etc. and bin
size can be specified as a parameter when using the aptardi pipeline.

Software. A user has the option of using the pre-existing aptardi prediction model
or building a prediction model (if a reliable true polyA sites data set is available).
The pre-built model, i.e., the aptardi prediction model, provided on the aptardi
GitHub repository (https://github.com/luskry/aptardi) was generated from the
HBR data set55. Several other algorithm options are available.

TAPAS analysis. TAPAS (Tool for Alternative Polyadenylation site AnalysiS)
predicts the locations of polyA sites from RNA-Seq and reference annotation
(genome or transcriptome)45. Its performance was evaluated on HBR, specifically
using the HBR RNA-Seq data and StringTie/Ensembl original transcriptome. As
TAPAS makes predictions on noncoding sequence coordinates of transcript
models (i.e., 3′-untranslated regions), the 3′ terminal exon of each transcript was
provided as the noncoding region, and default arguments were used. The TAPAS
polyA site prediction program (APA_sites_detection) was used here and accessed
via its GitHub repository (https://github.com/arefeen/TAPAS).

APARENT analysis. APARENT (APA REgression NeT) predicts the locations of
polyA sites from DNA sequence60. Its performance was evaluated using the human
reference genome (hg38/GRCh38) and transcript structures generated from the
HBR StringTie/Ensembl original transcriptome. Specifically, similar to that for
aptardi, the 3′ terminal exon of each of the 113,923 transcript models in the
original transcriptome were extracted. Since APARENT requires DNA sequences
to be ≥205 nucleotides and ≤10,000 nucleotides, 20,658 3′ terminal exons were
removed from the analysis. For the remaining 93,265 3′ terminal exons, the DNA
sequence was extracted using BEDtools (v2.29.2). For 3′ terminal exons on the
negative strand, the reverse complement sequence was used. The APARENT model
(aparent_large_lessdropout_all_libs_no_sampleweights.h5) from its GitHub repo-
sitory (https://github.com/johli/aparent) was used to predict the locations of polyA
sites using default parameters.

CFIm25 knockdown analysis. RNA-Seq from HeLa cells and RNA-Seq after RNA
interference on HeLa cells was used to generate the control RNA-Seq data set and the
treatment CFIm25 knockdown RNA-Seq data set that induces APA switching,
respectively. The RNA-Seq data sets were accessed from SRA as publicly available data
(Accession: PRJNA182153, control SRA run: SRR1238549, CFIm25 knockdown SRA
run: SRR1238551). The RNA-Seq library preparation was unstranded, and 100 base
paired-end reads were sequenced on an Illumina HiSeq 2000 instrument (see Masamha
et al.61 for more details). Reads were processed in a manner identical to all other data
sets to produce a sorted BAM file (see Supplementary Table 6 for alignment results). An
original transcriptome using StringTie/Ensembl (without the read orientation argu-
ment) and an aptardi modified transcriptome were generated for each RNA-Seq data
set (four total). The aptardi prediction model produced using the HBR data set was used
to generate the aptardi modified transcriptomes.

Mouse tissue analysis. RNA-Seq frommouse brain and liver tissues were taken from
Li et al.64 and accessed from SRA as publicly available data (Accession: PRJNA375882,
brain SRA runs: SRR5273637 and SRR5273673, liver SRA runs: SRR5273636 and
SRR5273672). The two SRA runs per tissue represent technical replicates from one
biological sample—namely 6-week old female C57BL/6JJcl mice. In brief, libraries were
constructed using polyA selection and the Illumina TruSeq RNA-Seq library protocol
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and sequenced using an Illumina HiScan platform to generate 100 base, paired end, and
unstranded reads. Reads were trimmed for quality and adapter content with
Trimmomatic95 (v.0.39), and the two technical replicates per tissue were aligned
together to the mm10/GRCm38 genome using HISAT2 (v.2.1.0; see Supplementary
Table 3 for alignment results). An original transcriptome was generated using StringTie
(v.1.3.5) and the mouse Ensembl (v.102) annotation as a guide and otherwise default
settings. BALB/c mouse brain and liver PolyA-Seq data from Derti et al. were used to
define the tissue-specific true polyA sites. Namely, high-quality filtered true polyA sites
were accessed using the UCSC Table Browser, and liftOver (from the UCSC Genome
Browser Group) was used to convert the genomic coordinates to the most recent mouse
assembly. Tissue-specific polyA sites in brain and liver were defined as polyA sites in the
given tissue PolyA-Seq data set not within 100 bases of any polyA site in the other tissue
PolyA-Seq data set. The mouse reference genome (mm10/GRCm38), accessed via the
UCSC Genome Browser was used for DNA sequence for both tissues. Comparisons
between the polyA sites from the given PolyA-Seq data and transcriptome were done by
defining that a transcript annotated a polyA site if its 3′ terminus was within 100 bases
of the site.

Rat differential expression analysis. To generate a single transcriptome repre-
senting both rat strains, their genome-aligned RNA-Seq data were merged using
SAMtools74 (v.1.9) followed by the production of an original transcriptome using the
merged RNA-Seq data set and StringTie/Ensembl (without the read orientation
argument). The aptardi modified transcriptome was produced using the original
transcriptome as input, along with the merged RNA-Seq data, the rn6/Rnor_6 DNA
sequence (accessed via the UCSC Genome Browser70), and the aptardi prediction
model built from HBR. RSEM96 (v.1.2.31) was used to estimate the abundances of the
isoforms identified within each transcriptome (the original transcriptome and aptardi
modified transcriptome). Prior to quantitation, transcripts from scaffold chromo-
somes and unstranded contigs were removed from both transcriptomes. Isoform level
expression estimates were determined for each biological sample (BNLx= 3, SHR=
3). Isoforms without at least 50 counts in two of the three biological replicates for at
least one strain were removed, and differential expression between the two strains
(with BNLx as reference) were evaluated using DESeq297 (v.1.28.0) for the remaining
set of isoforms in each transcriptome (Supplementary Fig. 6 summarizes these ana-
lysis steps). A significance threshold of 0.001 was applied to the unadjusted p values to
allow for comparisons across the two data sets (original transcriptome and aptardi
modified transcriptome) that differ in the number of transcripts tested.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All data are publicly available. The genomic sequence data that support the findings of
this study are available on the UCSC Genome Browser (human: hg38/GRCh38, rat: rn6/
Rnor_6.0, mouse: mm10/GRCm38, http://genome.ucsc.edu/) and PhenoGen (BNLx:
BNLx/CubPrin, SHR: SHR/OlaIpcvPrin, https://phenogen.org/). The polyadenylation
sites from PolyA-Seq data that support the findings of this study are available on the
UCSC Table Browser (https://genome.ucsc.edu/). The polyadenylation sites from
PolyA_DB and PolyASite 2.0 that support the findings of this study are available on their
respective websites (PolyA_DB: https://exon.apps.wistar.org/PolyA_DB/v3/, PolyASite
2.0: https://polyasite.unibas.ch/). The RNA-Sequencing data that support the finding of
this study are available on the NCBI SRA (Human Brain Reference RNA sequencing:
accession: PRJNA510978, SRA runs: SRR5236425-30; 2nd Human Brain Reference and
Universal Human Reference RNA sequencing: accession: PRJNA362835, 2nd HBR SRA
runs: SRR5236425-30, UHR SRA runs: SRR5236455-60; Control vs CFIm25 knockdown
RNA sequencing: accession: PRJNA182153, control SRA run: SRR1238549, CFIm25
knockdown SRA run: SRR1238551; mouse tissue analysis RNA sequencing: Accession:
PRJNA375882, brain SRA runs: SRR5273637 and SRR5273673, liver SRA runs:
SRR5273636 and SRR5273672). The BNLx and SHR RNA sequencing that support this
study have been deposited in NCBI SRA with the primary accession code GSE166117
(BNLx: GSM5061950-52; SHR: GSM5061947-49).

Code availability
The software aptardi98 is maintained on its GitHub repository (https://github.com/
luskry/aptardi).
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