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A B S T R A C T   

The outbreak of COVID-19 continues to bring unprecedented shock to mankind’s socioeconomic activities, and to 
the wider environment. China, as the early epicenter of the pandemic, locked down one-third of its cities in an 
attempt to prevent the rapid spread of the virus. Human migration patterns have subsequently been radically 
altered and many regions have seen perceived improvements in air quality during the lockdowns. This study 
empirically examines the relationship between human migration and air pollution and further evaluates the 
causal impacts of the lockdowns. A spatial econometric method and a spatial explicit counterfactual framework 
are employed in this study. The key findings are as follows: i) a considerable amount of variation in AQI, PM10, 
PM2.5, and NO2 concentration can be explained by human migration but we fail to find suggestive evidence in the 
cases of SO2 and CO; ii) the implementation of lockdown measures led to a significant reduction in AQI (18.1%), 
PM2.5 (22.2%), NO2 (20.5%), and PM10 (10.7%), but has no meaningful impacts on SO2, CO and O3 levels; iii) 
further analysis indicates that the impacts of lockdown policies varied by control stringency and by regional 
heterogeneity. Our findings are of great importance for the Chinese government to create a stronger and more 
coherent framework in its efforts to tackle air pollution.   

1. Introduction 

While COVID-19 is creating all kinds of chaos for human’s socio-
economic activities, for our environment, it is a reprieve (Diffenbaugh 
et al., 2020). As the early epicenter of the COVID-19 pandemic, China 
imposed a range of lockdown measures on one-third of its cities in an 
attempt to reduce the transmission and minimize the impact of the virus 
(He et al., 2020). In cities under lockdown, inter-jurisdictional borders 
were closed and populations were confined to their homes, with un-
necessary travel within local city areas also banned (Chinazzi et al., 
2020; Kraemer et al., 2020; Tian et al., 2020). As could be expected, 
governmental intervention policies dramatically altered human migra-
tion patterns. Human mobility even dropped by 69.85% after the gov-
ernment implemented travel bans (Bao and Zhang, 2020). One side 
effect of these measures that became apparent was a perceived 
improvement in air quality (Bao and Zhang, 2020; Cole et al., 2020). 

We know that air pollution can lead to pernicious health effects on 
((Taghizadeh-Hesary and Taghizadeh-Hesary, 2020; Zeng et al., 2020), 
including heart attacks, strokes (Shah et al., 2015), diabetes, lung cancer 
(Guo et al., 2016; Yang et al., 2020), and high blood pressure (Maomao 
et al., 2018). These have also been identified among the pre-existing 
medical conditions that raise the chances of death from COVID-19 
infection (Coccia, 2020; Cole et al., 2020; Conticini et al., 2020; Ogen, 
2020; Petroni et al., 2020; Setti et al., 2020; Travaglio et al., 2020; Wang 
et al., 2020a,b; Wu et al., 2020; Yao et al., 2020a, b). Humans are 
suffering from a respiratory virus. Humanity can no longer afford for its 
air to be polluted. In the context of China, however, 180 of 338 cities at 
or above prefecture level (APL cities), i.e. 53.4%, failed to meet national 
air quality standards in 2019.2 The outbreak of COVID-19 brought un-
precedented impacts on human activities, and in turn on the environ-
ment (Mostafa et al., 2021), which is expected to increase general 
understanding of current environment conditions and to trigger new 
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strategies for reducing pollution. 
In the specific context of the COVID-19 pandemic, both satellite 

observations and a few quantitative estimates of the changes in air 
pollution have found supportive evidence that coronavirus-related 
lockdowns led to a reduction in air pollution(Le Quéré et al., 2020). 
For example, Finland’s Centre for Research on Energy and Clean Air 
reported that measures to contain the spread of COVID-19 in China 
produced a 25% drop in CO2. Europe is now seeing the same drop in air 
pollution that occurred in China. Scientists from the Royal Netherlands 
Meteorological Institute (KNMI), using satellites to monitor both 
weather and pollution over Europe, found that emissions of NO2 drop-
ped in Paris as well as in Milan and Madrid. There is a growing literature 
studying and trying to estimate the impact of the pandemic on air 
pollution. Evidence of reductions in air pollution following the outbreak 
of the pandemic was found in many regions, such as Egypt (Mostafa 
et al., 2021), the USA (Liu et al., 2021), the UK (Ropkins and Tate, 
2021), and India (Singh et al., 2020; Vadrevu et al., 2020). In the context 
of China, several recent studies found similar evidence that the variation 
in air pollution concentration in many regions of China dropped 
significantly during the pandemic (Bao and Zhang, 2020). A drop in 
greenhouse gases (GHGs) shows furthermore that the reduction extends 
beyond traditional air pollutant emissions (Liu et al., 2020). 

However, existing studies are insufficient for understanding the 
overall effects of the coronavirus shutdown. Scientists from around the 
world are expected to work on more detailed analyses as satellite data or 
images have many uncertainties (Schwandner et al., 2017). Another 
reason is that recent emerging studies lose sight on the presence of 
spillover effects and regional effects in air pollution (Bi and Zeng, 2019; 
Chen et al., 2016; Du et al., 2020; Feng et al., 2020; Gong and Zhang, 
2017; Yue et al., 2019; Zeng et al., 2019, 2021), which may invalidate 
the results (Kolak and Anselin, 2019). Many questions remain, 
including: Do spillover effects in air pollution exist in China during the 
pandemic? And if yes, which model can be considered as the appropriate 
model for improving the efficiency and accuracy of analysis? Emissions 
from human-related activities, including road traffic, heating supply 
etc., have been identified as the dominant sources of air pollution. 
Another empirical question we specifically aim to address is: Will human 
migration be a driving factor in variation of air pollution levels during 
the outbreak? Moreover, lockdown measures taken to mitigate the 
spread of the virus brought human’s production and consumption ac-
tivity almost to a standstill. Whether there are causal impacts of the 
lockdowns on air pollution, and if any, what is their extent? Also, which 
pollutants have seen their levels fall? In addition, what are the likely 
heterogeneous impacts in cities exhibiting variations across socioeco-
nomic and environmental dimensions? Any answer to these questions 
must consider the inherently spatially and temporally dynamic, inter-
active nature of air pollution. 

This study thus aims to investigate the impacts of COVID-19 on our 
atmospheric environment. Specifically, we are to quantify the relation-
ship between the variation in human movements caused by city lock-
downs and air pollution concentration during the confinement period by 
considering the spillover effects on air pollution. In addition, we will 
investigate the causal impacts of lockdowns on air pollution to increase 
our understanding of the epidemic’s impact on the environment. To 
achieve these results, two main datasets were used: real-time monitoring 
human mobility data (intra-/inter-city migrants) extracted from Baidu 
Maps and sets of air pollution indicators (AQI, SO2, PM2.5, PM10, NO2, 
CO, and O3) collected from the China National Environment Monitoring 
Center . Our data covers 283 Chinese APL cities for the 100 days ranging 
from 1 January to April 9, 2020. A core challenge for our empirical 
analysis was that regional diffusion effects may exist in air pollution. We 
thus used a spatial econometric framework to incorporate these 
spatiotemporal factors into our model. Another empirical issue in our 
estimating procedure is that any reduction in air pollution may have 
been caused by local environment regulations and a reduction in human 
movements as the result of panic effects or virus effects which went 

unobserved. To address this endogeneity concern, we develop a 
difference-in-difference (DID) framework to make a causal inference by 
means of a natural experiment, which exploits regional and temporal 
variation in the adoption of lockdown measures. 

Our results found, in brief, that: First, a considerable amount of 
variation in air pollution is explained by population migration. A one- 
unit (10 million people) increase in inter-city population movements 
was associated with 305.9%, 69.0%, 250.5%, and 76.8% increases in 
AQI, PM10, PM2.5, and NO2, and a 110.2% decrease in O3, respectively, 
but had no meaningful impacts on SO2 and CO levels. Regression results 
for intra-city migration offered similar evidence. Second, relative to 
cities that were not locked down, transmission control measures taken in 
the cities under lockdown led to a significant reduction in AQI 
(− 18.1%), PM2.5 (− 22.2%), and NO2 (− 20.5%) concentration and a 
smaller reduction in PM10 (− 10.7%), but no significant drop in SO2 and 
CO levels. Further analysis revealed that the impacts of the lockdowns 
varied by control levels and specific pollutants. Complete lockdowns in 
eleven cities on average reduced AQI, PM2.5, PM10, and NO2 by 26.5%, 
26.9%, 32.3%, and 68.2%, respectively, relative to the 40 cities that 
adopted partial lockdown measures. Finally, heterogeneity analysis 
demonstrated that the effects of lockdown on specific air pollutants 
varied largely throughout different types of cities with multiple di-
mensions of attributes. 

Our study provides three potential contributions to the literature. 
The first is its consideration of the inherently spatially and temporally 
dynamic, interactive nature of air pollution being studied. Many studies 
have suggested that air pollution has spillover effects and regional im-
pacts. This study investigates the impacts of human migration and 
lockdown policies on air pollution by incorporating spatial effects into 
formal causal inference modeling, leading to a deeper understanding of 
the relationship between coronavirus lockdown and air pollution. The 
second contribution concerns the identification strategy. An empirical 
concern is the potential bias and loss of efficiency that can result 
invalidation when dependence in both space and time are ignored in the 
causal investigation of the relationship between human mobility and air 
pollution. A Spatial Autoregressive (SAR) model was used to propel our 
causal estimation strategy. Turning to a causal exploration that the 
lockdown had on environmental outcomes is challenging, as well, since 
the air pollution concentration of a city at any point in time is shaped by 
various weather conditions and confounding factors like local environ-
mental regulations. We developed a set of SAR-DID models to address 
this issue. The third is that our findings provide important policy im-
plications for the ongoing discussion of air pollution control in China. 
Our findings highlight that, to reduce SO2 and CO concentration, it is 
important to accelerate the growth of clean energy and continually 
combat excessive coal consumption in the power and industrial sectors. 

This paper is organized as follows. The second section introduces 
variables and details the empirical strategy. The third section presents 
our main empirical results. The fourth section presents results on het-
erogeneous effects with final conclusions and policy implications pro-
vided in the fifth section. 

2. Materials and methods 

2.1. Data and variables 

2.1.1. Air pollution 
We use air pollution concentration as a measure of air quality. The 

original dataset was collected from the China National Environment 
Monitoring Center (http://datacenter.mee.gov.cn/), a real-time moni-
toring data system operated by the MEE, including the air quality index 
(AQI) and six other kinds of primary air pollutants. We aggregated the 
concentrations of daily air pollutants data into weekly values by 
following (He et al., 2020). 
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2.1.2. Human migration 
Our data on population migration cover 100 days–1 January to April 

9, 2020 – and were obtained from Baidu Maps (https://qianxi.baidu. 
com/), provided by the dominant Chinese search engine Baidu. This 
dataset contains two daily migration intensity indices: the inter-city 
migration intensity index aggregated by the inflow and outflow migra-
tion intensity index, and the intra-city migration intensity index. Fig. 1-a 
and 1-b plot the overall average variation trend of population migration 
across 283 Chinese APL cities respectively in 2020 and the same period 
of 2019, respectively, the latter when adjusted for the lunar calendar. 
Compared to the same sample period in 2019, the average inter-city and 
intra-city migration dramatically declined in 2020 after the imple-
mentation of the Wuhan lockdown on 23 January. 

2.1.3. City lockdowns 
We collected each city’s lockdown information from various news 

media and local government-run websites. To ensure the reliability and 
validity of the data, we compared our data with the data offered by 
previous studies for verification purposes (Fang et al., 2020; He et al., 
2020). Detailed information of the lockdowns is illustrated in Fig. 2. 
Further information about city lockdowns is provided in Table SF-1 (see 
supplementary files, SF-A) owing to spatial constraints. 

As shown in Fig. 2, by February 12, 2020, 133 of 283 Chinese APL 
cities (red zones) in 26 provinces had adopted different degrees of 
lockdown measures. Among them, 11 cities, including Wuhan in Hubei 
province, announced a total lockdown, which meant that both public 
and private transportation were suspended, nonessential individual 
movements in and out of communities were limited, and industrial 
factories and other public places were closed. 40 cities adopted partial 
lockdown measures, which meant that most public transportation was 
suspended, community units in most areas kept only one entrance and 
exit point open, and each household was allowed limited numbers of 
entrances and exits. 92 cities set up checkpoints and quarantine zones, 
which meant that while main line traffic maintained normal operation, 
people entering and exiting were required to wear masks and receive 
temperature checks. The rest of the 150 cities (blue zones) were under 
regular conditions, which meant that local governments in these places 
did not issue any type of lockdown measures in an official way. This 
context provides us with a unique opportunity to take advantage of the 
natural experiments resulting from regional and temporal differences in 
lockdown policy adoption in various cities to examine the effects of 
transmission control measures taken in mainland China on air pollution. 
To test the effects of lockdown measures on air pollution, the dummy 
variable Treat_lock was coded as 1 when a city had adopted any sort of 

lockdown policy. Otherwise, it was coded as 0. 

2.1.4. Weather conditions 
Changes in the concentration levels of pollutants are strongly influ-

enced by multiple meteorological factors. We therefore collected a set of 
daily weather condition data as our control variables to remove the 
impact of the local weather conditions on air pollution. Daily history 
weather data, including maximum and minimum temperatures, 
maximum wind and gust speeds, and records of rainfall and snow cover, 
were collected from the website freemeteo.com (https://freemeteo.cn/). 
This website provides comprehensive weather information for all re-
gions of the world. We collapsed the daily data to weekly city-level 
datasets according to the same method used to aggregate the air pollu-
tion data. 

2.1.5. Summary statistics 
Table 1 summarizes variables and their definitions, data sources, and 

summary statistics. Panel A in Table 1 shows descriptive statistics for the 
seven air pollution indicators selected as our dependent variables and 
illustrates that there were large variations in air pollution 

Fig. 1. Variation in population migration index in 2020 and 2019. These two figures were plotted with Stata 16.0 software. The intra-city migration data for 2019 is 
only available through 15 March. 

Fig. 2. Cities with different levels of control measures across mainland China. 
This figure presents the geographic distributions of cities with different levels of 
lockdown measures. This map was plotted with ArcGIS 10.2 (ESRI) software. 

J. Zeng and R. Bao                                                                                                                                                                                                                             

https://qianxi.baidu.com/
https://qianxi.baidu.com/
https://freemeteo.cn/


Journal of Environmental Management 282 (2021) 111907

4

concentrations in different cities. For example, PM2.5, one of the six 
major air pollutants, had an average concentration of 46.2 μg/m3, 
exceeding WHO guidelines and even WHO’s least-stringent target (35 
μg/m3), with a minimum concentration of 7.369 μg/m3 and a maximum 
concentration of 238 μg/m3. 

We summarize statistical the results of our independent variables in 
Panel B, including two population migration indicators and a lockdown 
dummy variable of our interest. By following Fang et al. (2020), who 
estimated that one index unit in inter-city and intra-city migration 
corresponds to 90,848 and 2,182,264 migrants, respectively, we calcu-
lated the number of population flow in and out of a city and the number 
of population travel within a city. We then multiplied these two 
migration intensity indices by 90,848 and 2,182,264. The average 
number of intra-city migrants in locked-down cities is significantly 
lower than that of unlocked-down cities. Additionally, across the 283 
cities, 47% of cities implemented lockdown, and travel was restricted for 
1249 weeks, accounting for 30% of the sample period. 

The bottom of Table 1 shows descriptive statistics for the control 
variables i.e. weather conditions. The temperature and wind speed 
values of treated cities is clearly somewhat larger than that of untreated 
cities. 

2.2. Empirical methods 

The potential bias and loss of efficiency that can result when spatial 
effects such as spatial autocorrelation and spatial heterogeneity of air 
pollution are ignored in the estimation process have been taken into 
accounts, and all empirical models have been developed within a spatial 
econometric framework. 

2.2.1. Measurements of spatial correlations 
The specification of a spatial weighting matrix (represented by W) 

plays an important role in determining the appropriate form of the 
spatial model, which summarizes spatial relations among all spatial 
units. According to Tobler’s First Law of Geography (1970), this study 
calculates an inverse distance weight matrix by using the Euclidean 
distance from center cell as the measure of the correlation of spatial 
units. The premise of this weight matrix is that observations further 
away should have their contributions diminished according to how far 

away they are. It is calculated as follows: 

Wdis = f
(
θ, disi,j

)
(1) 

In which disi,j is the distance between spatial unit i and spatial unit i. θ 
is the given distance decay parameter. 

Earlier research has demonstrated that air pollution has spillover 
effects and regional impacts among the spatial units (Chen et al., 2016; 
Zeng et al., 2019). Once released, air pollutants are dispersed by the 
weather and can travel long distances within and between cities. 
Emissions from distant and local sources can accumulate into high local 
concentrations of pollution. To measure such spatial autocorrelation of 
air pollutants, Global Moran’s I Index (GMI) and Local Moran’s I Index 
(LMI), both ranging from − 1 (perfect dispersion) to +1 (perfect corre-
lation), are calculated. The formula of GMI is as follows: 

GMI =
n
∑n

i=1
∑n

j=1Wdis

(
xi − x

)(
xj − x

)

(∑n
i=1

∑n
j=1Wdis(xi − x)2∑n

i=1(xi − x)2
(i∕= j) (2)  

where n is the total number of spatial units; xi and xj stand for air 
pollution indicators of i-th and j-th sample cities. ‾x is the sample mean 
of the variable x, and Wdis is the spatial weight matrix (n × n) of the 
connection between the i-th and j-th sample cities. 

The general form of the LMI can be written as: 

LMIi =
∑

j
WdisZiZj, (i∕= j) (3) 

In which, Zi and Zj are the standardized values of air pollution in-
dicators in the i-th and j-th administrative cities, respectively. Wdis have 
the same meanings as in formula (2). 

2.2.2. Human migration and air pollution 
It is common practice to consider the SAR specification to account for 

possible spatial spillover effects in air pollution among different regions. 
The SAR model assumes the dependent variable is spatially autocorre-
lated. In our study, we consider air pollutants to be autocorrelated across 
cities, as explained not only by its associated attributes, but also partially 
by the traits of the "neighboring" cities. The traits of the "neighbors" are 
described in terms of contiguity. Compared to traditional spatial 

Table 1 
Summary statistics.  

Variables Variable definitions Obs. Mean SD Min Max 

Panel A: Dependent variables 
AQI Air quality index 3962 68.81 35 17.25 262 
SO2 SO2 concentrations (μg/m3) 3962 11.48 8 1.745 96 
PM2.5 PM2.5 concentrations (μg/m3) 3962 46.2 30 7.369 238 
PM10 PM10 concentrations (μg/m3) 3962 68.31 36 13.964 277 
NO2 NO2 concentrations (μg/m3) 3962 25.59 13 4.071 84 
CO CO concentrations (mg/m3) 3962 0.85 0 0.205 3 
O3 O3 concentrations (μg/m3) 3962 53.45 17 4.649 118 
Panel B: Independent variables 
Inter-city 

migrants 
The number of Inter-city migrants 3962 153,604 201,914 2195 2,374,810 

Intra-city 
migrants 

The number of Intra-city migrants 3962 8,740,000 2,798,460 709,298 16,849,696 

Treat_lock Treat_lock = Event dummy × period dummy. Here event dummy set to 1 if a city adopts lockdown 
measure during the epidemic, period dummy set to 1 if the time is within the lockdowns. 

3962 0.32 0 0 1 

Panel C: Control variables 
Mintem Daily maximum temperature (◦C) 3962 1.98 9 − 24.429 25 
Maxtem Daily minimum temperature (◦C) 3962 12.83 9 − 14.571 32 
Maxwind Daily maximum steady wind (Km/h) 3962 19.2 5 4.111 44 
Maxgust Daily maximum gust (Km/h) 3962 18.2 14 0 57 
Rain Rainfall(mm) 3962 1.2 2 0 20 
Snow Snow cover(mm) 3962 0.04 0 0 3 

Notes: We collected the data presented in Table 1 from official sources from the period of 1 January to 9 April, daily, including: the China National Environment 
Monitoring Center operated by MEE (http://datacenter.mee.gov.cn/), Baidu Maps (https://qianxi.baidu.com/), local governments-run websites, various media outlets, 
and Freemeteo (https://freemeteo.cn/). By aggregating and merging these datasets, we obtained a city-week panel of 283 Chinese APL cities, which covers 3962 (283 
cities × 14 weeks) observations. 
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econometrics literature, whose literature is interested primarily in the 
dependence among observations across space, an obvious difference of 
this study is that we are model both spatial dependence (neighbors, 
distance, links, etc.) and temporal dependence (time) in the same 
equation. We assume that air pollution in a certain city is not only 
explained by its neighbors, but also by its precursors (previous air 
pollution levels), especially for our city-week data. Thus, considering the 
spatial effects and time-period specific effects of air pollution, we first 
employed a dynamic spatial autoregression (SAR) model to investigate 
the relationship between the population movements and air pollution 
emissions. Formally, the model is: 

Ln
(
Airi,t

)
= τ ⋅ Ln

(
Airi,t− 1

)
+ ρ ⋅ W * Ln

(
Airi,t

)
+ η ⋅ W * Ln

(
Airi,t− 1

)

+β ⋅ Ln
(
Intercity

/
Intracityi,t

)
+ λ ⋅ Weatheri,t + cityi +weekt + εi,t

(4) 

We considered three spatial/temporal lag terms to include potential 
spatial effects of air pollution in Eq. (4). The parameters τ, ρ, and η are 
the response parameters of the dependent variable, successively, the 
dependent variable lagged in time, that is Ln(Airi,t− 1), which captures the 
serial dependence between the air pollution of each city over time; the 
dependent variable lagged in space, that is W*Ln(Airi,t), which captures 
the contemporaneous outcomes in neighboring cities; and the depen-
dent variable lagged in both space and time, that is W* Ln(Airi,t− 1), 
which captures the unobservable spatial and time-period specific effects 
from neighboring cities. Ln(Intercity /Intracityi,t) are exogenous explan-
atory variables of our interest, Weatheri,t is an N × 6 matrix of weather 
condition variables. cityi stands for spatial fixed effects, and weekt stands 
for city-by-week fixed effects. εi,t is a disturbance term. This model 
suggests that the concentration of air pollutants in any given city is a 
function of the pollution situation both in that city and all the other 
cities in the system. 

2.2.3. Lockdown and air pollution 
Even though we have established a link between human movements 

and air pollution emissions in Eq. (4), it is insufficient for understanding 
the variation in air pollution during the pandemic. Now we turn to 
investigate how lockdown affected air quality across China’s cities. As 
the epicenter at the early phase of the pandemic, a range of lockdown 
measures were imposed on one-third of Chinese cities within days of the 
Wuhan lockdown. This fact enabled us to identify the causal effects of 
city lockdown caused by the pandemic and by the air pollution. But a 
key empirical challenge is the endogeneity of city lockdown originating 
from various confounding factors that potentially affect the air pollution 
level. To be specific, the air pollution levels have been declining in most 
cities over the last several years owing to the government’s environ-
mental regulations. As a result, the before-and-after comparison by 
satellite observation or sensory evidence could simply capture the 
declining trend in air pollution caused by regulations. Fortunately, our 
DID strategy helps to address this endogeneity issue because cities 
without lockdown policies can serve as the counterfactuals, mimicking 
what would happen in lockdown cities in the absence of its imple-
mentation. In our case, some cities were exposed to a lockdown policy 
(treatment group) and others were not (control group). This background 
allows us to apply the logic of causal inference and employ a difference- 
in-difference (DID) method to identify the plausible causal impact of the 
lockdown policy by comparing how the air pollution concentration in 
these two groups changed before and after its implementation. Consid-
ering the spatial effects inherent in air pollution, we extended the 
traditional SAR model. Showing how a spatially explicit counterfactual 
framework can add further insight into the evaluation of treatment ef-
fects as shown in Eq. (5). 

Ln
(
Airi,t

)
= ρ⋅TW*Ln

(
Airi,t

)
+ β⋅Treat locki,t + η⋅Weatheri,t + cityi + weekt

+ cityi*t + εi,t

(5) 

In essence, Eq. (5) is a spatial panel model with 283 cross-sectional 

city observations and 14 time periods, including spatial fixed effects 
(cityi) and temporal fixed effects (weekt), in which the outcome variable 
Ln(Airi,t) is the mean (by week) of the AQI index and the concentration 
of six air pollutants. The treatment Treat locki,t is the interaction term of 
the lockdown dummy and the period dummy, which captures the 
average treatment effect of lockdown measures on air pollution. Other 
variables and coefficients without specific interpretation are equal to 
those introduced in function (1). In order to relax common trend as-
sumptions to some extent, we followed the approach of Angrist and 
Pischke in introducing a city-specific trend as the product of a city 
dummy with a time trend term t into our model (Angrist and Pischke, 
2014). 

3. Results and discussion 

We present our GMI scatter plot for AQI and six air pollutants in 
Fig. 3. As illustrated, all GMI of six air pollutants indicators are signifi-
cantly greater than 0 at the 0.05 confidence level, indicating that air 
pollution emissions are spatially and positively correlated among the 
spatial units – the cities with high air pollution emissions (or low air 
pollution emissions) appear close to each other, or clustered together, in 
space. 

Based on the LMI index, our spatial autocorrelation analysis at the 
local scale also provides supportive evidence that air pollutants were 
clustered in space. Fig. 4 presents the Moran scatter plot and 
geographical distribution of AQI (see Fig. 4-a1 & Fig. 4-a2) and the 
concentrations of PM10 (see Fig. 4-b1 & Fig. 4-b2). We observed that 
heavy air pollution was mainly concentrated in northern China. Other 
pollutants show similar characteristics. To save space, we offer detailed 
information on the measurements of spatial clustering and heterogene-
ity of the other five air pollution indicators in supplementary files 
(SF–B). 

3.1. Correlating human migration and air pollution 

3.1.1. Inter-city migration and air pollution 
We considered three spatial/temporal lag terms to include potential 

spatial effects of air pollution and developed a dynamic spatial panel 
model to capture the effects of population migration on air pollution. For 
our study, what we require is a model that allows us to estimate which 
percentage of air pollution changes with human mobility. And a log- 
linear model, in which the dependent variable is transformed by tak-
ing the natural log of it, allows us to interpret these estimated effects in 
percentage terms. Moreover, the contribution of the spatial model is to 
breakdown the spatial multiple effects into direct effects, indirect effects 
and total effects. 

We must note that investigating the spatiotemporal patterns and 
socioeconomic drivers of air pollution by using spatial econometric 
model is not new. Numerous studies have found evidence for strong 
spatial overflow effects (indirect effects) and spatial accumulation 

Fig. 3. GMI scatter plot for AQI and six air pollutants (by week). This figure 
was plotted with Stata 16.0 software. 
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characteristics in air pollutants among different regions and provided 
sufficient policy implications such as establishing a regional cooperative 
governance mechanism. For simplicity, this study thus focuses only on 
the direct causal relationship between city actions and air pollution 
which may be more meaningful for local governments when making 
policies to adapt to the need of their regions. It would, moreover, be 
overly complicated to report both direct and indirect effects by consid-
ering seven proxy indicators of air pollution in the context of spatial 
econometrics and would reduce the readability of this manuscript. 

We report the specific effects incorporating temporal and spatial 
effects in Table 2. We begin by interpreting the effects of inter-city 
migration on air pollution. Both spatial and period fixed effects are 
included in all models. The estimates show that the coefficients of the 
lagged dependent variable in time (LnAiri,(t-1)) and the lagged dependent 
variable in space (W*lnAiri,t) are all positively significant, suggesting 
that the effects of temporal serial association and the immediate 
neighbors are to increase air pollution levels, whereas the coefficients of 
the lagged value in both time and space (W*lnAiri,(t-1)) suggest the 
opposite. Nevertheless, the presence of the temporal and spatial effects 
confirms the validity of our selected model. Again, R2 and log likelihood 

of the models suggest that the models fit the data well. As shown at the 
bottom of Table 2, the dynamic SAR models explain at least 83% of 
variations in air pollution emissions. 

Furthermore, we turn our attention toward the coefficients of our 
explanatory variable and its decomposed marginal effects. The signifi-
cant and positive coefficients of inter-city migration on AQI, PM2.5, PM10, 
and NO2 imply that human migration among cities may increase the 
AQI, PM2.5, PM10, and NO2 levels, and the corresponding direct effects 
are 3.059, 0.690, 2.505, and 0.768, implying that a one-unit (10 million 
people) increase in inter-city population movements is associated with 
305.9%, 69.0%, 250.5%, and 76.8% increases in AQI, PM10, PM2.5, and 
NO2, respectively. The lack of significance of the coefficients on SO2 and 
CO suggests that inter-city migration has no impact on SO2 and CO. 

The coefficients on O3 are negative and statistically significant, 
which seems somewhat counterintuitive. However, this phenomenon is 
understandable for two reasons. The first relates to O3’s source and 
formation. O3 is not emitted directly into the air, but rather is created by 
chemical reactions between oxides of nitrogen (NOx) and volatile 
organic compounds (VOC). O3 levels occur when precursor emissions 
(NOx, VOC) react in the presence of sunlight, warm temperatures, and 

Fig. 4. City-specific Moran scatter plot and geographical distribution for AQI and the concentrations of PM10. These figures were generated with Stata 16.0 software 
and the map tool in ArcGIS 10.2. 
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light winds. Unfortunately, we fail to prove whether the precursor 
emissions affect the O3 level due to the lack of data for NOx and VOC. 
The second is that previews studies have found that there is a trade-off 
between ambient PM2.5 and O3 concentrations. For instance, Li et al. 
(2020) found that O3 concentrations in the North China Plain are 
reduced by about 25 ppb(part per billion) relative to PM2.5-free condi-
tions when PM2.5 exceeds 80 μg/m3. Another also provides evidence for 
the negative relations of ambient PM2.5 and O3 in cold seasons 
(December, January and February) in an urban area of East China. These 
analyses support the inverse relations between O3 and PM2.5 in our case 
(Jia et al., 2017). Nevertheless, we must we must interpret this result 
with caution because considering chemical reactions will make matters 
more complicated. 

3.1.2. Intra-city migration and air pollution 
In Table 3, we reported the effects of intra-city migration on air 

pollution. As with the results presented in Table 2, the coefficients of 
AQI, PM2.5, PM10, and NO2 are positive and statistically significant at the 
0.01 level, and the predicted direct effects of one-unit change in intra- 
city migration on these four air pollution indicators are 60.1%, 40.3%, 
68.6%, and 33.4%, respectively. The coefficients of O3 remain negative 
as before. We again fail to find suggestive evidence for SO2 and CO. 

The results in Tables 2 and 3 suggest that a considerable amount of 
the variation in AQI, PM2.5, PM10, NO2, and O3 is partially explained by 

population migration, while population migration into or within cities 
does not bear a significant influence on SO2 and CO emissions. This 
conclusion is consistent with the fact that PM2.5, PM10, and NO2 released 
from human activity overwhelmingly derive from the raising of dust 
from road transport and soot from vehicle exhausts, but almost all SO2 
and CO are emitted as a result of the combustion of fossil fuels. 

3.2. Quantifying the impact of the lockdown on air pollution 

As revealed in the previous section, human movements measured by 
the human migration intensity index are strongly associated with the 
concentration of the pollutants PM2.5, PM10, NO2, and O3. However, 
shedding more light on how human-made activity impacts air pollution 
is challenging. The exogenous shock in human mobility resulting from 
lockdown during the COVID-19 outbreak provides a useful research 
environment for us to examine the potential mechanism between human 
movements and air pollution emissions. We employ a set of spatial DID 
estimations to disentangle the lockdown effects on air pollution 
reductions. 

3.2.1. 133 lockdown cities vs. 150 non-lockdown cities 
By considering the spatial effects of air pollution, a spatial- 

autoregression difference-in-difference (SAR-DID) model was consid-
ered as a plausible empirical design. For this analysis, we divide our data 

Table 2 
Impact of inter-city migration on air pollution.  

Variables (1) Ln(AQI) (2) Ln(SO2) (3) Ln(PM2.5) (4) Ln(PM10) (5) Ln(NO2) (6) Ln(CO) (7) Ln(O3) 

LnAir(t-1) 1.010*** (10.379) 1.003*** (10.567) 1.029*** (10.768) 1.003*** 
(10.646) 

1.037*** (11.572) 1.041*** (9.656) 1.039*** 
(11.091) 

W*lnAirt 0.407*** (13.822) 0.554*** (27.122) 0.378*** (12.564) 0.361*** 
(11.143) 

0.470*** (21.373) 0.470*** 
(20.836) 

0.350*** 
(17.534) 

W*lnAir(t-1) − 0.913*** 
(− 7.314) 

− 0.773*** 
(− 5.391) 

− 0.886*** 
(− 7.411) 

− 0.843*** 
(− 6.272) 

− 0.774*** 
(− 5.702) 

− 0.756*** 
(− 5.088) 

− 0.712*** 
(− 7.560) 

Inter-city Migration (direct 
effects) 

3.059** (1.959) − 0.148 (− 0.423) 0.690 (0.739) 2.505*** (2.773) 0.768** (2.242) − 0.117 (− 0.346) − 1.102*** 
(− 3.426) 

Mintem − 0.014*** 
(− 6.486) 

− 0.026*** 
(− 11.377) 

− 0.013*** 
(− 5.198) 

− 0.022*** 
(− 9.20)8 

− 0.022*** 
(− 11.554) 

− 0.005*** 
(− 3.482) 

− 0.007*** 
(− 4.980) 

Maxtem 0.012*** (6.729) 0.023*** (12.997) 0.006*** (2.388) 0.021*** 
(10.494) 

0.015*** (9.818) − 0.001*** 
(− 0.953) 

0.018*** 
(13.462) 

Maxwind − 0.015*** 
(− 10.735) 

− 0.010*** 
(− 8.051) 

− 0.020*** 
(− 12.128) 

− 0.014*** 
(− 9.290) 

− 0.014*** 
(− 11.709) 

− 0.007*** 
(− 7.417) 

0.004*** (4.048) 

Maxgust − 0.001*** 
(− 2.393) 

− 0.001*** 
(− 2.412) 

− 0.001** 
(− 1.994) 

− 0.002*** 
(− 2.728) 

− 0.001*** 
(− 2.680) 

0.000 (− 0.426) 0.000 (0.876) 

Rain − 0.010*** 
(− 6.523) 

− 0.003** 
(− 1.989) 

− 0.013*** 
(− 6.961) 

− 0.015*** 
(− 8.162) 

− 0.003*** 
(− 2.395) 

− 0.002 (− 1.506) − 0.009*** 
(− 7.688) 

Snow 0.018* (1.635) 0.011 (1.023) 0.031*** (2.167) 0.023* (1.826) 0.030*** (2.709) 0.016* (1.926) 0.035*** (3.491) 
Spatial FE Yes Yes Yes Yes Yes Yes Yes 
Week FE Yes Yes Yes Yes Yes Yes Yes 
Observations 3679 3679 3679 3679 3679 3679 3679 
R-squared 0.844 0.904 0.850 0.850 0.901 0.855 0.830 
log-likelihood − 109.025 354.602 − 702.218 − 471.759 649.467 1152.325 1200.267 

Notes: t statistics in parentheses, standard errors are clustered at city level (283 clusters) *p < 0.10, indicates significance at 10% levels, **p < 0.05, indicates sig-
nificance at 5% levels, ***p < 0.01, indicates significance at 1% levels . The matrix W is an inverse distance space weight matrix of dimension 283 × 283 (the same as in 
the following tables). 

Table 3 
Impact of intra-city migration on air pollution.  

Variables (1) 
Ln(AQI) 

(2) 
Ln(SO2) 

(3) 
Ln(PM2.5) 

(4) 
Ln(PM10) 

(5) 
Ln(NO2) 

(6) 
Ln(CO) 

(7) 
Ln(O3) 

Intra-city Migration (direct effects) 0.601*** 
(5.563) 

0.027 
(0.809) 

0.403*** 
(4.228) 

0.686*** 
(6.340) 

0.334*** 
(10.256) 

− 0.044 
(− 1.305) 

− 0.147*** 
(− 4.598) 

Control variables Yes Yes Yes Yes Yes Yes Yes 
Spatial FE Yes Yes Yes Yes Yes Yes Yes 
Week FE Yes Yes Yes Yes Yes Yes Yes 
Observations 3679 3679 3679 3679 3679 3679 3679 
R-squared 0.844 0.904 0.850 0.851 0.901 0.854 0.831 
log-likelihood − 99.784 355.798 − 699.072 − 464.089 657.281 1144.931 1208.091 

Notes: To save space, the results of the spatial terms and control variables are not reported here, but are available upon request. 
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to create two datasets for two groups over two time periods according to 
the lockdown information of 283 APL cities. One group (133 cities) is 
exposed to lockdown policies during one of the time periods (treatment 
group), while the second group (150 cities) is never exposed to lock-
down policies and serves as the control group. Table 4 shows the base-
line results for our full sample. 

Table 4 reports the baseline SAR-DID regression estimating the 
extent to which lockdown predicts the variation of air pollution. As 
demonstrated, the coefficients of Treat_Lock on four of the seven 
explained variables (i.e. AQI, PM2.5, PM10, and NO2) negatively and 
significantly correlated with lockdown. Average direct effects analysis 
revealed that − 18.1%, − 22.2%, − 10.7%, and − 20.5% of the reduction 
could be ascribed to the lockdown measures. We fail to find meaningful 
impacts for SO2, CO, and O3. In general, except for O3, the association 
between lockdown and air pollution is demonstrated in more than one 
type of pollutant and is consistent with previous results. 

In Table 5, we test the robustness of the results by applying them to 
the selection of air pollution indicators. We substituted our explained 
variable in Table 4 for the 24-h mean value of the six air pollutants and 
all the estimated results are similar to our earlier benchmark finding 
based on full samples. Here we failed to re-estimate the AQI due to the 
lack of 24-h AQI data. Nevertheless, this omission does not affect the 
conclusion of this paper. AQI, or Air Quality Index, is a system for 
pollutant concentration measurement. The index formula usually con-
siders up to six main pollutants (PM2.5, PM10, CO, SO2, NO2, and O3). 
AQI is thus too general for describing specific effects of air pollution. 

Additionally, the focus of this paper is the variation of the other six 
specific air pollutants and we provide a comprehensive analysis for each 
air pollutant in subsequent sections. 

The baseline results demonstrate that, relative to the control group, 
transmission control measures taken in the cities under lockdown led to 
a large and significant reduction in AQI, PM2.5, and NO2 concentrations 
and a smaller reduction in PM10, but no significant drop in SO2, CO, and 
O3 levels. These results confirm our earlier findings and are consistent 
with previous research, as well. In the case of the concentration of SO2, 
which did not significantly decline following the lockdown, it likely 
reflects the fact that China heavily relies on fossil fuels for its energy 
needs, and the fact that residents burned more coal for heating in the 
colder period we studied. It is less clear why CO, a pollutant largely 
emitted from transport, and O3, a pollutant not directly emitted but 
rather formed in the air, did not fall following the lockdown. 

3.2.2. Stringency of lockdown measures and air pollution 
In response to the rapid transmission of COVID-19, different levels of 

prevention and control measures were imposed on various cities within 
days of the Wuhan lockdown on 23 January. As the epicenter, eleven 
cities under the jurisdiction of Hubei province announced complete 
lockdown, 40 cities adopted partial lockdown measures, and 92 cities set 
up checkpoints and quarantine zones. 

In order to isolate the effects of different degrees of stringency in 
lockdown measures, we implemented two sets of regression that differ in 
estimation sample and in the definition of the control group. The 

Table 4 
Impact of lockdown on air pollution.  

Variables (1) 
Ln(AQI) 

(2) 
Ln(SO2) 

(3) 
Ln(PM2.5) 

(4) 
Ln(PM10) 

(5) 
Ln(NO2) 

(6) 
Ln(CO) 

(7) 
Ln(O3) 

TW*(LnAiri,t) 0.998*** 
(1670.617) 

0.995*** 
(850.868) 

0.998*** 
(1670.459) 

0.998*** 
(1670.827) 

0.995*** 
(855.958) 

0.997*** 
(1301.862) 

0.997*** 
(1263.794) 

Treat_Lock (direct effects) − 0.181*** 
(− 4.324) 

0.017 
(0.321) 

− 0.222*** 
(− 4.380) 

− 0.107** 
(− 2.175) 

− 0.205*** 
(− 3.912) 

− 0.048 
(− 1.430) 

− 0.004 
(− 0.103) 

Mintem − 0.022*** 
(− 14.674) 

− 0.049*** 
(− 24.002) 

− 0.011*** 
(− 6.100) 

− 0.038*** 
(− 21.508) 

− 0.021*** 
(− 10.119) 

− 0.005*** 
(− 3.673) 

− 0.018*** 
(− 15.473) 

Maxtem 0.018*** 
(10.487) 

0.038*** 
(16.158) 

0.005** 
(2.152) 

0.037*** 
(18.375) 

0.027*** 
(11.720) 

0.002 
(1.143) 

0.017*** 
(12.849) 

Maxwind − 0.022*** 
(− 18.909) 

− 0.007*** 
(− 4.583) 

− 0.030*** 
(− 21.241) 

− 0.023*** 
(− 17.069) 

− 0.011*** 
(− 7.163) 

− 0.008*** 
(− 7.751) 

0.006*** 
(6.528) 

Maxgust 0.001 
(1.381) 

0.001 
(1.437) 

0.002*** 
(4.233) 

0.000 
(− 0.338) 

− 0.002*** 
(− 3.299) 

0.000 
(− 0.584) 

0.001*** 
(3.745) 

Rain − 0.024*** 
(− 11.020) 

− 0.005* 
(− 1.851) 

− 0.025*** 
(− 9.583) 

− 0.032*** 
(− 12.425) 

− 0.011*** 
(− 3.557) 

0.002 
(1.152) 

− 0.022*** 
(− 12.717) 

Snow 0.006 
(0.262) 

− 0.023 
(− 0.716) 

0.016 
(0.553) 

− 0.001 
(− 0.034) 

0.059* 
(1.845) 

0.036* 
(1.794) 

0.009 
(0.507) 

Spatial FE Yes Yes Yes Yes Yes Yes Yes 
Week FE Yes Yes Yes Yes Yes Yes Yes 
Constants 0.117*** 

(2.987) 
− 0.320*** 
(− 7.170) 

0.335*** 
(7.570) 

− 0.036 
(− 0.761) 

− 0.219*** 
(− 3.537) 

0.020 
(0.660) 

− 0.082* 
(− 1.933) 

Observations 3962 3962 3962 3962 3962 3962 3962 
R-squared 0.527 0.462 0.530 0.493 0.310 0.463 0.556 
log-likelihood − 1074.674 − 2250.585 − 1831.420 − 1651.560 − 2263.506 − 351.280 − 88.022  

Table 5 
Impact of lockdown on 24-h concentration mean of six air pollutants.  

Variables (2) 
Ln(SO2_24 h) 

(3) 
Ln(PM2.5_24 h) 

(4) 
Ln(PM10_24 h) 

(5) 
Ln(NO2_24 h) 

(6) 
Ln(CO_24 h) 

(7) 
Ln(O3_24 h) 

Treat_Lock (direct effects) 0.014 
(0.252) 

− 0.222*** 
(− 5.025) 

− 0.118*** 
(− 2.819) 

− 0.037*** 
(− 3.710) 

0.009 
(0.498) 

0.006 
(0.405) 

Control variables Yes Yes Yes Yes Yes Yes 
Spatial FE Yes Yes Yes Yes Yes Yes 
Week FE Yes Yes Yes Yes Yes Yes 
Constants − 0.324*** 

(− 7.271) 
0.335*** 
(7.796) 

− 0.040 
(− 0.867) 

− 0.342 
(− 1.531) 

− 0.094*** 
(− 2.559) 

− 0.132*** 
(− 4.716) 

Observations 3962 3962 3962 3962 3962 3962 
R-squared 0.462 0.528 0.489 0.296 0.585 0.585 
log-likelihood − 2249.933 − 1817.766 − 1629.764 − 2291.204 1158.821 1158.821 

Notes: To save space, the results of the spatial terms and control variables are not reported here, but are available upon request (the same as in the following tables). 
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estimation sample used in regressions reported in Panel A of Table 6 is 
taken from the eleven completely locked-down cities (treatment group) 
and 40 partially locked-down cities (control group). In so doing, we 
compare the extent of the variation of air pollution in cities under 
complete lockdown to cities under partial lockdown. As illustrated in 
Panel A of Table 6, the estimated coefficients on Treat_Lock remain 
negative for AQI, PM2.5, PM10, and NO2, and economically and statis-
tically significant. The estimates suggest that complete lockdown in 
eleven cities on average reduces AQI, PM2.5, PM10, and NO2 by 26.5%, 
26.9%, 32.3%, and 68.2%, respectively, relative to the 40 cities that 
adopted partial lockdown measures. We again fail to find suggestive 
evidence that lockdown impacts SO2 concentration. Contrary to our 
expectation, we find the coefficients for CO and O3 are positively sig-
nificant, indicating that the concentrations of CO and O3 in completely 
locked-down cities increased by 23.2% and 26.9% when separately 
compared with partially locked-down cities. 

The estimation sample in Panel B consists of the eleven cities under 
complete lockdown (treatment group) and 92 cities that set up check-
points and quarantine zones (control group). As demonstrated in Panel B 
of Table 6, lockdown measures reduce PM10 and NO2 by 10.1% and 
42.1%, respectively, and the coefficients of Treat_Lock are significant as 
before. Unexpectedly, we do not observe statistically significant effects 

for AQI and PM2.5, suggesting that control measures taken by the eleven 
completely locked-down cities have no significant impacts on AQI and 
PM2.5, with respect to cities that establish checkpoints and insulating 
areas. We also find that the coefficients of Treat_Lock on CO and O3 
remain positive and statistically significant, which confirm that the 
concentrations of CO and O3 increased in completely locked-down cities. 
The coefficient of SO2 remains insignificant as before. These results must 
be interpreted with caution because the sample sizes vary largely in 
different model settings. Nevertheless, these results highlight that the 
impacts of the lockdowns varied by control levels and specific 
pollutants. 

4. Heterogeneity analysis 

Cities are inherently heterogeneous entities. To gain further insight 
into the impacts of city lockdown on air pollution better, we turn our 
focus to understand heterogeneous effects on air pollution from four 
factors – population distribution, industrial development, winter heat-
ing supply, and transportation demand – that are most relevant to this 
study. We specifically explore heterogeneity between different cities 
through sub-city typologies based on Eq. (5). In presenting the results, 
we consider each dimension in turn. 

Table 6 
Stringency of lockdown measures and air pollution.  

Variables (1) 
Ln(AQI) 

(2) 
Ln(SO2) 

(3) 
Ln(PM2.5) 

(4) 
Ln(PM10) 

(5) 
Ln(NO2) 

(6) 
Ln(CO) 

(7) 
Ln(O3) 

Panel A: 11 complete lockdown cites vs. 40 partial lockdown cities 

Treat_Lock (direct effects) − 0.265*** 
(− 4.471) 

− 0.077 
(1.551) 

− 0.269*** 
(− 4.001) 

− 0.323*** 
(− 5.002) 

− 0.682*** 
(− 10.352) 

0.232 *** 
(6.657) 

0.269*** 
(6.329) 

R-squared 0.472 0.598 0.525 0.443 0.437 0.562 0.600 
log-likelihood − 150.091 − 314.661 − 274.650 − 243.115 − 270.477 74.400 − 72.451 
Panel B: 11 complete lockdown cites vs. 92 checkpoints cities 
Treat_Lock (direct effects) − 0.064 

(− 1.215) 
− 0.165*** 
(− 2.897) 

− 0.019 
(− 0.317) 

− 0.101** 
(− 2.012) 

− 0.421*** 
(− 6.369) 

0.171*** 
(4.283) 

0.229*** 
(6.214) 

R-squared 0.502 0.366 0.529 0.453 0.342 0.414 0.570 
log-likelihood − 345.021 − 739.890 − 575.994 − 557.696 − 769.241 − 200.246 − 158.799  

Table 7 
Heterogeneity analysis.  

Variables (1) 
Ln(AQI) 

(2) 
Ln(SO2) 

(3) 
Ln(PM2.5) 

(4) 
Ln(PM10) 

(5) 
Ln(NO2) 

(6) 
Ln(CO) 

(7) 
Ln(O3) 

Panel A: 107 cities with high population density (N ¼ 1498) 

Treat_Lock (direct effects) − 0.073*** 
(− 4.135) 

0.069*** 
(2.844) 

− 0.100*** 
(− 4.153) 

− 0.038 
(− 1.619) 

0.100*** 
(4.100) 

0.005 
(0.325) 

− 0.013 
(− 0.217) 

Panel B: 176 cities with low population density (N ¼ 2464) 
Treat_Lock (direct effects) − 0.087*** 

(− 3.242) 
− 0.007 
(− 0.009) 

− 0.107*** 
(− 3.982) 

− 0.064*** 
(− 2.611) 

0.059*** 
(2.691) 

− 0.022 
(− 1.063) 

− 0.017 
(− 1.021) 

Panel C: 86 cities with more industrial firms (N ¼ 1204) 
Treat_Lock (direct effects) − 0.056** 

(− 2.032) 
0.024 
(0.346) 

− 0.077*** 
(− 2.585) 

− 0.025 
(− 0.321) 

0.035 
(0.725) 

0.021 
(0.884) 

− 0.081*** 
(− 4.082) 

Panel D: 197 cities with fewer industrial firms (N ¼ 2758) 
Treat_Lock (direct effects) − 0.035** 

(− 2.453) 
0.052*** 
(2.633) 

− 0.057*** 
(− 2.789) 

− 0.001 
(− 0.234) 

0.064*** 
(3.236) 

− 0.020 
(− 1.005) 

0.020 
(1.327) 

Panel E: 97 cities with heating supply (N ¼ 1358) 
Treat_Lock (direct effects) − 0.096*** 

(− 3.541) 
− 0.029 
(− 0.570) 

− 0.082*** 
(− 2.641) 

− 0.103*** 
(− 3.341) 

0.028 
(0.174) 

− 0.077*** 
(− 3.321) 

0.010 
(0.613) 

Panel F: 186 cities without heating supply (N ¼ 2604) 
Treat_Lock (direct effects) − 0.069*** 

(− 2.973) 
0.028 
(1.043) 

− 0.092*** 
(− 4.543) 

− 0.037 
(− 1.547) 

0.106*** 
(4.368) 

− 0.023 
(− 1.443) 

− 0.041*** 
(− 2.026) 

Panel G: 141 cities with a higher transportation demand (N ¼ 1974) 
Treat_Lock (direct effects) − 0.092*** 

(− 4.473) 
− 0.014 
(− 0.065) 

− 0.115*** 
(− 4.643) 

− 0.064** 
(− 2.633) 

0.047 
(1.445) 

− 0.045*** 
(− 2.691) 

− 0.039** 
(− 2.031) 

Panel H: 142 cities with a lower transportation demand (N ¼ 1988) 
Treat_Lock (direct effects) − 0.028 

(− 1.203) 
0.079*** 
(3.341) 

− 0.037 
(− 1.310) 

0.009 
(0.774) 

0.065*** 
(2.878) 

− 0.027 
(− 1.640) 

0.018 
(1.548) 

Control variables Yes Yes Yes Yes Yes Yes Yes 
Spatial FE Yes Yes Yes Yes Yes Yes Yes 
Week FE Yes Yes Yes Yes Yes Yes Yes  
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Population density measured by the ratio of total urban population 
to administrative area is one of the most basic attributes of a city. By 
comparing the local population density with the national mean value, 
we divide our estimation sample into two sub-city typologies: 107 cities 
with high population density and 176 cities with low population density. 
The results of the statistical analyses are reported in Panels A & B of 
Table 7. As revealed, the direct effects of lockdown measures taken in 
densely populated cities are − 7.3%, − 10.0%, and − 3.8% for AQI, PM2.5, 
and PM10, respectively, corresponding to a reduction ratio of − 8.7%, 
− 10.7%, and − 6.4% in cities with lower population density. These re-
sults suggest that lockdown led to a greater improvement in AQI, PM2.5, 
and PM10 in populated cities. We curiously observed evidence that 
lockdown significantly increased SO2 emission by 6.9% in high-density 
cities but had no obvious impacts on low-density cities. This finding is 
consistent with the fact that energy consumption, especially coal con-
sumption for heating and domestic burning, is higher in the cities in 
which more people are concentrated, combined with the fact that our 
sample focuses only on the first quarter of 2020, traditionally the coldest 
season of the year, due to the availability of our data. Results also show 
that lockdown policies increased NO2 in both cities with high population 
density and cities with low population density, and that the variation in 
densely populated cities is greater than in sparsely populated cities. This 
disparity was likely to be caused by transportation but weakened the 
rate of increase in cities with low population density. It is understand-
able as emissions from anthropogenic activity are relatively stable and 
more people means more pollution emissions, even if a city is locked 
down. 

The most industrialized areas have always been the most polluted. 
We obtained the numbers of local industrial firms from the China City 
Statistical Yearbook 2018 to index regional industrial development 
levels. Specifically, we use the national mean value to divide our esti-
mation sample into high-industrial-intensity cities and low-industrial- 
intensity cities. The regression results demonstrated that AQI, PM2.5, 
and O3 declined by 5.6%, 7.7%, and 8.1%, respectively, in Panel C, with 
somewhat smaller decreases (3.5% for AQI, 5.7% for PM2.5) in Panel D, 
when these cities adopted lockdown measures. Some of these differences 
are due to more industrial emissions from power generation, steel, 
chemicals, and other manufactured products from fossil fuel combus-
tion. Contrary to our expectation, lockdown increased SO2 and NO2 
concentrations in cities with fewer industrial firms. Cities with more 
industrial firms recorded a greater reduction in air pollutants, which is 
likely due to the closure of industrial factories. 

In our estimation samples, 97 cities to the north of the Huai River- 
Qinling Mountains line have received centralized heating supply dur-
ing cold days each winter, whereas 186 cities to the south have had no 
access to the heating supply. That China’s centralized heating supply 
heavily relies on coal combustion and inevitably produces serious air 
pollution is a well-documented fact. Our analysis focuses on these 283 
cities and uses the "Huai River-Qinling Mountains" policy to divide our 
sample into two groups of cities, i.e. those with heating supply and those 
without heating supply. The regression results are summarized in Panels 
E & F of Table 7. We find that the effect of lockdown measures varies 
significantly for specific air pollution indicators across different types of 
cities. More specifically, the direct effects of lockdown measures taken 
by colder northern cities are − 9.6%, − 9.2%, and − 10.3% for AQI, 
PM2.5, and PM10, respectively, relative to − 6.9%, − 8.6%, and − 3.7% 
reductions in warmer southern cities. We also found that lockdown 
reduced CO by 7.7% in heated cities but failed to have an impact on CO 
level in cities with no heating supply. Additionally, a 10.1% increase in 
NO2 and a 4.1% decrease in O3 was observed in cities with no heating 
supply. Overall, the observed magnitude of improvement in air quality 
in colder northern cities is higher than that of warmer southern cities. 
The difference could be driven by the fact that colder cities consumed 
more coal for heating, and lockdown reduces such consumption in of-
fices, plants, and schools, which eventually led to a greater improvement 
in air quality. 

Vehicles are one of the major contributors to urban air pollution in 
China (Fu and Gu, 2017). Based on this fact, this study uses the annual 
volume of passengers transported by buses and trolley buses data ob-
tained from the City Statistical Yearbook 2018, to measure regional 
transportation demand. We first calculate the national volume of pas-
sengers per city. Then we use the mean value to separate our sample into 
two groups of 141 cities with a higher transportation demand and 142 
cities with a lower transportation demand. Panels G & H of Table 7 
illustrate the changes in seven air pollutant indicators for each group. In 
Panel G, the direct effects of the adoption of quarantine measures are 
− 9.2%, − 11.5%, − 6.4%, − 4.5%, and − 3.9% for AQI, PM2.5, PM10, CO, 
and O3, respectively, in cities with a greater traffic demand, but we fail 
to find meaningful impacts on corresponding indicators in cities with a 
lower transportation demand in Panel G. The difference possibly owes to 
the fact that transportation demand is concentrated in heavily polluted 
areas like the 44 cities located in the Beijing-Tianjin-Hebei metropolitan 
circle and its surroundings, where the number of buses/trolley buses and 
taxis under operation are 1,233,289 and 232,742, respectively, making 
up 21.91% and 25.76% of the total. On the contrary, a 7.9% increase in 
SO2 and a 6.5% increase in NO2 occurred in cities with a relatively lower 
transportation demand. Cities with a higher transportation demand 
witnessed a greater reduction in air pollutants, which is likely due to the 
suspension of private or public transportation. 

5. Conclusion and policy recommendations 

In this paper we examine the causal relationship between human 
migration and air pollution, and in turn the casual impacts of lockdown 
policies on air quality improvement. Considering the regional diffusion 
effects of air pollution and potential endogeneity concern of city lock-
downs, a dynamic SAR model and spatial counterfactual SAR-DID model 
were employed. We provide novel causal evidence that human migra-
tion affects air pollution concentration. Larger population migration, 
conducive to more intra-/inter-city migrants, is associated with a larger 
AQI index and higher PM2.5, PM10, and NO2 pollution concentration, but 
has no meaningful impacts on SO2 and CO levels. A further causal 
inference provides similar supportive evidence that the adoption of 
lockdown policies led to a large and significant reduction in AQI 
(18.1%), PM2.5 (22.2%), and NO2 (20.5%) concentrations, and a smaller 
reduction in PM10 (10.7%), but had no discernible impact on the con-
centrations of SO2, CO and O3. Results also highlight that the impact of 
the lockdown varied by control stringency and specific pollutants. Sets 
of heterogeneity analyses by sample indicate that the impact of city 
lockdown on air quality is more considerable in cities with a low pop-
ulation density, more industrial firms, higher transportation demand, 
and a heating-supply system. Our findings are particularly important for 
China as the country strives to improve air quality and accelerate key 
measures for the development of a more ecological civilization. 

This study provides a few policy implications for the practice of air 
pollution control. Taken together, the results of the study indicate that 
the emissions of PM10, PM2.5, and NO2 are strongly associated with 
human migration. Further analysis provides similar supportive evidence 
that the implementation of lockdown measures that have changed 
human migration patterns also led to a significant reduction in PM2.5, 
NO2, and PM10. There is no denying that air pollutants are released into 
the atmosphere mainly from road transportation, business activities, and 
public buildings. An obvious and feasible option for policymakers in 
cities with higher PM2.5, NO2, and PM10 emissions is the adoption of 
measures like travel restrictions to reduce emissions. Similar measures 
were already adopted during the Beijing Olympics (2008) and APEC 
conference (2014), which proved the effectiveness of such restrictive 
measures. Curiously, we fail to find suggestive evidence in the cases of 
SO2 and CO, both of which are mainly emitted by fossil energy com-
bustion. An important policy implication to be learned from these results 
is that in cities with higher SO2 and CO emissions, addressing excessive 
fossil-fuel energy consumption in the power and industry sectors is 
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essential. Finally, heterogeneity analysis confirms that densely- 
populated, industrial-intensive, and heating-supply cities, and those 
cities with a high traffic burdens, are important sources of air pollution 
and highlight the necessity of controlling emissions from these sources 
when lockdown measures are lifted. 
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