Skip to main content
. 2021 Mar 13;8(2):rbab001. doi: 10.1093/rb/rbab001

Table 1.

Previous works on bioprinting using GelMA hydrogel

Printing method Materials Cell type Target tissue Mechanical properties Ref.
Extrusion-based 3D bioprinting GelMA

HUVECs

 

hMSCs

Bone

5.5–7.5 kPa

 

(Compressive modulus)

[24]
Co-extrusion 3D bioprinting

GelMA

 

Alginate

HUVECs

 

hi-PSCs Cardiomyocytes

Heart

4.3–26.5 kPa

 

(Elastic modulus)

[25]
Extrusion-based 3-D bioprinting

PCL

 

GelMA

 

USPIO nanoparticle

BMSCs Bile duct

17.41 kPa

 

(Compressive modulus)

 

5.03 kPa

 

(Young’s modulus)

[26]
Extrusion-based 3D bioprinting

GelMA

 

nanosilicates

NIH MC3T3-E1 Bone 4.7–12.9 kPa [27]
Stereolithographic 3D printing

PEGDA

 

GelMA

Mouse NSCs Neural tissue

340–560 kPa

 

(Compressive modulus)

[28]
Two-step crosslinking strategy printing

GelMA

 

Gelatin

BMSCs Bone

4.44–5.26 kPa at 25°C

 

3.04–4.74 kPa at 37°C

 

(Young’s modulus)

[29]
Inkjet printing

PEG

 

GelMA

hMSCs Bone cartilage

35–78 kPa

 

(Compressive modulus)

[30]
Modified extrusion 3D bioprinting GPGs HUVECs Soft tissue

1.8–7.0 kPa

 

(Young’s modulus)

[31]

BMSCs: bone marrow stem cells; GelMA: gelatin methacrylate; GPGs: gelatin methacrylate physical gels; HDFs: human dermal fibroblasts; hi-PSCs: cardiomyocytes-induced pluripotent stem cell cardiomyocytes; hMSCs: bone marrow-derived human mesenchymal stem cells; HUVECs: human umbilical vein endothelial cells; NSCs: neural stem cells; PCL: polycaprolactone; PEG: polyethylene glycol; PEGDA: polyethylene glycol diacrylate.