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Abstract

Network Medicine applies network science approaches to investigate disease pathogenesis. Many 

different analytical methods have been used to infer relevant molecular networks, including 

protein-protein interaction networks, correlation-based networks, gene regulatory networks, and 

Bayesian networks. Network Medicine applies these integrated approaches to Omics Big Data 

(including genetics, epigenetics, transcriptomics, metabolomics, and proteomics) using 

computational biology tools and, thereby, has the potential to provide improvements in the 

diagnosis, prognosis, and treatment of complex diseases. We discuss briefly the types of molecular 

data that are used in molecular network analyses, survey the analytical methods for inferring 

molecular networks, and review efforts to validate and visualize molecular networks. Successful 

applications of molecular network analysis have been reported in pulmonary arterial hypertension, 

coronary heart disease, diabetes mellitus, chronic lung diseases, and drug development. Important 

knowledge gaps in Network Medicine include incompleteness of the molecular interactome, 

challenges in identifying key genes within genetic association regions, and limited applications to 

human diseases.
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1. Introduction

Networks are widely used to represent relationships between entities in complex data sets. A 

network can represent physical connections, such as the internet, or it can be used to 

represent dependencies between different elements, such as a diagnostic decision tree in 

clinical care. Network approaches have been applied to a variety of complex systems, 

including social connections, ecological systems, and disease transmission. Network science 

provides approaches that can be particularly valuable in the analysis of molecular data, 

which will be the focus on this review. Based on graph theory, networks provide a useful 
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structure to visualize and analyze relationships--both linear and nonlinear--among variables 

of interest.

Graphically, we represent networks as collections of nodes (often circles) and edges (lines 

connecting the nodes), which indicate a relationship between the nodes (Figure 1a). In 

addition to visualizing relationships between nodes, properties of the network such as the 

number of connections a node possesses, or the number of paths passing through a node, can 

provide important information about overall network structure and the stability of the 

network to perturbations. The multiple interactions encoded within networks can lead to 

network responses to perturbation that cannot be predicted from studying isolated nodes or 

pairs of nodes; these complex responses are referred to as emergent properties.

A network graph with only one type of node is denoted a “unipartite graph.” An example of 

a unipartite molecular graph is a co-expression network in which two genes are linked if 

their expression levels are highly correlated. The edges in such a graph have “edge weights” 

which represent the strength of the “interaction;” in this example, the correlation coefficient. 

If we have two types of nodes (say, squares and circles) and connections only between one 

type and the other, we can represent those connections using a “bipartite graph.” An 

example would be a gene regulatory network in which we link transcription factors to the 

genes that they regulate. In expression quantitative trait locus (eQTL) networks (in which 

one type of node represents a single nucleotide polymorphism (SNP) and another type of 

node represents the expression level of a gene), the network does not represent physical 

interactions but rather statistical associations between the SNP dose and gene expression 

level.

For both unipartite and bipartite graphs, the edges are key components. Because the edges 

are so important, we often represent a network as a collection of edges, which can be 

summarized using an “adjacency matrix;” a matrix that depicts connections between the 

nodes in a graph (Figure 1b). The advantage of using such a representation is that it 

facilitates mathematical analysis of the network and its properties.

When network science approaches are applied to the analysis of disease, the term “Network 

Medicine” has been used (Barabasi, 2007; Barabasi, Gulbahce, & Loscalzo, 2011; Loscalzo, 

Barabasi, & Silverman, 2017). In many applications, Network Medicine seeks to use cellular 

molecular pathways to explore the etiologies of human diseases. However, since many 

molecular pathways remain poorly defined, Network Medicine relies on inference or 

interaction networks between elements within human cells, and then uses the resulting 

networks to explore drivers of disease.

A variety of different methods has been used to infer relevant cellular molecular networks. 

Protein-protein interaction networks, often referred to as the interactome (Vidal, Cusick, & 

Barabasi, 2011), have been used to identify interconnected subsets of interacting proteins 

related to specific diseases, known as disease network modules. Methods such as weighted 

gene coexpression network analysis (Langfelder & Horvath, 2008) use pairwise correlation 

in gene expression levels to identify modules of similarly expressed genes in distinct 

phenotypic states. Still other methods integrate multiple different data types to infer 
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regulatory interactions between transcription factors and their targets (Glass, Huttenhower, 

Quackenbush, & Yuan, 2013; Sonawane et al., 2017). These modeling approaches based on 

Big Data can be thought of as “top-down” efforts to identify genes of interest agnostically in 

disease-related networks. However, “bottom-up” approaches to build disease networks by 

identifying the biological relationships and network connections for well-established 

susceptibility genes can also be used to create disease-related molecular networks.

Network Medicine applies these integrated approaches to state-of-the-art Omics data and 

computational biology tools and, thereby, has the potential to provide improvements in the 

diagnosis, prognosis, and treatment of complex diseases. We anticipate that improvements in 

disease diagnosis will have the most immediate impact on clinical medicine. However, 

substantial advancements in the analysis, interpretation, and validation of Network Medicine 

approaches will be required to turn this potential to transform medical care into reality.

In this review, we discuss the types of molecular data that are used in molecular network 

analyses, survey the analytical methods for inferring molecular networks, and review efforts 

to validate molecular networks. We will review several successful applications of molecular 

network analysis. Finally, we will consider knowledge gaps and future directions for this 

developing field.

2. Data Collection for Molecular Networks

Although computational biologists often do not have extensive training in molecular and cell 

biology, understanding the impact of sample collection and storage protocols on the Omics 

data utilized for building molecular networks is essential. Different Omics data types are 

differentially affected by sample source, sample collection, subject characteristics, and 

sample storage. Obtaining DNA for assessments of genetic variation is robust to most of 

these variables, but other Omics data types (e.g., transcriptomics, metabolomics, proteomics, 

and epigenetics) can be profoundly altered. The most readily available sample source is 

peripheral blood; however, the relevance of blood Omics data for diseases based in other 

organ systems is variable. Whole tissue samples (e.g., lung, heart) can provide greater 

disease relevance, but the cellular alterations related to disease pathology need to be 

considered. Individual cell types provide more specific Omics data but are more difficult to 

obtain. Subject characteristics of relevance for Omics data include whether the sample 

donors were acutely ill or in a stable state. For example, mechanical ventilation of many 

GTEx donors had a substantial impact on lung gene expression (McCall, Illei, & Halushka, 

2016). For metabolomics, obtaining blood samples in the fasting state is preferred, although 

many metabolites can be assessed in non-fasting samples (Townsend et al., 2013). Key 

issues related to sample processing include the time from sample collection to freezer 

storage. Anticoagulant selection affects proteomic studies in blood samples (Lan et al., 

2018), while collecting samples in DMSO can alter DNA methylation. Increasing numbers 

of freeze-thaw cycles are problematic for many Omics data types. The temperature of 

freezer storage (the colder, the better) can also influence sample quality and Omics results.

Generating Omics data from appropriate biospecimens has become commoditized for 

genetic variation assessment, using either SNP genotyping panels or DNA sequencing 
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(whole exome or whole genome). Metabolomics assessments can be performed with 

targeted panels; untargeted assays can also be performed, but identification of those analytes 

can be quite challenging (Gika, Virgiliou, Theodoridis, Plumb, & Wilson, 2019). 

Epigenomic data are obtained using profiling techniques analyzing both DNA methylation 

and histone modifications. DNA methylation marks can be measured with pre-defined 

panels or based on DNA sequencing before and after bisulfite conversion of methylated 

cytosines. Chromatin accessibility and histone modifications can be assessed with a plethora 

of different Omics-driven approaches such as Nome-Seq, ATAC-Seq and ChIP-Seq, which 

map nucleosomes and non-histone proteins and detect DNA-associated proteins and histone 

modifications at the genome-wide level. Transcriptomics has largely moved from microarray 

analysis to RNA-Seq. Proteomics can be performed with pre-defined panels of analytes 

(e.g., Olink, SomaLogic) or with shotgun mass spectrometry. Each of these platforms has 

specific challenges that require domain expertise for appropriate interpretation. For example, 

DNA methylation panels are affected by SNPs located under assay probes (W. Zhou, Laird, 

& Shen, 2017), and analytes in protein panels like SomaLogic can be affected by non-

specific binding (Joshi & Mayr, 2018).

3. Data Cleaning and Normalization for Molecular Networks

The many challenges and sources of variability related to Omics data collection directly 

impact data analysis and interpretation of molecular networks built from those data sets. 

Even when every effort is made during data collection and generation, data will be affected 

by technical noise that can substantially (or even critically) impact the identification of 

biological signals.

Some of the most important sources of technical noise are batch effects, which introduce 

systematic technical variability in the data (W. W. B. Goh, Wang, & Wong, 2017). Batch 

effects can result in both the absence of significant results when genuine biological 

differences exist (false negatives) and the presence of false positive results that solely stem 

from technical variation. Well-known batch effects include day of sample processing and/or 

data generation, reagent batches, and operators. The worst-case batch effects are 

confounding effects, i.e., when the batch effect is completely confounded with the biological 

factor of interest. Examples of confounding batch effects are when all control and disease 

subject samples are processed on two different days or by two different operators, or when 

all male and female samples are processed separately in their respective batches. While it is 

possible to identify and correct for non-confounding batch effects in data or explicitly to 

account for this source of variability in statistical tests as explicit covariates, they are best 

handled by careful experimental design using blocking, i.e., assigning samples to different 

experimental batches in a balanced way. Exploratory data analysis and visualization 

approaches (such as hierachical clustering or principal component analysis) can be effective 

to identify batch effects. In the absence of apparent visual clues, known genes that are 

susceptible to batch effects can also be used (Leek et al., 2010). Correction of batch effects 

can be effective in well-balanced study designs (i.e., when biological groups are evenly 

represented across batches) by using standard normalization (see below) followed by batch 

correction such as the popular ComBat method (Johnson et al., 2007), that relies on 

Bayesian inference to estimate the batch effects. Surrogate variable analysis (SVA) (Leek & 
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Storey, 2007) uses factors defining the expected biological classes to estimate and correct for 

sources of variation that are not associated with the biological factor. Removed unwanted 

variation (RUV) (Gagnon-Bartsch & Speed, 2012) relies on invariant features, i.e., features 

expected to remain unaffected by the biological factor of interest, to estimate and correct for 

unwanted batch effects. The application of batch correction methods does, of course, not 

guarantee that the undesired variation will be addressed. It is essential to check the corrected 

data and results to verify that these are not still influenced by the batch effects. Batch effects 

are particularly difficult to account for in clinical studies when the size of the cohort 

increases and collections span over a long duration, and when the phenotypes of the 

incoming patients are random (thus impeaching any design planning until the very end of the 

collection, leading to long and varying times from sample collection to processing). In 

addition to batch correction, it is essential to ensure comparability across samples by 

removing as much of the technical, unwanted variability and leaving relevant, biological 

variability untouched, a procedure called normalization. At times, simple methods such as 

centering (shifting each sample distribution towards a common value) and scaling 

(normalizing the range of the measurements across samples), can suffice. Generally, 

especially when handling Omics data, techniques that consider all data together and more 

profoundly affect the data need to be considered (for example quantile (Hicks et al., 2018) 

and variance stabilization normalizations (Anders & Huber, 2010; Huber, von Heydebreck, 

Sueltmann, Poustka, & Vingron, 2003)). In Figure 2, we show in a tractable example how 

the lack of data normalization (for instance, centering and scaling) can substantially alter the 

resulting network. We analyzed the expression profiles of five genes (two of which, genes 3 

and 4, are co-expressed, panel a) across four samples using co-expression networks. The 

example demonstrates that using absolute gene expression values (heatmap b and network c) 

misleadingly groups genes 3 and 5, and how centering and scaling the gene expression data 

(heatmap d and network e) can recover the anticipated clustering of genes 3 and 4. These 

results are comparable to the positive control that uses correlation values between genes to 

construct heatmap f and network g.

Depending on the Omics technology at hand, a substantial proportion of data points can be 

missing. Missing data can be a particularly acute issue for mass spectrometry-based 

proteomics and metabolomics assays, where both the high number and the different types of 

missingness (technical/random and biological/non-random) can dramatically influence how 

to process the data and the outcomes of an analysis (Lazar, Gatto, Ferro, Bruley, & Burger, 

2016). Missing data can be ignored or statistical imputation approaches can be used to 

estimate them, but both approaches can lead to biased analytical results.

In every step of a data analysis procedure, it is advisable to identify outliers (Bittremieux, 

Meysman, Martens, Valkenborg, & Laukens, 2016; Kauffmann & Huber, 2010; Norton, 

Vaquero-Garcia, Lahens, Grant, & Barash, 2018; Stanfill et al., 2018), including samples or 

features with an abnormal number of missing values, samples that display substantially 

different distributions in their quantitative features, or samples that do not cluster with the 

rest of their group. Such cases need to be handled carefully; if the outlying nature of a 

sample cannot be corrected (through appropriate missing data imputation and data 

normalization, or after correction of mis-annotated samples), the offending sample might be 

better removed completely for the subsequent data analysis.
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Finally, it is important to highlight that the above steps also hold true when reusing publicly 

available data (when performing a meta-analysis combining several data sets, for example) 

or other resources providing large-scale genomic information (for example, accessing 

protein-protein interaction from the STRING database (Szklarczyk et al., 2015)). The 

question that one needs to answer when cleaning and pre-processing Omics data, is whether 

the data as they stand (raw or possibly heavily processed) are adequate to address the 

specific scientific question at hand.

4. Analytical Approaches for Molecular Networks

Many different analytical approaches have been developed for molecular networks. Rather 

than providing an exhaustive list of such methods, we focus on describing several major 

classes of molecular network models, including protein-protein interaction networks, gene 

regulatory networks, correlation networks, Bayesian networks, RNA-RNA networks, and 

epigenomic networks, emphasizing the strengths and limitations of available analytical 

approaches.

4.1. Protein-Protein Interaction Networks

Specific physical contacts of two or more proteins as a result of biochemical processes are 

called protein-protein interactions (PPIs). They are steered by non-covalent forces and often 

occur in a cell-type-specific, condition-specific, and organism-specific manner. Manifold 

wet laboratory technologies exist for their identification, such as affinity purification, Y2H 

(yeast 2 hybrid), or TAP (tandem affinity purification) (Rao, Srinivas, Sujini, & Kumar, 

2014). Through PPIs, differential protein complex formation and signal flow through the 

network can be studied in response to changing internal and external conditions or stimuli. 

PPI networks are often referred to as the “interactome,” and huge databases have emerged 

over the last decade of systems biology that store and annotate them for subsequent 

interrogation using computational tools. Two examples: 1) The Integrated Interactions 

Database (IID) stores over 4.8 million PPIs annotated for tissue-specificity, subcellular 

localization, disease associations, and druggability (Kotlyar, Pastrello, Malik, & Jurisica, 

2019); and 2) The STRING database stores over 2 billion PPIs for 5,090 organisms and 24.6 

million proteins (Szklarczyk et al., 2015). The STRING database also includes predicted 

interactions based, for example, on homology or text mining, and functional associations in 

addition to physical ones. PPI networks can be modelled as matrices or as undirected graphs 

where vertices correspond to proteins and edges to (physical or functional) interactions 

which can be weighted (usually with confidence scores or p-values). Many approaches for 

clustering and cross-species or cross-condition comparisons of such networks have been 

developed (cf.(Bader & Hogue, 2003; Malek, Ibragimov, Albrecht, & Baumbach, 2016)). 

Invaluable in a systems and Network Medicine context have proven so-called network 

enrichment methods, which usually aim at co-clustering an expression data set gathered for a 

set of patients suffering from a certain disease compared to a control group having a 

differential clinical outcome. Here, the aim is to identify subnetworks enriched with genes or 

proteins that are significantly altered in their behavior (e.g., differentially expressed, 

methylated, or mutated). Such subnetworks are candidate disease mechanisms and may be 

used as mechanistic markers for endophenotyping (Zanin et al., 2019). Many such network 
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enrichment tools have been developed over the last decade and are now applied to the 

identification of disease mechanisms. Examples include DEGAS (Ulitsky, Krishnamurthy, 

Karp, & Shamir, 2010), KeyPathwayMiner (List et al., 2016), HOTNET (Vandin, Clay, 

Upfal, & Raphael, 2012), or GrandForest (see Figures 3 and 4). All such network module 

detection approaches come with different advantages and disadvantages that depend on 

biomedical assumptions regarding the underlying disease mechanisms and the available 

Omics data types (Batra et al., 2017; Nikolayeva, Guitart Pla, & Schwikowski, 2018). 

Currently, available PPI networks are usually studied in the context of gene expression or 

genetic variation data. Few approaches exist for the analysis of alternative splicing in the 

context of PPIs (Emig et al., 2010), as this would require structural knowledge about the 

PPIs to identify spliced exons and corresponding protein domain variations. Such 

information is, however, only available for comparably small numbers (<10,000) of PPIs, 

e.g., in Instruct (Meyer, Das, Wang, & Yu, 2013). Static PPI networks often do not allow for 

inferring causality, as they are undirected and have no annotation regarding activation or 

repression; this is in contrast to dynamic responses of PPIs to perturbation or to gene 

regulatory networks, which can be interrogated regarding their power to explain the 

emergence of different phenotypes on an expression level (S. J. Larsen, Rottger, Schmidt, & 

Baumbach, 2019).

Based on the hypothesis that proteins relevant for a particular disease will be localized 

(rather than randomly scattered) throughout the molecular interactome, multiple approaches 

have been developed to identify disease network modules within the PPI network (L. Y. Lee 

& Loscalzo, 2019). Seed genes can be selected based on genome-wide association studies 

(GWAS) or other reductionist experimental evidence to guide disease module identification 

using random walk or other approaches to interrogate the interactome (Erten, Bebek, Ewing, 

& Koyuturk, 2011; Navlakha & Kingsford, 2010). Alternatively, all of the genetic 

association evidence in a GWAS can be used to prioritize disease network modules 

(Ghiassian, Menche, & Barabasi, 2015; Jia, Zheng, Long, Zheng, & Zhao, 2011; Petti, 

Bizzarri, Verrienti, Falcone, & Farina, 2019).

4.2. Gene Regulatory Networks

Gene regulation involves the complex interplay of multiple biological molecules. The 

transcriptional process starts with the coordinated activity of multiple regulatory proteins, 

known as transcription factors (TFs), which bind to specific control regions in the DNA and 

then work together to recruit RNA polymerase (RNAP) (Lambert et al., 2018). After 

recruitment, RNAP transcribes a gene, producing mRNA, which is then translated into 

protein. Additional factors, such as microRNAs and other epigenetic modifiers, are also 

involved in this process and can influence the amount of mRNA transcribed and the amount 

of protein translated (T. I. Lee & Young, 2013). Gene regulatory networks model 

transcriptional processes by connecting regulators (such as TFs) to the genes encoding the 

downstream products of transcription and/or translation (mRNA and/or proteins, 

respectively) (Sonawane et al., 2017). Importantly, a subset of the target genes in these 

networks encode TFs, creating a complex set of interactions that can be studied to 

understand the processes that control how a cell responds to environmental factors and to 

determine how the mechanisms controlling gene transcription are altered in the context of 
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disease (Baumbach, Tauch, & Rahmann, 2009; Baumbach, Wittkop, Kleindt, & Tauch, 

2009).

Much of the early work in modelling regulatory networks leveraged gene expression data to 

draw connections between TFs and genes based on linear (de la Fuente, Bing, Hoeschele, & 

Mendes, 2004) or non-linear (Faith et al., 2007; Margolin et al., 2006) correlations in their 

expression profiles (De Smet & Marchal, 2010; Marbach et al., 2012). However, it soon 

became clear that gene regulatory networks estimated solely from gene expression data 

could not distinguish between direct and indirect regulatory events (Marbach et al., 2010), at 

least partially due to the fact that gene co-regulation (i.e., a pair of genes regulated by the 

same TF) often has similar or stronger expression correlation than direct regulation of a gene 

by a TF (Ku, Duggal, Li, Girvan, & Ott, 2012). This observation led to the development of 

network reconstruction algorithms that incorporate multiple sources of data (Chang et al., 

2008; Conlon, Liu, Lieb, & Liu, 2003; Hecker, Lambeck, Toepfer, van Someren, & Guthke, 

2009). For example, interactions between TFs and genes can be derived by scanning the 

control regions of genes for sequence patterns that correspond to potential TF binding sites. 

In isolation, these interactions lack biological context, generally contain many false-positives 

(spurious network edges), and are limited by the availability of information regarding the 

binding preferences of TFs. These estimates can be combined with epigenetic data assessing 

chromatin state in order to create context-specific networks (Beyer et al., 2006; Gerstein et 

al., 2012; Neph et al., 2012; Pique-Regi et al., 2011); however, the resulting models often 

suffer from a high number of false-negatives (missing network edges). One significant 

appeal of these approaches is their potential to incorporate distal information into gene 

regulatory networks, although currently the effective and accurate association of enhancers 

with genes remains an outstanding problem in the field of computational biology.

Statistical approaches have also been applied to model gene regulatory networks. These 

approaches fall into two main classes: (1) regression-based approaches, which estimate 

regulatory interactions by modeling each gene’s expression level as a linear combination of 

the expression levels of its potential TF regulators (Haury, Mordelet, Vera-Licona, & Vert, 

2012); and (2) classification-based approaches, which add and remove regulatory 

interactions by comparing each gene’s expression profile to the expression profiles of other 

genes that are, or are not, targeted by a particular TF (Ernst et al., 2008; Mordelet & Vert, 

2008). These statistical approaches, although powerful, essentially solve a series of 

independent problems, presenting challenges for assimilating their results into a single, 

coherent gene regulatory network. One method that overcomes this limitation is PANDA 

(Passing Attributes between Networks for Data Assimilation) (Glass et al., 2013), which 

uses a message-passing approach (Frey & Dueck, 2007) to integrate information regarding 

TF complexes, TF targeting of genes, and gene co-regulation. PANDA works by performing 

a series of network projections to optimize shared structures across these input data and to 

uncover TF and gene targeting patterns. PANDA has been successfully applied in multiple 

different disease contexts, including ovarian cancer (Glass, Quackenbush, Spentzos, Haibe-

Kains, & Yuan, 2015), colorectal cancer (Lopes-Ramos et al., 2018), diet-induced weight-

loss (Vargas, Quackenbush, & Glass, 2016), chronic obstructive pulmonary disease (COPD) 

(Glass et al., 2014; Lao et al., 2015), and asthma (Qiu et al., 2018), as well as to study gene 
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regulatory networks in multiple human tissues (Sonawane et al., 2017) and cell lines (Lopes-

Ramos et al., 2017).

Gene regulatory networks that are inferred from data are often directed, with edges that 

extend from a regulator – such as a transcription factor – to a target gene, as well as 

weighted, with scores reflecting the overall evidence for a regulatory relationship. These two 

features make regulatory networks excellent models of biological processes, which are, by 

definition, directed and also may have varying levels of importance depending on biological 

context (Sonawane et al., 2017). In principle, gene regulatory networks should also be 

signed in order to convey information regarding transcriptional activation or inhibition. 

Although these types of relationships have been carefully curated at a genome-wide level for 

some smaller organisms, such as E. coli (Gama-Castro et al., 2016), they cannot be easily 

measured using high throughput methods. Thus, due to the scale and complexity of higher 

order mammalian systems, signs are generally only considered when investigating well-

studied subsets of human gene regulatory relationships, such as those reported in pathway 

databases (Kanehisa, Furumichi, Tanabe, Sato, & Morishima, 2017).

4.3. Correlation Networks

Correlation-based networks and their graph theory-based properties have been successfully 

used to summarize and understand large data sets generated in biological and medical 

studies (Batushansky, Toubiana, & Fait, 2016; D. Yu, Kim, Xiao, & Hwang, 2013). 

Correlation networks are based on the calculation of pairwise correlation coefficients 

between the data associated with a pair of nodes (usually Pearson or Spearman coefficients, 

Kendall’s tau, or Mutual Information). Since these correlation values are generally non-zero 

(i.e., the network is complete), it is necessary to impose a hard or soft threshold on the 

correlation coefficient values in order to remove spurious relationships and, thus, focus on 

significant associations between highly correlated nodes(Schwarz & McGonigle, 2011; Zhan 

et al., 2017). Hard-thresholding approaches create binary networks where sub-threshold 

inter-node correlations are suppressed (edge values set to 0), and supra-threshold 

correlations are compressed (edge values set to 1). Alternatively, soft-thresholding 

approaches replace thresholding with a continuous mapping of correlation values into edge 

weights, which has the effect of suppressing rather than removing weaker network 

connections. Pearson correlation is the most widely used statistic to measure the degree of 

the linear relationship between two normally distributed variables. Alternatives include 

Spearman and Kendall’s tau correlations, which do not require any assumptions about the 

distribution of the data and measure the statistical association between two variables based 

on their ranks. These three measurements can take values ranging from −1 to 1. Finally, 

mutual information is a generalized correlation measure used to assess the non-linear 

dependence between two random variables. It is always larger than or equal to zero: the 

larger the value, the greater the relationship between the two variables. Mutual information 

is zero when the two variables are independent.

Correlation networks are frequently used to analyze gene expression data (referred to as 

gene co-expression networks) and to gather biologically relevant information from genes 

with similar co-expression patterns (Fiscon, Conte, Farina, & Paci, 2018). Gene co-
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expression networks are fertile fields for mining information about key genes and 

fundamental drivers of gene expression in a cellular system. Currently, two of the most 

promising algorithms for gene co-expression networks are SWIM (SWItch Miner) (Paci et 

al., 2017) and WGCNA (Weighted Gene Correlation Network Analysis) (Langfelder & 

Horvath, 2008; B. Zhang & Horvath, 2005). SWIM builds an unweighted correlation 

network (hard-thresholding) and exploits local and global graph properties to mine genes, 

called switch genes, which suggest association with drastic changes in cellular phenotype, 

such as in cancer development. WGCNA builds a correlation network that can be weighted 

(soft-thresholding) or unweighted (hard-thresholding) and identifies relevant genes by 

measuring the centrality of a gene within the network. WGCNA also permits incorporation 

of external sample information (like physiological, metabolic, and clinical traits) in order to 

screen for modules and intramodular hubs that relate to a sample trait, thus suggesting 

possible key roles of a specific network module in the phenotypic characterization. However, 

WGCNA considers only the right tail (i.e., positive correlation between gene pairs) of the 

correlation distribution.

To date, the left tail (i.e., negative correlation between gene pairs) of the correlation 

distribution, and the interpretation of negative edges within a complex network 

representation of functional connectivity, has largely been ignored, apart from the SWIM 

methodology. Indeed, it is known that the human genome is pervasively transcribed (E. P. 

Consortium et al., 2007), yet at any given spatial/temporal state a cell generally uses only a 

fraction of its gene functions. This observation suggests a crucial role of negative regulation 

to save cells from activation of specific pathways and cell functions in response to specific 

external stimuli or physiological and/or pathological changes. As an example, microRNAs 

are now universally recognized as key negative regulators in many intracellular processes as 

well as in cancer development and progression (Calin & Croce, 2006; X. Zhou, Xu, Wang, 

Lin, & Chen, 2015). The strength of SWIM is to emphasize the importance of negative 

regulation by explicitly considering also the left tail of the correlation distribution.

Correlation networks have also been successfully used to study complex diseases, 

comorbidity, and disease progression. Complex diseases (e.g., diabetes, stroke, cancer, etc.) 

are often considered as syndromes composed of overlapping individual diseases or 

phenotypes that manifest a similar pathological or physiological outcome. To understand 

how diseases are connected, the first Phenotypic Disease Network (PDN) was introduced as 

a map summarizing phenotypic connections (comorbidity correlations obtained from the 

disease history of more than 30 million patients) between diseases (nodes) (Hidalgo, 

Blumm, Barabasi, & Christakis, 2009). The authors showed that diseases progress 

preferentially along the links of this map; in particular, this progression is different for 

patients of different genders and ethnicities, and patients affected by diseases that are 

connected to many other diseases in the PDN tend to die sooner than those affected by less 

connected diseases. Later, a phenomenological comorbidity network based on medical 

claims data of the entire population of Austria was proposed (Chmiel, Klimek, & Thurner, 

2014). This network was constructed from a two-layer multiplex network of two statistical 

measures quantifying relations between diseases. In contrast to the PDN proposed by 

Hidalgo et al. (Hidalgo et al., 2009), this network was based on a combination of measures 

(i.e., conditional probabilities for a comorbidity and respective contingency coefficients) that 
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have been corrected for biases that result from the comparison of very rare and frequent 

diseases. The authors showed that the disease network undergoes dramatic structural 

changes across the lifetime and that patients predominantly develop diseases that are in close 

network proximity to disorders that they already suffer. A different approach was developed 

to investigate multiple disease-related phenotypes within one complex disease; Chu and 

colleagues developed a method for constructing networks of phenotypic variables (nodes) 

based on partial correlations between quantitative, disease-related phenotypes (edges) (Chu 

et al., 2014). Specifically, using COPD as an example, these investigators described the 

application of network inference methods to explore the relationships between disease-

related phenotypes, and they showed that the proposed approach allows detection of novel 

relationships that would not have been observed in a single variable analysis. A further 

example of a complex disease studied with correlation network analysis is provided by 

Nishihara and colleagues, where the authors investigated the carcinogenic process in 

colorectal carcinoma (Nishihara et al., 2017). They proposed to model the complex process 

that encompasses a multitude of molecular events (e.g., somatic mutations, epigenetic 

alterations, and aberrant protein expression) with a biomarker correlation network wherein a 

node represents a tumor tissue biomarker (e.g., somatic mutation, methylation level, immune 

reaction, or protein expression) and an edge between two nodes occurs if the associated 

biomarkers exhibit a statistically significant Spearman correlation. Such a network analysis 

integrates multidimensional tumor biomarker data and allows identification of key molecular 

events and pathways that are central to an underlying biological process.

A limitation of gene co-expression correlation-based networks is that the effect of an 

expressed gene on a disease phenotype requires that its encoded protein binding and 

pathway partners be co-expressed (Kitsak et al., 2016). This requires knowledge of the PPI 

for optimal interpretation, as purely regulatory interactions may not be informative in this 

regard. Ideally, differentially expressed genes can be mapped to the PPI to create a 

‘reticulotype’ for a disease module of interest that is specific to an individual or a limited 

number of individuals with that disease phenotype. Such an approach moves the field ever 

closer to personalized precision medicine (L. Y. Lee & Loscalzo, 2019).

4.4. Bayesian Networks

Bayesian networks are powerful models whose structure is determined directly from data 

that measure the values of variables across a series of samples, conditions, or states. More 

formally, Bayesian networks are directed acyclic graphs whose nodes are random 

probabilistic variables with values that describe variation across a set of states. The edges in 

a Bayesian network model the dependencies between variables, with the conditional 

probability distributions of each variable encoded by the network structure. In particular, the 

values taken by a node in a Bayesian network are modeled as a distribution that is 

conditioned on that node’s parents, but independent of its non-descendants given its parents. 

Thus, the edges in these models ultimately can represent the influence of a number of both 

detected and undetected factors, providing an appealing framework with which to 

characterize relationships between variables despite imperfect knowledge and incomplete 

data, features commonly encountered in real-world Network Medicine applications.
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Two main classes of methods are used to reconstruct the structure of Bayesian networks: 

constraint-based approaches (Natori, Uto, Nishiyama, Kawano, & Ueno, 2015) and score-

based algorithms (Andrews, Ramsey, & Cooper, 2018). Whereas the former uses conditional 

independence tests to determine dependency structures in the data, the latter maximizes an 

objective function based on goodness-of-fit scores (Friedman, Linial, Nachman, & Pe’er, 

2000; Vignes et al., 2011). Score-based methods seek to identify the best network structure 

by optimizing a scoring function, and thus are more computationally expensive compared to 

constraint-based approaches, which relax this criterion. Although this relaxation results in 

lower accuracy models, it also allows for learning larger networks. It is important to note 

that with prior knowledge regarding the topological ordering of the network and the use of 

entropy to assess conditional independence and goodness of fit, constraint-based and score-

based approaches learn the same network structure (Cowell, 2001). There are also hybrid 

methods which combine aspects of both constraint-based and score-based approaches 

(Scutari, Graafland, & Gutierrez, 2019). Two important aspects to consider when modelling 

Bayesian networks include parameter estimation and structural learning. Parameter 

estimation involves learning the conditional probability distributions based on the data given 

a known network structure (Ji, Xia, & Meng, 2015). Structural learning involves learning 

both the network structure and the parameters by combining a statistical criterion with an 

algorithm that determines how to apply that criterion to the data (Scanagatta, Salmeron, & 

Stella, 2019).

Bayesian networks often capture subtle relationships, producing realistic models of the 

pathways that control disease development and progression. Bayesian network analysis has 

been applied in a number of biological contexts. An early application in yeast gene 

expression data generated a highly predictive model of cell cycle mechanics (Friedman et 

al., 2000), demonstrating the power of the approach. Due to the size and complexity of the 

data, applications using human gene expression data often require constraining the model 

search space based on a preliminary set of network topologies (Hartemink, Gifford, 

Jaakkola, & Young, 2002; Imoto et al., 2004; Le Phillip, Bahl, & Ungar, 2004). With these 

modifications, Bayesian networks have been used to study a variety of related problems, 

such as the reconstruction of gene regulatory networks from the scientific literature 

(Gevaert, Van Vooren, & De Moor, 2007) and gene expression data (Husmeier, 2003; 

Husmeier & Werhli, 2007). More recent work in Bayesian networks includes the 

development of tools that support integrative and multi-modal data analysis, such as 

bootstrapping to reduce reliance on outliers, and the implementation of multiple search and 

validation algorithms (McGeachie, Chang, & Weiss, 2014). These advances have led to the 

application of Bayesian networks to multiple different Omics data types, such as micro-RNA 

(McGeachie et al., 2017), metabolomics (Rogers et al., 2014), and microbiome data 

(McGeachie et al., 2016). An application of Bayesian networks to the integration of 

metabolomic, genomic, and methylation data implicated metabolic pathways in the 

pathophysiology of asthma control (McGeachie et al., 2015). Bayesian approaches have also 

been applied to model gene regulatory networks based on conditional mutual information 

(Aghdam, Ganjali, Zhang, & Eslahchi, 2015; X. Zhang, Zhao, Hao, Zhao, & Chen, 2015). 

Dynamic Bayesian networks have been utilized to create weighted directed networks, which 
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can utilize longitudinal Omics data to create time-varying regulatory networks of activation 

or inhibition events (Z. Wang, Guo, & Gong, 2018).

Despite their appeal and many successful applications, Bayesian network models have 

several well-known limitations. First, Bayesian networks are computationally complex and 

thus best applied to efforts to understand relationships between a relatively small number of 

variables. Resolving the structure of a Bayesian network is a nondeterministic polynomial 

time (NP)–hard problem (Chickering, 1996). To overcome this limitation, prior information 

can be used to “seed” the network structure and limit the search space (Djebbari & 

Quackenbush, 2008). Secondly, Bayesian networks are structured as directed acyclic graphs. 

Thus, their application in modeling cellular processes, which often involve cyclic features 

such as feedback loops, requires modifications to the standard framework. Extensions to 

Bayesian networks that incorporate cyclic structures include factor graph approaches (Gat-

Viks, Tanay, Raijman, & Shamir, 2006) and dynamic Bayesian networks (Husmeier, 2003; 

Kim, Imoto, & Miyano, 2003; J. Yu, Smith, Wang, Hartemink, & Jarvis, 2004; Zou & 

Conzen, 2005).

4.5. RNA-RNA Networks

RNA plays a central role in physiological functions of every living organism, as described 

by Walter Gilbert in 1986 (Berget, Moore, & Sharp, 1977; Chow, Gelinas, Broker, & 

Roberts, 1977; Gilbert, 1986; R. C. Lee, Feinbaum, & Ambros, 1993; Reinhart et al., 2000). 

Since then, high throughput genome-wide studies by the Encyclopedia of DNA Elements 

(ENCODE) and Functional Annotation of Mammals (FANTOM) projects have revealed that 

98% of the human genome is pervasively transcribed and only 2% of the RNAs encode 

proteins (Lizio et al., 2019; Pazin, 2015). These results have triggered a plethora of studies 

on epigenetic functions of non-coding RNAs (ncRNAs) in human physiology and 

pathobiology in the last 20 years. The ncRNAs are classified, according to their length, into 

small RNAs (miRNAs, piRNA, siRNAs, snRNAs, snoRNAs, tRNAs) and long non-coding 

RNAs (lncRNAs); the latter includes circular RNAs as well. All of these RNAs are 

intricately interconnected in biological regulatory networks (Holoch & Moazed, 2015).

Ever-increasing evidence suggests that many genomic mutations reside in non-coding 

regions that perturb RNA-RNA interactions, leading to different diseases (Shah et al., 2018; 

Yuan & Weidhaas, 2019). Such interactions are epitomized by the competing endogenous 

RNA (ceRNA) hypothesis, in which lncRNAs function as they bind to miRNAs and 

consequently regulate the expression of messenger RNAs (mRNAs) (Anastasiadou, Jacob, & 

Slack, 2018; Salmena, Poliseno, Tay, Kats, & Pandolfi, 2011). Furthermore, ncRNAs 

interact not only with each other but also with proteins and DNA, which are interconnected 

in diverse regulatory networks. Therefore, a better understanding of RNA-RNA interactions 

is of fundamental importance in Network Medicine (Barabasi et al., 2011; L. Y. Lee & 

Loscalzo, 2019; Tay, Rinn, & Pandolfi, 2014).

Data-driven methodologies help to shed light on ncRNA network involvement in human 

disease (Ristevski & Chen, 2018). One of the most versatile data mining tools is the Gene 

Expression Omnibus database repository (GEO), containing high throughput gene 

expression data, and the BioPortal database repository, which provides biomedical 
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ontologies (Clough & Barrett, 2016). One way to study an RNA-RNA network in a 

particular disease takes into account the pipeline to analyze mRNA, miRNA, and lncRNA 

datasets from the GEO. Indeed, a recent study analyzed differential expression of these 

RNAs in spinal cord injury (SCI) and normal samples (L. Wang, Wang, Liu, & Quan, 2019). 

The raw data analysis, performed either by using the Linear Models for Microarray Data 

(LIMMA) package or the Morpheus platform, was used respectively to identify statistically 

significant deregulated mRNAs and differentially expressed miRNAs and lncRNAs 

(Gentleman et al., 2004). Differential expression data were matched based on their 

complementarity to assess the predicted interactions between mRNA-lncRNA, mRNA-

miRNA, and lncRNA-miRNA. After an accurate and unbiased analysis, the RNA 

interactions were placed in a network using Cytoscape software. From this analysis, a 

ceRNA network was unraveled, which included 93 mRNA, 9 miRNA and 13 lncRNA nodes 

with a total of 202 edges. Additionally, the FunRich software was used to analyze biological 

functions, molecular pathways, clinical phenotypes, transcription factors and protein 

domains related to all mRNA, miRNA, and lncRNA nodes. Based on the degree of a node, 

as indicated by the number of mRNA, miRNA, and lncRNA neighbors, the authors 

identified three of the 13 lncRNA nodes and their corresponding three sub-ceRNA networks 

as potential biomarkers and therapeutic targets for SCI. Such pipeline data analysis provides 

further insights into how lncRNAs interact with other RNA species to form a molecular 

network. A similar approach could be employed for identification of RNA-RNA interactions 

in other human diseases.

Among computational methods describing miRNA-sponge interactions (ceRNAs) through a 

network-based approach (Le, Zhang, Liu, & Li, 2017), the method proposed by Paci and 

colleagues has been ranked as most effective in identifying the number of ncRNA 

interactions associated with breast cancer (Paci, Colombo, & Farina, 2014). Specifically, 

based on a partial correlation model, the authors investigated the role of lncRNAs as miRNA 

sponges and built miRNA-mediated interaction (MMI) networks, where nodes represent 

ceRNAs (lncRNA or mRNA) and edges represent miRNAs that are mediating their 

interaction, in human breast invasive carcinoma (BRCA). The results revealed the lncRNA, 

PVT1 (Pvt1 Oncogene), as the first hub of the BRCA MMI-network. More than 80% of 

microRNAs sponged by PVT1 corresponds to the mir-200 family, whose importance in 

breast cancer is related to the epithelial-mesenchymal transition.

The above studies on RNA-RNA interactions demonstrate the importance of these networks 

for the identification of disease-driven RNA as potential diagnostic biomarkers and 

therapeutic targets. Notwithstanding the importance of an accurate and unbiased RNA-RNA 

network analysis in health and disease, the critical importance of experimental validation by 

cell-based approaches and animal models should not be underestimated.

4.6. Epigenomic Regulatory Networks

In the era of precision medicine, epigenomics has acquired a key role in revealing how 

epigenetic modifications can be utilized to identify diagnostic biomarkers and/or new 

therapeutic targets. Epigenomics analyzes overall epigenetic modifications within the 

genome of the cell.
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Epigenetic regulation is the result of different modification pathways that affect DNA either 

directly (DNA methylation) or indirectly, through post-translational modifications of histone 

proteins, nucleosome positioning, and chromatin accessibility of regulatory regions to DNA 

binding proteins (Z. Chen, Li, Subramaniam, Shyy, & Chien, 2017). Accordingly, epigenetic 

modifications coordinately establish the transcriptional program of cells and, together with 

integration methods of genomic, transcriptomic, and proteomic data, are crucial to 

understand fully the regulatory mechanisms underlying complex diseases (Robinson & 

Pelizzola, 2015). The epigenome is highly dynamic.

Epigenomic patterns are tightly regulated by both genetic and environmental factors that 

ultimately establish different clinical phenotypes (Allis & Jenuwein, 2016). In recent years, 

a considerable amount of epigenetic data have been produced using several epigenetic 

analysis techniques aimed at finely characterizing both DNA methylation (Whole Genome 

Bisulfite Sequencing, MeDip, pyrosequencing, MSRE/MRE-Seq), chromatin accessibility 

and histone modifications (ChIP-Seq, Nome-Seq, ATAC-Seq), and chromosome 

conformation capture (3C, 4C, 5C, Hi-C). High-throughput sequencing technology has 

extended the body of epigenetic information at genome-wide scale. Major efforts are 

currently underway to establish data annotation protocols (for data standardization) and 

computational methods for epigenomic analysis by making use of databases and software 

tools for statistical analysis, data integration, and functional annotation.

Several data repositories and browsers are currently available thanks to the endeavors of Big 

Data consortia. ENCODE, the International Human Epigenome Consortium (IHEC), NIH 

Roadmap, Blueprint, and others have made available epigenetic profiling datasets as well as 

standardization of protocols and sample preparation for both healthy and disease states of 

different cell lineages and tissues (Bernstein et al., 2010; Bujold et al., 2016; B. consortium, 

2016; Davis et al., 2018; Martens & Stunnenberg, 2013). In parallel, a remarkable number of 

epigenomic databases, tools, and data storage systems has allowed the storage and 

visualization of epigenomic datasets of different sample groups (Han & He, 2016). Among 

these, the Human Epigenome Browser(X. Zhou et al., 2011) and UCSC Genome Browser 

(Kent et al., 2002) provide resources and tools for epigenetic data mining and annotation.

In complex diseases, the epigenomic profile results from the interplay between genetic and 

environmental factors. Thus, integrating epigenomics data in different pathological contexts 

represents an important step towards effectively defining and treating multifactorial diseases. 

Epigenome-wide association studies (EWAS) identify epigenetic marks associated with a 

specific phenotype. Several web tools such as the Human EpiGenome Browser (X. Zhou et 

al., 2011) and coMET (Martin, Yet, Tsai, & Bell, 2015) are used to visualize different 

epigenetic profiles by phenotype. A more comprehensive view of the functional implications 

of EWAS associations can be exploited using gene ontology, pathway, and network analysis 

tools. Ingenuity Pathway Analysis (IPA©, QIAGEN) explores biological networks, 

functions, and associated diseases of EWAS associations (Kramer, Green, Pollard, & 

Tugendreich, 2014), while Locus Overlap Analysis (LOLA) provides genomic region 

enrichment analysis to interpret functional genomics and epigenomics data (Sheffield & 

Bock, 2016). Genomic Regions Enrichment of Annotations Tool (GREAT) is another 

powerful tool able to correlate data sets from ChIP-seq or, more generally, from DNA 
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binding of cis-regulatory DNA regions with biological processes (McLean et al., 2010). 

Several network-based methods and tools such as eFORGE and ChromHMM are able to 

predict chromatin states from epigenetics data (Breeze et al., 2016; Ernst & Kellis, 2017).

Data integration approaches aimed at functionally annotating specific traits associated with 

epigenetic associations are now being developing by exploiting the possibility to predict 

chromatin states and establish links with gene expression (Claussnitzer et al., 2015). Few 

bioinformatics tools are currently available to combine and model multi-omics data and 

networks. Significance-based Modules Integrating the Transcriptome and Epigenome 

(SMITE) integrates transcriptomics and epigenomics data at high resolution, increasing 

confidence in finding gene modules underlying cellular pathophysiology (Wijetunga et al., 

2017). SMITE may be used to identify novel gene modules in large epigenetic and 

transcriptomic data sets and provide a more useful characterization and visualization of 

functional modules inside a gene network. BioWardrobe is another user-friendly platform 

that stores, visualizes, and analyzes epigenomics and transcriptomics data, without requiring 

any particular programming skills (Kartashov & Barski, 2015). This tool correlates 

differential gene expression with binding analysis and creates average tag-density profiles 

and heatmaps.

Several studies represent valuable examples of the use of integrated epigenomic approaches 

to dissect complex disease. Claussnitzer revealed a mechanistic basis for the genetic 

association between FTO and human obesity (Claussnitzer et al., 2015), identifying the 

rs1421085 T-to-C single-nucleotide variant of the FTO gene as the single-nucleotide variant 

(SNV) responsible for dysregulation of target genes with a functional role in human obesity. 

The authors combined public resources for epigenomic annotations, chromosome 

conformation assays, and regulatory motif conservation. The data indicated that rs1421085 

disrupts ARID5B repressor binding resulting in derepression of IRX3/IRX5 during early 

adipocyte differentiation. In another study based on the International Cancer Genome 

Consortium (Beekman et al., 2018), Beekman and colleagues analyzed the epigenome of 

seven chronic lymphocytic leukemias (CLLs) and the chromatin landscape of another 100 

additional cases previously characterized by whole-genome or whole-exome sequencing 

(WGS/WES), RNA-seq, and DNA methylation microarrays. These authors identified de 

novo reprogrammed regulatory regions associated with the development of CLL and its 

main clinical subtypes with diagnostic, prognostic, and potentially therapeutic value. The 

comprehensive dataset provided by the authors offered new insights into the biology and 

clinical behavior of CLL, representing a resource for the scientific community into the study 

of gene regulation, cell differentiation, and cancer genomics or epigenomics.

A summary of the major molecular network types reviewed in this section is provided in 

Table 1.

5. Laboratory Validation of Molecular Networks

As discussed in previous sections, the analysis of molecular networks combines data from 

different sources: protein-protein interaction networks are derived mostly from yeast two-

hybrid systems and tandem affinity purification assays, whereas networks based on 
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correlations between gene expression levels may not capture causal relationships (Celaj et 

al., 2017; Snider et al., 2015). Therefore, the conclusions drawn from the analysis of Omics 

data, whether based on publicly available datasets or correlations within a set of human 

samples, should be experimentally validated. If the disease under investigation has an animal 

model or a tissue or a cellular model (e.g., stem cells derived from patients), these could be 

interrogated to verify the existence of the network identified in silico. Specifically, if a 

subnetwork of interacting proteins exists, its experimental perturbation (pharmacologically, 

by siRNA, or genetically) should lead to a change in a disease-relevant phenotype.

The Network Medicine approach to build networks from pair-wise molecular interactions 

(Kyoto Encyclopedia of Genes and Genomes, KEGG) and other high throughput approaches 

(e.g., brain imaging, connectomics, functional Magnetic Resonance Imaging (fMRI), etc.) 

can be combined with information gathered by high throughput techniques from cellular 

models (e.g., interactome or protein-protein interactions, kinase perturbation databases, 

phosphatase substrates, Reactome, druggome, etc.), in addition to extensive tissue protein 

expression databases, tissue atlases or annotated databases that consider protein functions 

(e.g., gene ontology). Consequently, experimental validation of network models represents 

an important step towards the development of precision medicine (Doncheva, Kacprowski, 

& Albrecht, 2012; Loscalzo & Barabasi, 2011). Two approaches have been considered to 

validate reliably the physiological relevance of target genes and pathways in a given 

network: animal models and cell-based approaches. However, selecting the appropriate 

model system and perturbation for network validation can be challenging. Molecular 

networks may vary between cell types, so selecting a cell type relevant for the disease of 

interest is helpful. The relevance of a particular animal model for human disease needs to be 

considered. In addition, a subset of key network relationships, rather than the entire network, 

is typically considered for validation due to the expense and logistical challenges of 

performing large-scale cellular and animal model functional studies.

5.1. Animal Models

An integral part of the Network Medicine approach should aim to define which gene-

targeted animal model most effectively recapitulates a certain human disease. Although most 

complex diseases are polygenic, gene-targeted animal models focused on single genes often 

recapitulate key aspects of a complex disease. Table 2 provides examples of animal models 

of disease including attention deficit hyperactivity disorder (ADHD), anxiety/depression, 

memory dysfunction/dementia, type 1 and type 2 diabetes, nephrotic syndrome, obesity, and 

cancer.

Obtaining an accurate estimate of the number of genes responsible for a polygenic disease is 

problematic for several reasons: (i) in some instances (such as ADHD), the previously 

reported candidate gene associations (in contrast to large-scale genome-wide association 

studies) often have questionable validity; and (ii) the number of genetic loci is not equivalent 

to the number of different genetic subgroups; there can be multiple functional variants at 

each locus, and even if discrete subgroups can be identified, they likely relate to multiple 

genetic variants. These limitations are also present in general when trying to infer molecular 

networks in human subjects. However, notwithstanding these limitations, it is interesting to 
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analyze an estimate of the number of genes/genetic loci in each of these situations and 

compare it to the number of available genetic animal models.

Keeping in mind these limitations, as detailed in Table 2, many complex human diseases 

have a polygenic origin based on GWAS and next-generation sequencing data, and only few 

present a monogenic familial origin. In contrast, transgenic and knock-out animal models 

have a single gene perturbation. The disease phenotype of these genetic models often differs 

from the full phenotype of the human disease; the phenotype is often milder or even absent 

in some cases. However, of note, the number of available genetic animal models is 

approximately of the same order of the estimated number of genes responsible for the 

human disease, except for type II diabetes. Moreover, in some instances (such as type 1 

diabetes and nephrotic syndrome), a systematic report of the available animal models is not 

available, although the knockout mouse for each risk gene is available. Furthermore, a 

unique opportunity of a disease- or even patient-specific validation of a molecular network 

identified in silico is offered by patient-derived xenografts (PDXs) or avatars (Ben-David et 

al., 2017), which are based on cancer cells isolated from patients and injected into “nude” 

mice (mice without an immune system): these are an improved, individualized reproduction 

of the disease into animal models (though with several limitations (Willyard, 2018)).

In animal models, the effect of single-gene perturbations on molecular networks is then 

usually studied using Omics (e.g., proteomics, transcriptomics) analysis on relevant tissues. 

Strategies of gene-enrichment analysis or other techniques detailed above can be used to 

infer the disease network (how a molecular perturbation in a molecular network produces a 

specific phenotype). This information not only validates molecular networks inferred in 

patients but also gives a detailed view of which cells/tissues are most affected by the 

network perturbation and even tissue-by-tissue differences in molecular networks.

5.2. Cell-based Approaches

In vitro cellular models most commonly used experimentally to validate network 

relationships inferred from Omics data include immortalized cell lines or primary cells 

isolated from different human tissues, stem cells, and induced pluripotent stem cells (iPS). 

Computational identification of hub genes that affect multiple molecular pathways in PPI 

and RNA-RNA interaction (RRI) networks necessitates functional validation to confirm 

biological mechanisms and suggest potential druggable targets. Experimental laboratory 

validation usually occurs in two-dimensional (2D) monolayer cell cultures. This unnatural 

system does not recapitulate the extracellular microenvironment in which the cells reside in 

the body, due to the lack of extracellular matrix (ECM) and of local and circulating factors 

(e.g., neurohormones), critical components for physiological cell functions (Bonnans, Chou, 

& Werb, 2014). Consequently, failures of clinical trials, especially in phase III, could be 

attributed to misleading experimental results obtained in 2D cell cultures. To reflect more 

realistic and natural cell responses to any therapeutic treatment, three-dimensional (3D) cell 

culture systems have been developed. Cells in a 3D culture may either grow as spheroids in 

suspension, as organoids surrounded by ECM, or on scaffolds, as described in Table 3 

(Abbott, 2003; Edmondson, Broglie, Adcock, & Yang, 2014; Muthuswamy, 2017). 

Organoids, arguably used interchangeably with spheroids, are a self-organized cell system 
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that develop into 3D organ-like units that resemble the function and structure of an organ 

(Muthuswamy, 2017). Therefore, organoid cultures established from patients are used for 

personalized reliable drug screening and for studying gene function, offering new 

therapeutic approaches in the field of personalized medicine. More dynamic types of cell 

cultures are Organ-on-chip (OOC) or Organ-Chips, a multi-channel 3-D microfluidic cell 

culture chip made with silicone rubber polymer, which simulates the activities, mechanics, 

and physiological responses of entire organs and organ systems (Huh, Hamilton, & Ingber, 

2011). Unlike conventional cell culture plates, microfluidic devices have been developed to 

mimic entire organs and to recapitulate cellular interactions within a tissue unit by creating 

separate parenchymal and vascular compartments, therefore providing a more physiological 

microenvironment. Furthermore, in these devices a smaller culture volume is needed, 

providing a greater concentration of cell-secreted growth factors as compared with 96-well 

plates (Przybyla & Voldman, 2012). Cells might be also seeded and grown on functionalized 

scaffolds made of synthetic biomaterials, such as polysaccharides, that are nontoxic, 

biocompatible, and biodegradable to achieve better cellular adhesion, differentiation, and 

proliferation able to form functional 3D human tissues for medical applications. Scaffolds 

mimic the extracellular matrix that sustain cell growth and can better recapitulate the 

microenvironment in which the cells are capable of exerting their physiological functions. 

Scaffold bioprinting has many potential medical applications, from organoids to human 

tissue fabrication for modeling pathobiology, drug development, and reconstitution and 

transplantation of damaged tissues and ultimately entire organs (“Tissue-engineered disease 

models,” 2018).

Integration of predictive molecular networks with empirical data derived from 3D culture 

systems could become a powerful approach for precision medicine. As mentioned above, 3D 

bioengineered models from patient-derived cells are geared towards more physiologic 

behavior that considers not only cell-cell but also cell-microenvironmental interactions. 

Molecular perturbations of these culture systems could be assessed for changes in gene 

expression, RNA-RNA interactions, or protein-protein interactions. However, application of 

Omics data in these 3D culture systems remains challenging. This challenge is mostly due to 

the complexity of nonlinear biological systems, characterized by common nodes (proteins or 

RNA) working in concert with other nodes in a network, thus affecting multiple molecular 

pathways. Perturbation of a single node by a drug or siRNA, small hairpin RNA (shRNA), 

CRISPR/Cas9, or any other RNA-based compound might influence multiple molecular 

network members and create feedback loop processes. This complexity derives not only 

from the number of genes and molecular pathways, but also from responses over time after 

in vitro or in vivo treatment; i.e., with the aforementioned compounds. Moreover, a 

therapeutic treatment of an animal or 3D cellular model could be efficient and nontoxic at a 

certain range of a compound concentration; i.e., lower concentrations might be less toxic 

than high doses of a therapeutic compound. Another characteristic of in vitro cell-based 

biological systems is their adaptability to any therapeutic treatment that might induce drug 

resistance. We also need to verify whether organotypic cultures manifest the emergent 

properties of disease/toxicity (Grego et al., 2017). These and other challenges may lead to 

failure for validation of even the most powerful predictive molecular network.
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The knowledge of molecular networks and especially causal network models combined with 

the experimental observations in 3D cell cultures could become an integrated and more 

accurate approach to predict human responses to any therapeutic treatment (Jaeger et al., 

2014).

6. Data Visualization of Molecular Networks

Network Medicine allows the mapping of diseases into the theoretical problems of graphs. 

The study of networks requires a large amount of data to be analyzed and computed, in 

terms of properties of various nodes and relations existing among nodes and dynamicity 

related to the state of the network. Therefore, in addition to automatic analysis techniques 

(e.g., machine learning), it is possible to integrate this new approach with data visualization 

and visual analytics (Thomas & Cook, 2005), depicting networks so that it is possible to 

understand clearly the region of interest and analyze the relationships between network 

layers (Marai, Pinaud, Buhler, Lex, & Morris, 2019).

Visual analytics is a field that has intersected in multiple ways with medical data analysis 

(Chittaro, 2001; Shneiderman, Plaisant, & Hesse, 2013). With the birth of Network 

Medicine, several contributions have been proposed. They are focused on visualization of 

the molecular interactome (Chaurasia et al., 2009; Lu et al., 2004), disease module and gene 

pathways (Cerami, Demir, Schultz, Taylor, & Sander, 2010; Mlecnik et al., 2005), and 

phenotypes (Bottomly, McWeeney, & Wilmot, 2016). Most of these approaches represent 

results using the node-edge diagram (Gladilin, 2017; Sharma et al., 2015), but generally they 

have very basic visual interactions. Moreover, general purpose frameworks exist, in the form 

of environments or libraries, that allow visualization of large biological networks like 

Cytoscape (Smoot, Ono, Ruscheinski, Wang, & Ideker, 2011), NetBioV (Tripathi, Dehmer, 

& Emmert-Streib, 2014), or HitWalker 2 (Bottomly et al., 2016). Gerasch and colleagues 

(Gerasch et al., 2014) proposed a system for visually analyzing high-throughput Omics data 

in the context of networks; in particular, for differential analysis between groups of subjects 

and the analysis of time series data. Perer and Sun (Perer & Sun, 2012) and Basole and 

coworkers (Basole et al., 2015) proposed visual analytics solutions that analyze data from 

clinical patients, where the network reconstructs the time-evolving data of the clinical 

patient. In addition, Auriemma Citarella and coworkers (Auriemma Citarella et al., 2019) 

analyzed the symptoms of the patients and the general information of the disease using 

information retrieval. However, they analyzed only the patients’ data, without correlating 

them to the interactome. In this research, the symptoms of the patients can be considered as 

a layer in a multilayer network to have a more precise analysis. The work by Huan and 

colleagues (Huan, Sivachenko, Harrison, & Chen, 2008) presents PRoteoLEns, a JAVA-

based visual analytics tool for creating, annotating, and exploring multi-scale biological 

networks. Nonetheless, the tool seems very proficient in exploring subparts of a biological 

network, but is not as effective in communicating a network overview. An improvement 

towards the analytics in the multilayer structure is represented by NEMESIS (Angelini, 

Blasilli, Farina, Lenti, & Santucci, 2019), inspired by the work of Dietzsch and colleagues 

(Dietzsch, Heinrich, Nieselt, & Bartz, 2009). NEMESIS is a visual analytics solution that 

provides the means for exploring interactively different facets of a complex body of data, 
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inspecting both the data associated with topological properties of a single network and 

summary multidimensional information derived from other relevant networks.

It is possible to model Network Medicine data as a multi-layer network, where each network 

(e.g., protein-protein interaction networks (Rolland et al., 2014), metabolic networks 

(Ravasz, Somera, Mongru, Oltvai, & Barabasi, 2002), human disease networks (HDN) (K. I. 

Goh et al., 2007), metabolic disease networks (MDN) (Braun, Rietman, & Vidal, 2008), and 

drug-target networks (DTN) (Yildirim, Goh, Cusick, Barabasi, & Vidal, 2007)) is a different 

layer. As explained by Kivela and colleagues (Kivela et al., 2014), a multilayer network has 

a set of nodes just like a typical network, but in addition, there are layers. Each connection is 

not a pair of nodes; instead, it is a tuple of node-layers. The difficulties in understanding 

these connections are related to the multiple points of view that this structure generates; in 

fact, the elements can be analyzed at the intra-layer level (effectively focusing on a single 

homogeneous network) or at the inter-layer level. In this structure, layers and their 

connectivity have major roles; in fact, each layer must be chosen for its usefulness and 

importance with respect to the problems being studied. Network Medicine seems the perfect 

domain where modelling the various elements at hand as a multi-layer network can provide 

enriched analysis and benefits, although with additional complexity to manage.

From a visualization perspective, it is important to look for appropriate visual 

representations apart from the classic node-edge diagram, adjacency matrix (Ghoniem, 

Fekete, & Castagliola, 2005), or chord diagram (Crnovrsanin, Muelder, Faris, Felmlee, & 

Ma, 2014), or using a hybrid approach (matrix and node-edge) (Henry, Fekete, & McGuffin, 

2007). These representations should be able to provide scalability with respect to data size 

and should be able to support the analyst providing an explorable overview. The analyst 

must be supported by tools to examine interactions within a single layer of the multi-layer 

network and eventually explore the connection to other layers. In this sense, it becomes 

important to design navigation patterns through different visual representations, 

automatically selecting the best one for the specific task at hand (e.g., exploration of the 

network, communication between different types of evidence, or analysis of a subset of 

elements). Transitions between abstract visual paradigms (e.g., node-edge representation, 

adjacency matrix representation, and novel visual paradigms) should be managed while 

keeping the user selection, allowing rearrangement of the layout of the multi-layer network 

depending on the kind of analysis executed. Where the complexity of the analysis again 

becomes manageable, the visualization can transition back to node-edge diagrams that are 

more readable for a low number of elements with respect to other abstract visual 

representations. Proposals on this topic are the automation of the change of visualizations 

with respect to granularity of the focus level (Landesberger et al., 2011) (e.g., from matrix to 

node-edge) or Detail to Overview via Selections and Aggregations (DOSA) (van den Elzen 

& van Wijk, 2014).

Among several visualization tasks to be supported, we can envision consolidating network 

data (e.g., interactome data), given the different sources that provide these data. 

Homogenization of data is necessary to perform deep studies aimed at uncovering new edges 

in single networks (e.g., protein-protein network) or among the networks (e.g., drugs-

patients). Identification of interesting areas of the multi-layer network, such as highly 
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connected nodes (hubs), may indicate certain properties that are present or are of specific 

interest (e.g., disease modules). Studying the connectivity in the multi-layer network, it is 

possible to identify regularities that could provide biological insights, but also to manage 

visually the complexity of the multi-layer network layout. On this topic, interesting visual 

approaches include the gragnostics (Gove, 2019) approach proposing several metrics for 

network similarity (e.g., to recognize similarities between the different layers and finding 

new patterns) and methodologies for pruning uninteresting elements from the network, 

allowing more scalable visual representations (Auber, 2004; Singh, 2007).

Eventually, these elements can even be used to model new layers of the multi-layer network, 

using them for fast filtering activities or pattern-matching based on machine learning 

techniques. Another interesting aspect is the network neighborhood; nearby nodes are often 

associated with the same phenomena. Genes that belong to the same disease are often 

arranged in a local neighborhood, so it is possible to find similar patterns in the proximity of 

a selected gene. Clustering approaches can be used to delineate these regions of interest.

The link between the fields of visualization, visual analytics, and Network Medicine 

(summarized in Figure 5) can bring mutual improvements for different types of users: 

physicians and medical personnel, as well as bioinformatics and visualization researchers 

and practitioners. Physicians and other medical personnel, provided with interpretable 

results coming from powerful automatic analysis methods, can form, test, and validate new 

hypotheses, eventually taking into account multiple relationships derived from the 

interconnected nature of a multilayer network. This effort can help to understand better a 

current disease under examination, test new drugs, and evaluate their effectiveness on 

patients, all in the same holistic and interconnected view, where visualization allows an 

investigator to steer the analysis and interpret and communicate the results.

Despite the heavy computational cost of many of these data analysis techniques, network 

visualization approaches can help in conducting data exploration, fine-tuning and optimizing 

specific algorithms, and testing and comparing new automatic analysis techniques. Finally, 

for visualization researchers and practitioners, the requirements of Network Medicine can 

help in designing and testing new abstract visual paradigms, tailor interaction approaches to 

support exploration better, and investigate smoother transition techniques between views for 

exploration, analysis, communication and interpretation of results, eventually advancing the 

state-of-the-art in the field of networks, and in particular multilayer network, representation.

7. Successful Applications of Molecular Networks

Application of potent network-based algorithms represents the most fruitful way to reach 

useful clinical platforms for precision medicine and personalized therapy in complex 

diseases (Barabasi, 2007; Barabasi et al., 2011; Menche et al., 2015). In this section, we will 

review several examples in which the application of network-based methods has provided 

pathobiological insights into conventionally defined complex diseases. In the future, 

Network Medicine has the potential to redefine diseases based on the molecular networks 

that determine their pathobiological mechanisms, instead of the conventional approach of 

disease diagnosis based on physiology and/or pathology.
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7.1. Pulmonary Arterial Hypertension (PAH)

Pulmonary arterial hypertension (PAH) leads to fibrotic vasculopathy and endothelial 

dysfunction underlying heart remodeling (Chan & Loscalzo, 2008). Combining network-

based algorithms and modeling of epigenetic trajectories over time may be crucial to 

discover novel clinical biomarkers leading to precision medicine of PAH (Napoli, Benincasa, 

& Loscalzo, 2019). Samokhin and colleagues have mapped fibrosis-related proteins to the 

human interactome and, by using the betweenness centrality (BC) analysis, revealed that the 

SMAD3 target neural precursor cell expressed developmentally down-regulated 9 (NEDD9) 

is a critical hyperaldosteronism-regulated node triggering the shift from an adaptive to 

maladaptive fibrotic response (Samokhin et al., 2018). Interestingly, NEDD9 reduction 

prevented fibrotic vascular remodeling in vivo, thus suggesting a putative novel drug target.

7.2. Coronary Heart Disease (CHD)

An integrated approach combining imaging modalities in the quantification of coronary 

atherosclerosis and novel circulating biomarkers could improve precision medicine of 

coronary heart disease (CHD) (Infante et al., 2017). By providing additional linking proteins 

(seed connectors) to the seed protein pool, the Seed Connector algorithm (SCA) identified 

novel putative drug targets in CHD, such as the neuropilin-1 (NRP1) protein (R. S. Wang & 

Loscalzo, 2018). Furthermore, a systems pharmacology-based platform measuring the 

distance between disease proteins and drug targets in the human PPI was developed (Cheng 

et al., 2018). Evidence from large-scale patient datasets indicated that carbamazepine and 

hydroxychloroquine were strongly associated with a higher and lower risk of CHD onset, 

respectively. Importantly, in silico applications may serve as useful tools for efficient 

screening of potentially new indications for approved drugs (drug repurposing), undesirable 

side effects, as well as potential mechanisms of drug action, thus enlarging opportunities for 

personalized therapy (Cheng et al., 2018; R. S. Wang & Loscalzo, 2018).

7.3. Diabetes mellitus

Sharma and coworkers performed a robust network-based controllability approach in order 

to construct a regulatory sub-network in human pancreatic samples (Sharma et al., 2018). By 

applying the control centrality (Cc) concept to identify high control centrality (HiCc) 

pathways, an enrichment of variants regulating gene expression (eQTL) was observed. 

Interestingly, the nuclear factor of activated T cells 4 (NFATC4) belonged to four HiCc 

pathways and may increase the expression of four putative downstream T2D genes, thereby 

implicating a potentially crucial node contributing to disease pathogenesis (Sharma et al., 

2018).

7.4. Complex Lung Diseases: Chronic Obstructive Pulmonary Disease (COPD), Idiopathic 
Pulmonary Fibrosis, and Asthma

Recently, a PPI network-based approach unveiled molecular network neighborhoods for 

chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF), 

with a statistically significant region of intersection and network proximity (Halu et al., 

2019). The shared network region involved 19 genes, including Rho GTPase activating 

protein 12 (ARHGAP12) and butyrylcholinesterase (BCHE) as key nodes. Thus, network-
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based strategies may also offer a potent means to dissect genes and pathways shared 

between phenotypically distinct diseases, such as COPD and IPF, thus offering novel 

insights into pathobiological mechanisms (Halu et al., 2019). In earlier work, by mapping 

the seed genes onto the human interactome via the DIAMOnD algorithm (Ghiassian et al., 

2015), an asthma-associated network neighborhood was identified (Sharma et al., 2015). 

Interestingly, the asthma network module was strongly associated with two clinical 

phenotypes, asthma severity and poor asthma control, thus providing evidence for its 

putative importance in asthma pathogenesis, as well as in future precision medicine.

7.5. Redefinition of sGC as a Primarily Neuronal Target

Clinically relevant molecular targets are often associated with only one or a few disease 

indications or medical specialties. This, however, may be solely due to the fact that other 

disease areas or indications were never considered. Langhauser and coworkers investigated 

such a potential bias in a high prevalence unmet medical need cluster of disease phenotypes 

linked to cyclic GMP (Langhauser et al., 2018). Hitherto, the central cGMP-forming 

enzyme, soluble guanylate cyclase (sGC), had been targeted pharmacologically exclusively 

for smooth muscle modulation in cardiology (angina pectoris, heart failure, coronary heart 

disease) and pulmonology (pulmonary arterial hypertension). The disease associations of 

sGC were re-investigated in a non-hypothesis based manner in order to identify possibly 

previously unrecognized clinical indications by determining the protein-protein interactome-

based proximity of the proteins within the sGC complex to the proteins associated with 

major common diseases (Guney, Menche, Vidal, & Barabasi, 2016). To prioritize the 

diseases, four diseasomes were assessed based on disease–disease relationship scores. Only 

those links that correspond to non-spurious relationships between diseases were kept by 

including disease pairs that shared at least one gene (n > 0); had a positive shared protein 

interaction score (z > 0); showed symptom similarity (Jaccard index > 0.5); and were known 

to be comorbid (relative risk > 1) in the four diseasomes, respectively. The degree centrality 

of each disease within these diseasomes was calculated and then an average final centrality 

value was determined. To ensure that the incompleteness of the interactome data did not 

have a significant effect on the ranking of the diseases, the centrality of the diseases without 

using the interactome-based diseasome was also checked. Stroke remained as the most 

central disease across the diseasomes, an application that has so far not been explored 

clinically. Indeed, when investigating the neurological indication of this cluster with the 

highest unmet medical need, ischemic stroke, pre-clinically sGC activity was virtually 

absent post-stroke. Conversely, a heme-free form of sGC, apo-sGC, was now the 

predominant isoform suggesting it may be a mechanism-based target in stroke. Indeed, this 

repurposing hypothesis could be validated experimentally in vivo as specific activators of 

apo-sGC were directly neuroprotective, reduced cerebral infarct size and increased survival. 

Thus, common mechanism clusters of the diseasome allow direct drug repurposing across 

previously unrelated disease phenotypes redefining them in a mechanism-based manner.

7.6. Co-target Discovery for Network Pharmacology

Drug discovery mainly focuses on single molecular targets. Mechanism-based disease 

definitions would, however, frequently be networks targeted by multiple compound synergy 

and network pharmacology. Beginning with a primary causal target, Casas and coworkers 
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extended a validated seed protein to a second protein using guilt-by-association analysis and 

then validated the prediction and synergy using both cellular in vitro and in vivo models 

(Casas et al., 2019). As a disease model they chose ischemic stroke, and reactive oxygen 

species forming NADPH oxidase type 4 (Nox4) as a primary causal therapeutic target. For 

network analysis, they used classical PPIs but also metabolite-dependent interactions, 

assuming that signaling events may occur in a non-PPI manner. Based on this protein–

metabolite network, they conducted a gene ontology-based semantic similarity ranking to 

find suitable synergistic co-targets for network pharmacology. They then identified the nitric 

oxide synthase (Nos) gene family as the closest target to Nox4. Indeed, when combining a 

NOS and a NOX inhibitor at subthreshold concentrations, they observed pharmacological 

synergy in a supra-additive manner suggesting a causal network comprised of Nox4 and Nos 

signaling. Thus, protein–metabolite network analysis can predict and pair synergistic 

mechanistic disease targets for network pharmacology, an approach that may reduce the risk 

of failure and increase the efficacy of single-target drug discovery and therapy approaches.

7.7. Drug Networks

Drug-based networks (for which we propose the term ‘drugome’) may be especially relevant 

for translational Network Medicine and network validation. These networks include 

pluripotent drugs (effective in more than one disease) or promiscuous drugs (having more 

than one binding target). Both drug interactions and resulting drug networks offer the 

possibility of discovering drug repurposing opportunities for clinical validation. Hu and 

Agarwal performed a systematic, large-scale analysis of genomic expression profiles of 

human diseases and drugs to create a disease-drug network (Hu & Agarwal, 2009). A 

network of 170,027 significant interactions was extracted from comparisons between 

publicly available transcriptomic profiles. The network included primarily disease-drug and 

drug-drug relationships. Among the disease-drug links, connections with negative scores 

suggested new indications for existing drugs, while positive scoring connections may aid in 

drug side effect identification. Drug-drug relationships may aid in target and pathway 

deconvolution. The relevance of drug-drug networks is further enhanced by the recent 

observation of the detection of molecular interaction field similarities which provide further 

opportunities for drug repurposing as well as to identify potential molecular mechanisms 

responsible for side-effects. Chartier and colleagues performed a large-scale analysis to 

detect binding-site molecular interaction field similarities between the binding-sites of the 

primary target of registered drugs against a non-redundant dataset of all proteins with known 

structure (Chartier, Morency, Zylber, & Najmanovich, 2017). They found 140 unique drugs 

and 1,216 unique potential cross-reactivity protein targets. This expands the potential for 

drug repurposing for small molecules from the orthologous target to several so-called “off-

targets.”

7.8. Future Network Medicine Applications

Network Medicine may effectively overcome the limitations of the current reductionist 

approach to medical research by using a “deep phenotyping” strategy that combines 

heterogeneous Big Data and clinical information, lifestyle, and nutritional habits in order to 

provide a map of the aberrant signaling pathways interlinked with each other layer of 

knowledge at the individual level. Epigenetic-sensitive changes represent a bridge between 
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genome and environment during early-life development, providing novel insights into the 

“epigenetic transgenerational effect” hypothesis, a topic that deserves further investigation in 

humans (Benincasa et al., 2019; Napoli et al., 2019; Napoli et al., 2012). The above-

mentioned network-oriented biomarkers could be useful to prevent, diagnose, and monitor 

complex diseases as well as to offer novel drug targets providing the opportunity of 

repurposing previously approved drugs for other diseases (Cheng et al., 2018). Moreover, 

Sanchez-Vega et al. emphasized the possibility that the high intra- and inter-individual 

heterogeneity of a specific type of cancer could be dissected by the underlying pathway 

abnormalities leading to a molecular-based diagnostic platform that could be more effective 

than traditional approaches (Sanchez-Vega et al., 2018). Long-term clinical trials are needed 

to validate these molecular networks and machine learning predictive models, providing a 

huge opportunity for precision medicine and personalized therapy of complex diseases. 

Importantly, Network Medicine is now focusing on the ongoing “Foodome” project (https://

www.barabasilab.com/projects) based on the relationship between specific food 

(bio)chemicals and consumption behaviors, linking this to health and disease outcomes. In 

the future, these efforts may unveil crucial information about the relationships between 

epigenetic sensors and lifestyle/nutritional habits as one of the most important risk factors 

for diabetes, cardiovascular diseases, and cancer. These advances in Network Medicine have 

the potential to lead to important clinical applications (Figure 6) with more personalized and 

effective treatments.

8. Conclusion: Knowledge Gaps and Key Research Directions

Although Network Medicine studies have already led to substantial progress, there are 

important knowledge gaps that have limited the impact of network-based analysis on clinical 

practice. We will review some of these key limitations and suggest future directions for 

Network Medicine research.

8.1. Incompleteness of the Molecular Interactome

Notwithstanding huge advances in systematic protein-protein interaction mapping 

technologies (Y2H- or MS-based) (Luck, Sheynkman, Zhang, & Vidal, 2017; Rolland et al., 

2014; Smits & Vermeulen, 2016), it is estimated that the coverage of the human molecular 

interactome accounts for only about 20% of all potential pairwise interactions (Menche et 

al., 2015). Since many Network Medicine approaches are based on the topology of the 

molecular interactome (e.g., disease modules, connectivity patterns, centrality measures, 

etc.), interactome incompleteness is undeniably a hurdle. Attempts have been carried out to 

evaluate the impact of such incompleteness, leading to hypotheses that disease modules 

linked to <25 disease genes are likely to be fragmented and are difficult to detect in the 

current molecular interactome model (Menche et al., 2015). In such a landscape, 

computational predictive mapping approaches can come to the rescue and complement 

experimental high-throughput methods, providing reliable de novo PPI detection (Kotlyar, 

Rossos, & Jurisica, 2017). These approaches are based on genomic or functional data 

(Gandhi et al., 2006; X. Wang & Jin, 2017), on protein structure and dynamics (often 

coupled with machine learning techniques) (Ehrenberger, Cantley, & Yaffe, 2015; Q. C. 

Zhang et al., 2012), or on techniques derived from social links inference methods, e.g., 
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based on the triad closure principle (TCP) (Bianconi, Darst, Iacovacci, & Fortunato, 2014), 

or on paths of length three (L3) (Kovacs et al., 2019).

It is also worth mentioning the need to go beyond pairwise interactions, e.g., by probing 

multi-protein interactions, in order to predict the behavior of larger protein complexes, 

operative scaffolds on which most cellular process rely (Hur, Chen, & Mueller, 2016), as 

well as the attempts to characterize the so-called “negatome”, i.e., the set of proteins that are 

unlikely to engage in physical interactions. The negatome is potentially useful for training 

PPI predictive algorithms and for assessing the false-positive rates of PPI detection attempts 

(Mao et al., 2014). Although the limitations of interactome incompleteness are problematic 

for protein-protein interaction networks, all network methods that rely on databases of 

molecular connections (e.g., transcription factor binding sites) will be susceptible to false-

negative network connections due to incomplete mapping of molecular relationships and 

false-positive network connections due to technical artifacts. For example, protein 

metabolites (substrates and products) are often missing in metabolite databases. Casas and 

colleagues needed to include hydrogen peroxide as a metabolite of NOX in order to 

implicate NOS in ischemic stroke pathogenesis (Casas et al., 2019).

8.2. Uncertainty about Key Genes in Genetic Association Loci

Although GWAS have identified thousands of associations between genetic variants and 

complex diseases that withstand stringent adjustments for multiple statistical testing, the 

functional variants within those GWAS loci and the genes that they influence are known in 

only a small minority of GWAS regions (Silverman, 2018). Most complex disease genetic 

variants are located in noncoding regions, and they often do not regulate the nearest gene 

(Baranski et al., 2018). These uncertainties limit the accuracy of selection of GWAS “seed” 

genes for protein-protein interaction network studies. Moreover, since GWAS evidence has 

been used to support findings from other types of molecular networks (e.g., correlation, gene 

regulatory), the application of GWAS results in these contexts is also limited by the lack of 

functional dissection of GWAS statistical associations. Thus, although GWAS can provide 

reasonably comprehensive assessments of the common genetic variants influencing a 

complex disease, applying these results to molecular network studies remains challenging. 

Finding functional variants and the genes that they influence within GWAS loci are active 

areas of research (Musunuru et al., 2018).

8.3. Limited Application to Human Samples and Diseases: the Gap between Systems 
Biology and Network Medicine

There still are many hurdles to the successful and profitable deployment of Network 

Medicine approaches in the clinical context. Some of these bottlenecks and gridlocks 

include: 1) the strong focus on smaller biological systems typical of Systems Biology 

studies, which is often difficult to scale to the organism-level required in clinical practice, 

owing to the inherent limits of the conclusions to the specific experimental/biological 

context (e.g., signaling pathways, gene regulatory networks in cellular processes such as 

differentiation, etc.); 2) a large number of scientific hypotheses can be generated via network 

biology and Network Medicine methods, with a parallel need for robust testing and solid 

validation, i.e., basic needs in the clinical context; 3) the difficulties in gathering supporting, 
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coherent, and secured data in clinical settings; and 4) the nature and the structure of clinical 

and medical data, with their own complexity, schemas, ontologies and access restrictions, 

and the necessity to link them unequivocally with clinical samples. From this perspective, 

meta-analyses can have the capability to increase statistical power and generalizability of 

single-study analysis (B. Chen & Butte, 2013; Wolkenhauer, Auffray, Jaster, Steinhoff, & 

Dammann, 2013; Wolkenhauer et al., 2009). Comparing different networks is a challenging 

task when nodes can differ between networks (recently reviewed by Tantardini and 

colleagues), which can be addressed with approaches based on graphlets, spectral methods, 

and portrait divergence (Tantardini, Ieva, Tajoli, & Piccardi, 2019).

A complete validation process should eventually lead to the enactment of qualified, 

standardized, partially automated protocols and workflows, able and tailored to work in 

highly dynamical clinical settings. Furthermore, often neglected, key points reside in the fact 

that models and findings should not be byzantine from a clinical perspective (see also 

considerations about “black boxes” in the next paragraph), as well as in the structure of the 

healthcare system, that will be required to adapt drastically to operate with multidisciplinary 

teams, working with multi-omics data, large-scale data storage facilities, standard analytical 

pipelines, and specific managerial frameworks. All of these processes demand specific 

education and complementary formations for hospital personnel in the context of larger 

training programmes (Hood, 2013; Noell, Faner, & Agusti, 2018).

8.4. Potential impact of New Molecular and Computational Methodologies on Network 
Medicine

The development of CRISPR technology has literally transfigured the capability of genome 

editing and has opened unique scenarios to analyze pathways and biological networks at the 

level of single-nucleotide specificity (Jinek et al., 2012). To demonstrate the impact that new 

molecular technologies can exert on network biology and Network Medicine, Li and 

coworkers used CRISPR for outlining the role of network edges compared to that of nodes 

(Li, Nowak, Withers, Pertsemlidis, & Bleris, 2018); they targeted a number of miRNA sites 

in 71 genes involved in the p53 pathway, ablating numerous edges and thus demonstrating 

their essentiality for the pathway function and stability. From this perspective, CRISPR 

editing in biological network analysis seems to provide a finer resolution tool compared to 

more disruptive node removal techniques, potentially leading to the identification of 

previously hidden interactions and more opportunities for therapeutic intervention.

Advanced analytical approaches, such as machine learning (ML) and deep neural networks 

(DNNs), are becoming a powerful and essential phase of modern biology and medical 

investigative workflows. Several successful applications have already been enumerated, such 

as achievements in the predictions of protein binding interactions, in inferring gene 

regulatory networks, in predicting metabolic functions, in genome annotation, and in the 

discovery of key transcriptional regulators involved in cancer, among other diseases 

(Sonawane, Weiss, Glass, & Sharma, 2019). Notwithstanding the many successes and the 

new opportunities offered, there remain daunting challenges to be faced, including the 

insatiable hunger for data of ML and DNN algorithms, for which, paradoxically, even the 

current biological data deluge is insufficient. Options to engage with such challenges with a 
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focus on medicine and public health include the provision, availability and exploitation of 

larger, curated, formatted and open multi-omic datasets combined with robust, standardized, 

and curated clinical phenotypic data (Mooney & Pejaver, 2018; Vanschoren, van Rijn, 

Bischl, & Torgo, 2013); and, from the algorithmic side, the commitment in the development 

of new ML approaches able to deal with smaller datasets, which are already in progress in 

fields other than biology and medicine (Y. Zhang & Ling, 2018). The use of simulated data 

displaying the same attributes of experimental data--as already largely implemented in the 

setup of GWAS analysis tools (Dudek, Motsinger, Velez, Williams, & Ritchie, 2006)--is also 

viable, for example through the exploitation of the recent generative adversarial networks 

(GANs), a DNN architecture employing two neural networks that compete one against the 

other, one generating data that simulate the training (real) dataset (the generator), and the 

other recognizing if the simulated data belong to the training set (the adversary), until the 

‘conflict” is resolved by simulating data that are indistinguishable from the real data 

(Ghasedi Dizaji, Wang, & Huang, 2018).

Finally, it is important to mention the fact that many advanced ML approaches work as 

“black boxes,” hiding the importance and the correlation of a set of features from the 

outcome (i.e., its biological interpretation), thus hindering the deployment of predictive 

models because ultimately, humans do not understand--nor trust—them (Camacho, Collins, 

Powers, Costello, & Collins, 2018). To overcome this issue, several efforts are being pursued 

in providing interpretable ML approaches able to balance interpretability, accuracy, and 

computational viability (Lakkaraju, Bach, & Leskovec, 2016; M. K. Yu et al., 2018).
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Figure 1: 
(a) A bipartite graph, in this case showing eQTL associations. (b) A unipartite graph and its 

corresponding adjacency matrix.
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Figure 2: The effect of centering and scaling on a simple and tractable network of five genes:
(a) genes 1 and 2 are random (in gray), genes 3 and 4 are co-expressed (in blue), and gene 5 

(in green) has an expression close, in absolute expression intensity, to gene 3. The width of 

the graph edges and the layout of the graphs (c, e, f) (i.e., proximity of the nodes) are 

proportional to the similarity of the nodes/genes. Heatmap (b) and graph (c) represent the 

Euclidean distances and the resulting network, respectively, illustrating the similarity of 

genes 3 and 5 when the distances of absolute expression values are used. After centering and 

scaling of the expression values, we see how the co-expressed genes become closely 
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connected (d, e). At the bottom (f, g), we represent the result of calculating gene expression 

correlation as a positive control, demonstrating the desired effect directly on the absolute 

expression values. The nodes of genes 3 and 4 nearly fully overlap.
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Figure 3. The main principle of PPI network enrichment for mechanistic biomarker extraction,
supervised (left) and de novo/unsupervised (right). In a supervised setting one is interested 

in finding a set of proteins/genes that explain the difference between two or more classes 

(e.g. disease subtypes) by the alteration of a set of genes or proteins that form a subnetwork 

of the interactome. The labels do not necessarily need to be discrete but can be continuous 

observations or outcomes such as disease progression, growth responses, growth rate, 

treatment effects, or survival. In an unsupervised setting, no labels are given but the 

existence of subtypes (called endophenotypes) is assumed, which is characterized by given 

Omics data. This image is a screenshot from the GrandForest webtool (S.J. Larsen, Schmidt, 

& Baumbach, 2020), which identifies disease classes and sub-types (de novo) while, 

conjointly, explaining this stratification with differential sub-network expression. The sub-

networks then are enriched with mechanistic candidate biomarkers.
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Figure 4. The principle of the GrandForest webtool network enrichment approach.
Given a (labeled) Omics data set (e.g., gene expression) and a PPI network, the tool learns 

decision trees just like in a classical Random Forest but restricts the decision tree growing to 

only pick proteins that are adjacent (in the network) to at least one previously picked feature 

protein. This way, all decision trees in the forest model by-design represent subnetworks of 

the interactome. They can be sorted by feature importance (e.g., using Gini index). The top 

m genes (user parameter) are located in the input network and the induced subnetwork is 

reported and visualized as a candidate mechanism driving the phenotype of interest. 

Importantly, GrandForest can identify subnetworks where many genes are not significant 

individually but become significant only as a mechanistic marker ensemble (S.J. Larsen et 

al., 2020).
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Figure 5: The Visual Analytics cycle applied to Network Medicine.
Data from different domains (e.g., cellular, molecular, and genetic networks) are input to two 

different processes, Visual Data Exploration which exploits visualization paradigms (Node-

Edge, Matrix, Chords, etc.) to represent these data and classic Automated Data Analysis 

through different approaches (machine learning, network analysis algorithms, etc.). These 

two processes are interconnected, allowing an analyst to steer algorithms by interacting with 

the visual representation of results. The whole process generates new insights (e.g., 

relationships among networks) used as a feedback loop for new cycles of analysis.
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Figure 6: The Network Medicine approach and its putative clinical applications.
The main goal of Network Medicine is to provide holistic, network-based approaches for 

disease classification and drug target selection. This molecular-bioinformatic approach has 

the potential to improve both the quality of care and the quality of life of patients affected by 

complex diseases.
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Table 1:

Overview of the types of networks often used in analytical analysis for network medicine applications.

Network Type Structure Nodes 
Represent Edges Represent Typically Derived From Primary Use(s)

Protein-Protein 
Interaction

undirected; 
unipartite proteins physical or functional 

protein interactions

affinity purification, 
yeast-2-hybrid, tandem 
affinity purification

disease module detection

Gene 
Regulatory*

directed; 
bipartite

transcription 
factors and 
genes

regulation of genes by 
transcription factor 
proteins

DNA sequence scan, 
ChIP-assays, reverse-
engineered from 
expression data

modeling and 
identification of 
alterations to regulatory 
processes

Correlation** undirected; 
unipartite genes/mRNAs correlation in mRNA 

levels of genes expression data

mining information 
about key genes and 
identifying drivers of 
gene expression

Bayesian directed; 
acyclic variables dependency between 

variables
measurements across a 
series of variables

modeling relationships 
between variables

RNA-RNA directed; 
multipartite RNA species

regulation of RNA 
(e.g., lncRNA regulates 
miRNA; miRNA 
regulates mRNA)

expression data 
combined with regulatory 
information

identification of potential 
diagnostic biomarkers 
and therapeutic targets

*
Epigenomic data can be integrated into gene regulatory networks to construct epigenomic regulatory networks. This additional layer of 

information can aid in the identification of biomarkers and therapeutic targets.

**
Correlation networks can also be constructed between other types of biological molecules using other types of Omics data. For example, a 

correlation network of metabolites can be constructed using metabolomics data.
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Table 2:

Comparison of Estimated Genetic Determinants for Human Complex Diseases and Available Animal Models 

for Molecular Network Validation in Those Diseases

Animal model Validation of Molecular networks

Disease Estimated Number of Genetic Subgroups 
according to GWAS or DNA Sequencing

Number of Available Gene-Targeted Animal Models of 
the Disease (including Transgenic, Knock-out, and 
Knock-in Animals)

ADHD 15 (Faraone & Larsson, 2019; Gizer, Ficks, & 
Waldman, 2009)

54 (D. Viggiano, 2008)

Anxiety/Depression 80 (Ormel, Hartman, & Snieder, 2019) 33 (A. Viggiano, Cacciola, Widmer, & Viggiano, 2015)

Memory Impairment/
Dementia

30 (Nacmias, Bagnoli, Piaceri, & Sorbi, 2018) 35 (De Sanctis, Bellenchi, & Viggiano, 2018)

Diabetes Mellitus Type 2 143 (Xue et al., 2018) 11 (Kadowaki, 2000; Plum, Wunderlich, Baudler, Krone, 
& Bruning, 2005)

Diabetes Mellitus Type 1 39 (Alkorta-Aranburu et al., 2014) Unknown

Nephrotic Syndrome 37 (Sen et al., 2017) Unknown

Obesity 52 (Kleinendorst et al., 2018) 20 (Kanasaki & Koya, 2011; Lutz & Woods, 2012)

Cancer Variable according to the cancer type Same number of cancer subtypes (patient-derived 
xenografts (PDXs) or Avatars)(Ben-David et al., 2017)
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Table 3:

Main characteristics of cell-based approaches that are used for validation of molecular networks

Cell-based approaches

In vitro cell 
models

 • immortalized cell lines
• primary cells isolated from different human tissues
• stem cells
• induced pluripotent stem cells (iPS)

Types of cell culture systems

2D Cells are growing in a polystyrene rigid plastic surface (Petri dishes, flasks)

3D Cells are growing as spheroids, in suspension, or organoids surrounded by ECM, or on scaffolds

3D cell culture systems

Spheroids Liquid overlay culture (LOC) Hanging drop Microtechnology Bioreactor

Spheroids are placed on a 
thin layer of matrix 
composed by a mixture of 
matrigel with specific growth 
factors depending on the cell 
type.

Formation of spheroids in a 
small volume of cell 
suspension as a droplet.

Cell suspension is placed on 
20 μm to 500 μm micro 
chambers with various shapes: 
honeycomb, round, or 
square(Karp et al., 2007)

Dynamic cell culture 
condition created by 
continuous stirring in 
appropriate glass 
containers for massive 
spheroid production(Ou & 
Hosseinkhani, 2014)

Organoids Examples of organoids and use:
• human epithelial cells, breast cancer cells, acini-like structures that secreted milk proteins (Emerman, Enami, Pitelka, & 
Nandi, 1977)
• exocrine pancreas cells used as a platform to study pancreatitis and pancreatic cancer (Huang et al., 2015)
• human derived organoids can be altered genetically, by the genome editing CRISPR/Cas9 technology, to study the role of 
genes in molecular pathways of interest (Fujii, Matano, Nanki, & Sato, 2015)

Organ-
Chips

 • Human breathing lung alveolus chip, blood-brain barrier, kidney, skin, placenta, intestine, etc. (Huh et al., 2010; Kasendra 
et al., 2018; Sances et al., 2018)

Scaffolds Mineral Polymeric custom shapes 
Hydrogel

De-cellularized tissues and 
organs

3D bioprinting

Use for bone, dental, 
craniofacial and axon 

regeneration:
-calcium phosphates 
composite scaffolds

-graphene-based 
nanocomposites

Use for reconstruction of 
bone, cartilage, muscle 

tissues:
-biodegradable/

bioabsorbable synthetic 
polymers (PCL, PLA, PEG)

-biopolymers (collagen, 
gelatin, hyaluronic acid, 

chitosan)

Use for engineering blood 
vessels and vascularized 

tissues grafts:
-urinary bladder

-vagina
-liver

-heart valves
-tendons

Use to create tissue/organ 
by three bio-printing 

techniques:
-Inkjet

-laser-assisted
-extrusion

PCL: poly-e-caprolactone, PLA: poly lactic acid, PEG: polyethylene glycol
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