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Abstract
The impact of high concentrations of air pollution onCOVID-19 has been amajor air quality and life safety issue in recent studies. This
study aimed to assess the contribution of different air pollution indicators in different spaces on the newly confirmed cases of
coronavirus. According to causality’s results between air pollution (AP) and COVID-19 infection in 9 countries, first, we examined
the non-linear relationship fromAP to COVID-19with PM2.5 as the rating variable (the cut point is 35μg/m

3) at the national level. It is
concluded that the effects of PM2.5 and PM10 on COVID-19 are more sensitive in Russia, England, Germany, and France, while O3

and PM2.5 are more sensitive in America and Canada from 21 Jan to 20 May. Second, we examined the threshold effects from AP to
COVID-19with PM2.5, PM10, SO2, CO,NO2, andO3 as the threshold variables, respectively, at themunicipal level inChina during the
period 28 Jan to 31 May. It is concluded that except CO, the remaining 5 indicators are very sensitive to the increase of newly
confirmed cases, and the spread of COVID-19 can be prevented and controlled by the determination of thresholds. In addition, the 9
countries and 27 provinces show that PM2.5 in high concentrations is themore sensitive pollutant on the spread of COVID-19 infection.
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Introduction

The urgency and uncertainty specific to major public emer-
gencies have brought great challenges to the development of
the global economy, and since the unexpected pneumonia was

first reported on December 2019 in Wuhan, it spread rapidly
to the rest of China, which has later become a global public
health problem and was declared as a pandemic by the WHO
(World Health Organization 2020). The coronavirus was
named after crown spikes were found on its surface (Zaki

Highlights
•Unidirectional causal linkages from environmental pollution to COVID-
19 infection were examined at the national level.
• Threshold associations of PM2.5, PM10, SO2, CO, NO2, and O3 with
COVID-19 newly confirmed cases were observed.
• PM2.5 in high concentrations is the more sensitive pollutant on the
spread of COVID-19 infection regardless of whether it is in the national
level or municipal level.
• Effects of PM2.5 and PM10 on COVID-19 are more sensitive in Russia,
England, Germany, and France, while O3 and PM2.5 are more sensitive in
America and Canada.

Responsible Editor: Lotfi Aleya

* Shengxia Xu
cuebxushengxia@163.com

Qiang Liu
cuebliuqiang@163.com

Xiaoli Lu
luxiaolicueb@163.com

1 School of Statistics, Capital University of Economics and Business,
No. 121, Zhangjia Road, Huaxiang, Fengtai District, Beijing 100070,
China

2 Beijing Key Laboratory of Megaregions Sustainable Development
Modelling, Beijing 100070, China

https://doi.org/10.1007/s11356-021-13319-5

/ Published online: 13 March 2021

Environmental Science and Pollution Research (2021) 28:37231–37243

http://crossmark.crossref.org/dialog/?doi=10.1007/s11356-021-13319-5&domain=pdf
http://orcid.org/0000-0003-0105-5970
mailto:cuebxushengxia@163.com


et al. 2012), and the novel coronavirus (COVID-19) is an
acute respiratory disease which may lead to pneumonia with
symptoms such as fever, cough, and dyspnea (Jiang et al.
2020).

As of 18 June 2020, there have been > 8 million confirmed
cases and over 450 thousand deaths were reported globally,
with an approximate fatality rate greater than 2–3% as pro-
posed by Rodriguez-Morales et al. (2020). Figure 1 presents
the trend of newly confirmed cases of 9 countries of Asia,
North America, and Europe during 21 Jan to 20 May in
2020. Asian countries are generally close to 0 after May, es-
pecially after experiencing a large outbreak in February in
China; the newly confirmed cases fluctuated slightly within
100 from March. For the remaining 6 countries, April and
May are the outbreak periods of COVID-19.

In order to control the spread of COVID-19, various studies
have been conducted to explore important factors affecting the
transmission of SARS-CoV-2 (Zhu et al. 2020). For example,
Wang et al. (2020) have demonstrated human-to-human trans-
mission of COVID-19 through direct contact or droplets;
Kraemer et al. (2020) have examined a significant effect from
population mobility to COVID-19 infection; Xie and Zhu
(2020) have explored an association of ambient temperature
with the infection of COVID-19. Previous studies have sug-
gested that ambient air pollutants are risk factors for respira-
tory infection (Cai et al. 2007; Xu et al. 2016); therefore, it is
interesting to investigate the effect of air pollution on COVID-
19 infection, since COVID-19 is a respiratory disease (Zhu
et al. 2020; Yang et al. 2020). Table 1 presents the mean value
of six air pollution indicators of 9 countries during the same
period with newly confirmed cases of COVID-19. Obviously,
fine particulate matter (PM2.5) is an air pollution index shared
by all countries, so in the study at the national level, it must be
the focus of our attention.

In addition, some studies have shown that the incidence of
these diseases can also be caused by a long exposure to air

pollution, especially nitrogen dioxide (NO2) which is one
of its toxic components (Ogen 2020; Saeha et al. 2020);
some studies have shown that ozone (O3) in the tropo-
sphere plays a central role in the oxidation of chemically
and climatically relevant trace gases and can regulate peo-
ple’s lifetime in the atmosphere (Monks et al. 2015; Wang
et al. 2016); some studies have shown that chronic atmo-
spheric pollution may favor coronavirus spreading, and air
pollution (AQI as indicator) should be considered in epi-
demic prevention (Zhang et al. 2020; Fattorini and Regoli
2020), and so on.

The above-mentioned studies started from different per-
spectives of air pollution and conducted a series of re-
searches; it can always be obtained that air pollution has a
non-negligible effect on the spread of COVID-19.
However, for research content, 6 air pollution indicators
such as fine particulate matter (PM2.5), inhalable particles
(PM10), sulfur dioxide (SO2), carbon monoxide (CO), ni-
trogen dioxide (NO2), and ozone (O3) have not been found
to study the impact of COVID-19 infection both from the
overall and individual aspects, but these 6 indicators have
shown a strong effect on COVID-19 from the different
studies, so further research is needed. For the existing re-
search, it has not been found that studies that consider both
the impact of national air pollution on COVID-19 and the
with-national differences, which are often an indispensable
part of the COVID-19 infection study. Therefore, in this
study, based on the results of dynamic interrelationships
between air pollution and COVID-19 infection in 9 coun-
tries by focusing on accounting for structural changes in
causal linkages, we examine the non-linear effects of dif-
ferent air pollution indicators on COVID-19 from the spa-
tial and temporal dimensions both at the national and mu-
nicipal levels. The objective of this work is to assess the
contribution of different air pollution indicators in different
spaces on the newly confirmed cases of coronavirus.

Fig. 1 Newly confirmed cases of COVID-19 infection from the national level
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Materials and methods

Database of air pollution and COVID-19 infection

The data of PM2.5, PM10, SO2, CO, NO2, and O3 are used to
characterize the indicator of air pollution has been collected
from real-time air quality index of Air Pollution in the World
database.1 And the municipal levels’ data was collected from
the National Health Commission of the People’s Republic of
China. However, due to the huge workload of collecting air
pollution data from countries around the world, we only se-
lected data from 9 countries in Asia, North America, and
Europe for studying. Moreover, not all 6 indicators
representing air pollution in selected countries are included;
therefore, we show the details in Table 2.

The data concerning the number of newly confirmed cases
(NCC) was collected and organized from daily report pub-
lished on the official website of the WHO, and each country
on a regional/administrative level. For some regions/countries
where only cumulative confirmed cases data is released, we
calculate them based on date data. The use of this method is
intended to highlight the spatial variation of the epidemic
which exists not only between the different countries but also
inside each country. In terms of the difference within a coun-
try, we take 27 municipalities in China, excluding 7 regions
including Hong Kong, Macau, Taiwan, Xinjiang, Tibet,
Hainan, and Inner Mongolia, as an example for analysis in
this paper.

Moreover, if highly new confirmed cases are observed in
two different countries, we need to identify their common
factors which may explain why. Therefore, data was collected
from 9 countries, China, Japan, Korea, Canada, America,
Russia, England, Germany, and France. In addition, informa-
tion about new confirmed cases was also taken from the
Ministry of Health, the national agency of public health, or
the state health offices of each country to check with the in-
ternational data and make adjustments.

Design of causality test

This study examines the association between air pollution and
COVID-19 infection from the different levels. Before deciding
on the final role-relationship model, we need to test the causal
linkage between air pollution and COVID-19 infection. A sim-
ple approach to account for structural breaks (both abrupt and
gradual) in causality analysis proposed by Nazlioglu et al.
(2016) and developed by Durusu-Ciftci et al. (2020) after aug-
menting the Toda-Yamamoto framework with a Fourier ap-
proximation. They relax the assumption that the intercept terms
are constant over time, and the gradual structural shifts with an
unknown time, number, and forms of breaks are captured by
the Fourier approximation. In line with that, we define the
causal linkage between air pollution (AP) and COVID-19 in-
fection as

APt ¼ c10 þ ∑
K

k¼1
a1ksin

2π tk
T

� �
þ ∑

K

k¼1
a2kcos

2π tk
T

� �

þ ∑
pþd

j¼1
β1 jCOVIDt− j þ ε1t ð1Þ

COVIDt ¼ c20 þ ∑
K

k¼1
a1ksin

2π tk
T

� �

þ ∑
K

k¼1
a2kcos

2π tk
T

� �
þ ∑

pþd

j¼1
β2 jCOVIDt− j

þ ε2t ð2Þ

where t(t = 1, 2,⋯, T) is the tth period, c10 and c20 are the
vector of intercept terms, K is the number of frequencies, p
is the lag order, d is the maximum integration order of vari-
ables, β1j and β2j are coefficient matrices, and ε1t and ε2t are
the white-noise residuals. In addition, a1k and a2k can calculate
the amplitude and displacement of the frequency, separately.
In addition, COVIDt represents the new confirmed cases of
COVID-19 at t time and APt represents the air pollution. The
assumption here is that air pollution and COVID-19 infection
variables will change as the structure shifts.1 Data sources: http://aqicn.org

Table 1 Mean value of air pollution from the national level

AP China Japan Korea Canada America Russia England Germany France

PM2.5 108.19 39.17 79.36 26.20 41.26 42.55 38.09 34.67 53.96

PM10 48.50 11.65 42.98 N N 28.53 17.05 20.64 28.13

SO2 N N 2.70 N N N N N N

CO 5.83 2.55 5.38 1.48 N N N N N

NO2 13.61 12.40 28.55 6.60 N 18.36 11.97 15.29 26.80

O3 41.61 31.22 30.26 28.53 29.06 17.85 N N 29.78

Note: Letter “N” indicates that this indicator is not included in air pollution
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The most important problem in Eq. (1) and Eq. (2) is that it
requires determining the number of cumulative Fourier frequen-
cyK and lag lengths p. In order to determine the optimal number
of lags in a causality analysis in common is to benefit from
Akaike information criterion (AIC). As the recent works in the
Granger causality literature shown (Buhlmann and Meneil
2002; Durusu-Ciftci et al. 2020), AIC can also be used for
determining the number of Fourier frequency and lag lengths,
wherefore, we also follow the above convention, using AIC to
determine Fourier frequency K and lag lengths p in this paper.

Statistical analysis

The regression discontinuity design (RDD) can alleviate the
endogenous problem of parameter estimation (Thistlethwaite
and Campbell 1960); meanwhile, in some situations, RDD
can be embedded in a panel context (Lee and Card 2008),
whereby period by period, the treatment variable is deter-
mined according to the realization of the assignment variable,
which has recently been used in more studies (Tang et al.
2019; Federico and BugniaIvan 2020). Considering the unity
(both for time and individuals) and difference (only for indi-
viduals) of international comparison, we use RDD to analyze
the relationship between air pollution and COVID-19 infec-
tion at the national level, and the model was defined as fol-
lows:

COVIDit ¼ α1 þ β1 APit−cð Þk þ τDit þ β2 APit−cð ÞkDit ð3Þ
where i(i = 1, 2,⋯, N) and t(t = 1, 2,⋯, T) denote the indi-
viduals and time, respectively. COVIDit represents the new
confirmed cases of COVID-19 in country i at time t; αi

stand for the individual effect; EPit represents the air pollu-
tion in country i at time t portrayed by PM2.5; c is a constant
term senting by the cut point; Dit is the treatment variable
and can be set as a dummy variable:

Dit ¼ 1;APit > c
0;APit > c

�
ð4Þ

k is the power of the polynomial, usually replaced by 1 to 4,
which is determined by comparing AIC; β1 and β2 are the
parameters to be estimated, and τ is the marginal treatment
efficiency of air pollution intervention at the cut point. It
needs to be emphasized that we introduce control variables
(other air pollution indicators other than PM2.5) on the basis
of Eq. (3) to analyze the differences between countries:

COVIDit ¼ ai þ β1 PM2:5it−cð Þk þ τDit

þ β2 PM2:5it−cð ÞkDit þ γ1iPM10it þ γ2iO3it

þ γ3iNO2it þ γ4iSO2it þ γ5iCOit þ εit ð5Þ

where we carry out Eq. (5) separately for each country (i =
1, 2, ⋯, 9). Meanwhile, if the country does not contain air
pollution variables, the corresponding parameter in the
model is 0.

For analysis the difference within the country, considering
the impact of multiple air pollution variables and the charac-
teristics of the panel data composition of each variable, the
RDD estimate has a certain deviation (Lee and Thomas 2010).
And considering the goodness of fit and other statistical tests
can help rule out overly restrictive specifications (Li et al.
2018; Vu 2020). Therefore, we use the threshold panel regres-
sion model to perform the effect analysis at the municipal
level:

COVIDit ¼ μi þ α1ditI dit ≤γ1ð Þ þ α2ditI γ1≤dit < γ2ð Þ
þ⋯þ αnþ1ditI dit > γnð Þ þ β1x1it þ β2x2it

þ β3x3it þ β4x4it þ β5x5it þ εit ð6Þ

where i(i = 1, 2,⋯, n) and t(t = 1, 2,⋯, T∗) denote the individ-
uals and time, respectively. μi presents the individual effect;
COVIDit represents the new confirmed cases of COVID-19
in province i at time t; dit is both the threshold variable and
the variable affected by the threshold, which is represented by
6 air pollution indicators (PM2.5, PM10, SO2, CO, NO2, O3)

Table 2 Indicators of air pollution from different countries

AP Asia North America Europe

China Japan Korea Canada America Russia England Germany France

PM2.5 Y Y Y Y Y Y Y Y Y

PM10 Y Y Y N N Y Y Y Y

SO2 N N Y N N N N N N

CO Y Y Y Y N N N N N

NO2 Y Y Y Y N Y Y Y Y

O3 Y Y Y Y Y Y N N Y

Note: Letter “Y” indicates that this indicator is included in air pollution, and letter “N” indicates not included
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separately; γ1, γ2,⋯, γn are the thresholds; x1it, x2it, x3it, x4it, x5it
are the variables except the threshold of 6 air pollution indica-
tors; α1, ⋯, αn+ 1, β1, ⋯, β5 are the parameters.

Empirical results

Descriptive analysis

Table 3 summarizes the descriptive statistics for air pollution
variables and newly confirmed cases of COVID-19 infection.
In general, this study consisted of two parts with different
levels; on one side, this study included > 2.6 million con-
firmed cases during the observation period from the national
level of unbalanced panel data (21 Jan 2020 to 20 May 2020),
and the average number was 21,481 for the nine countries,
with a minimum sample size of 121 and a maximum sample
size of 1089. Average daily newly confirmed cases, PM2.5,
PM10, SO2, CO, NO2, and O3 were 2387, 51.49 μg/m3,
28.21 μg/m3, 2.7 μg/m3, 3.81 μg/m3, 16.7 μg/m3, and
29.76 μg/m3, respectively.

On the other side, this study included > 76,836 cases during
the observation period from the municipal level in China (28
Jan 2020 to 31 May 2020), and the average number was 615;
average daily newly confirmed cases, PM2.5, PM10, SO2, CO,
NO2, and O3 were 23, 38.8μg/m

3, 63.37 μg/m3, 31.69 μg/m3,
101.52 mg/m, 0.73 μg/m3, and 9.11 μg/m3, respectively.

In the causality test, the lag order of NCC is 1 (Dickey-
Fuller is − 4.50), and the lag order of PM2.5 is also 1 (Dickey-
Fuller, − 5.94) by employing a battery of unit root tests
(ADF); therefore, the lag order p can be determined as 1 and
the maximum integration order of variables d can be deter-
mined as 1 also in Eq. (1) and Eq. (2). After iterating the
number of frequencies K from 1 to 5, and comparing the
Akaike information criterion (AIC), the smallest AIC which
corresponds to K is selected as 2. Moreover, there is no cau-
sality in any direction between AP and COVID-19 under the

Toda-Yamamoto test framework (Wald are 0.57, 0.14, sepa-
rately), while there exists unidirectional causal relationships
from AP to COVID-19 when the structural breaks are taken
into account with a Fourier approximation (Wald are 2.72,
0.51, separately). Therefore, the result for causality between
air pollution (AP) and COVID-19 infection is also up to the
test’s method to some extent.

Relationship between AP and COVID-19 from
the national level

The rating variable’s histogram and density in Fig. 2 sug-
gested that the variable of AP was in line with the conditions
for internal validity, and the cut point was 35 μg/m3; more-
over, in the case analysis of this paper, intervention of AP has
clear boundaries before and after the cut point, so it is of the
sharp type, and the relationship between AP and newly con-
firmed cases of COVID-19 was non-linear significantly.
Specifically, the relationship was approximately a positive
linear in the range of 35 μg/m3 and became opposite above
35 μg/m3, indicating that the single threshold of the AP effect
on COVID-19 was 35 μg/m3.

According to the results of RDD, a discontinuous linear
regression was adapted with a cut point at 35 μg/m3 to quan-
tify the effect of air pollution (here is PM2.5 only) above and
below the cut point. In Table 4, no matter what the power of
the polynomial k is, the marginal coefficient τ of the treatment
at the break point always passes the significance test, and is all
negative from column (1) to column (5). This shows that the
treatment Dit of PM2.5 on newly confirmed cases of COVID-
19 infection is existing and with a significant threshold effect.
Moreover, column (2) is the optimal estimate result for Eq. (3)
after comparing the AIC from the 5 models, and then we can
take k as 1 in Eq. (3) for the latter study. Based on the result of
column (2), the coefficient of PM2.5 on newly confirmed cases
of COVID-19 infection is significantly positive above 35 μg/
m3 (66.72). Judging from the overall results of the nine

Table 3 Descriptive statistics of newly confirmed cases and air pollution variables

Variables From the national level From the municipal level

Mean (SD) Min Max Samples Mean (SD) Min Max Samples

NCC 2387 (6235.14) 0 45,251 1089 23 (310.64) 0 14,840 3375

PM2.5 51.49 (35.57) 4 261 1089 38.8 (31.27) 3 906 3375

PM10 28.21 (18.92) 2 124 847 67.37 (41) 0 644 3375

SO2 2.7 (2.67) 1 12 121 31.69 (13.9) 4 119 3375

CO 3.81 (3.21) 0 23 484 101.52 (37.48) 7 283 3375

NO2 16.7 (10.58) 0 64 968 0.73 (0.27) 0.1 2.8 3375

O3 29.76 (13.84) 1 146 847 9.77 (5.94) 2 50 3375

Note: “NCC” is the newly confirmed cases, and PM2.5, PM10, SO2, CO, NO2, O3 are the air pollution variables
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existing countries, this means that when the degree of air pol-
lution continues to increase, it will aggravate the spread of
COVID-19 infection to a certain extent. Therefore, controlling
the air pollution within reasonable limits is one of the effective
ways to slow down COVID-19 infection.

In order to compare the difference of cut-points that
made by each country, we remove the individual influenc-
ing effect in Eq. (3), and then estimate the model for each
country. As shown in Fig. 3, the histogram of each
country’s rating variable (PM2.5) presents a relatively obvi-
ous internal validity, which is suitable for RDD at first.

Secondly, there are great differences in the values of the
cut points for the 9 countries; the cut points in Germany,
England, Japan, America, and Russia are closer to the over-
all break point (it is 35) at the national level, while China
has the largest deviation (it is 108.19), 3 times larger than it.

Table 5 presents the results of RDD for the relationship
from air pollution only including PM2.5 to COVID-19. The
marginal coefficients of τ of the treatment in the 9 countries
showed great differences in size and sign at different cut
points, but the coefficients with negative values as a whole
passed the test, basically consistent with the conclusions in

Fig. 2 Histogram and density of air pollution (take PM2.5 for example)

Table 4 Results of RDD from the
panel data of 9 countries (without
control variables)

Variables (1) (2) (3) (4) (5)

APit−c 2.36

(6.66)

66.72·

(37.79)

−3.54
(13.71)

81.80

(124.29)

7.85

(19.77)

(APit−c)2 0.04

(0.08)

0.63

(4.79)

−0.18
(0.29)

(APit−c)3 0.00

(0.00)

Dit −1017.59*

(406.75)

−1588.65**

(523.58)

−875.33*

(428.91)

−1423.38*

(704.44)

−1111.60*

(501.95)

(APit−c) ×Dit −66.28·

(38.32)

−97.44
(125.20)

(APit−c)2 ×Dit −0.52
(4.79)

df 4 5 5 7 6

R2 2115.20 2101.87 2116.55 2103.33 2111.54

AIC 0.166 0.321 0.158 0.232 0.174

Note: cut point c is 35, the power of the polynomial k is 1 from the smallest AIC, and the standard errors are shown
in brackets
·P < 0.1; *P < 0.05; **P < 0.01; ***P < 0.001
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Fig. 3 Histogram of PM2.5 determined by cut points for each country. Note: the red dotted lines are the vertical lines of PM2.5 for each country at the cut
points

Table 5 Estimation of RDD for each country without considering other environmental variables

Variables Asia North America Europe

China Japan Korea Canada America Russia England Germany France

Intercept 148.7*

(227.0)
122.4***

(35.65)
75.69*

(34.4)
843.7***

(134.3)
17,126***

(3177.3)
4822.4***

(869.11)
1762.47***

(520.25)
1554.92***

(451.44)
1399***

(364.81)

APit − c −6.24
(6.60)

1.87
(2.60)

−0.02
(1.23)

−2.28
(14.29)

146.9·

(143.0)
110.24·

(55.95)
−8.50
(41.87)

9.00·

(7.84)
35.61
(23.56)

Dit 165.26
(301.3)

66.87
(51.18)

54.27*

(26.73)
−578.2*

(221.3)
−3890.4
(5141.2)

−2738.8*

(1179.67)
1219.98·

(721.49)
−1031.33*

(450.73)
240.59
(166.01)

(APit −c)
× Dit

14.65**

(5.62)
−2.92*

(1.37)
−0.68
(1.58)

−1.64
(16.57)

−421.3
(355.9)

−142.53·

(72.39)
−27.40
(47.44)

46.91
(44.37)

−40.31*

(15.79)

k 1 1 1 1 1 1 1 1 1

Cut point 108.19 39.17 79.36 26.20 41.26 42.55 38.09 34.67 53.96

R2 0.269 0.142 0.102 0.374 0.189 0.383 0.112 0.151 0.201

Note: air pollution (AP) presents by PM2.5 in this table, and the standard errors are shown in brackets
·P < 0.1; *P < 0.05; **P < 0.01; ***P < 0.001
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Table 4. When PM2.5 exceeds the break points, the positive
increase of air pollution to COVID-19 infection is obvious
in America, Russia, Germany, and Japan, while the remain-
ing 5 countries showed inhibitory effects, but none of them
passed the test. This shows that air pollution has a certain
aggravating effect on the spread of COVID-19 infection.
When the value of PM2.5 is greater than the cut points, this
aggravating effect will be abrupt, which needs to be paid
attention to by governments of various countries. In addi-
tion, considering the role of PM2.5 on COVID-19 infection
only, it is not only difficult to fully understand the effect of
air pollution on coronavirus disease but also difficult to
ensure the estimated effect of the model, with goodness of
fit being less than 0.4 for the nine national models, which is
not the standard of statistical tests.

The solution in the above respects, we include other
indicators PM10, SO2, CO, NO2, and O3 that represent
air pollution into the model, and estimate Eq. (5) for the
9 countries. As shown in Table 6, marginal coefficients
of τ in the 9 countries are detected for a larger set of
countries and more significance when the other 5 air
pollution indicators are taken into account on one hand.
On the other hand, the critical effect of PM2.5 on
COVID-19 infection is significantly weakened, but the
overall effect of air pollution on COVID-19 infection

does not decrease but increases. Specifically, PM10

plays a stronger role in accelerating the spread of
COVID-19 infection in China, England, Germany, and
France; O3 presents a more pronounced positive effect
on COVID-19 infection in more countries (such as
Japan, Canada, America, Russia, France, etc.); the ag-
gravating effect of NO2 on COVID-19 infection appears
in Canada and France; SO2 and CO will increase the
propagation speed of COVID-19 infection, which is sig-
nificant in Korea and China, respectively.

Overall, we can sum up that (i) accounting for air pollution
has an important effect on COVID-19 infection and (ii) the
sensitivity of COVID-19 infection in different countries to 6
environmental pollutants is very different, but the threshold
effect on PM2.5 is significant when the other 5 air pollution
indicators are taken into account. To summarize further,
COVID-19 infection in European countries is more sensitive
to environmental pollutants PM10 and PM2.5, North American
countries are more sensitive to O3 and PM2.5, while Asian
countries have no rules. Specifically, China is more sensitive
to PM10, CO, and PM2.5; Japan is more sensitive to O3 and
PM2.5; while Korea is more sensitive to SO2 and PM2.5.
Hence, policy implications may differ based on the relation-
ship analysis with or without the cut point, as presented in
Fig. 4.

Table 6 Estimation of RDD for each country with consideration for other environmental variables

Variables Asia North America Europe

China Japan Korea Canada America Russia England Germany France

Intercept 950.2**

(311.9)
83.27
(81.7)

267.6*

(104.3)
1413***

(393.47)
−5458.8
(4941.5)

7703.9***

(2005.6)
1120.75*

(536.74)
439.06
(688.33)

−739.63
(701.9)

PM2.5−c −3.77
(4.12)

0.58
(2.43)

0.80
(1.26)

3.78
(12.21)

120.50
(216.70)

127.72**

(48.45)
−46.24
(33.01)

−13.15
(35.09)

30.02
(19.59)

Dit 60.37
(263.5)

29.02
(48.0)

42.44
(48.37)

−518.1**

(186.97)
−901.1·

(616.0)
−1171.93·

(1043.12)
1009.99·

(563.28)
−1256.7*

(597.43)
−332.73·

(282.3)

PM10 13.5***

(3.54)
−1.28
(2.81)

−0.42
(1.26)

−23.15
(20.76)

183.31***

(25.25)
80.42***

(16.40)
30.36*

(15.25)

O3 −4.71
(3.73)

5.22**

(1.67)
−4.08·

(3.01)
32.26**

(11.15)
706.20***

(126.60)
115.89*

(48.93)
85.08***

(11.71)

NO2 −13.11
(13.80)

−4.29
(4.44)

2.25
(1.78)

71.39**

(22.78)
265.33·

(263.06)
−221.5
(228.34)

−33.39
(29.03)

44.04**

(15.21)

SO2 1.64*

(0.77)
CO 86.08**

(29.19)
−17.65
(18.8)

−19.06
(13.63)

−97.47
(142.86)

(PM2.5−c)
× Dit

4.53
(5.18)

−1.81
(3.20)

−1.24
(1.60)

−0.97
(14.11)

−302.40
(318.10)

−170.19**

(62.11)
10.38
(37.98)

55.30
(40.78)

−17.73
(21.88)

Cut point 108.19 39.17 79.36 26.20 41.26 42.55 38.09 34.67 53.96

R2 0.457 0.273 0.234 0.642 0.257 0.538 0.623 0.276 0.483

Note: the standard errors are shown in brackets
·P < 0.1; *P < 0.05; **P < 0.01; ***P < 0.001
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Relationship between AP and COVID-19 from the
municipal level in China

In order to analyze the impact of air pollution on COVID-19
infection within the country, we conducted threshold tests on
6 different pollutants separately at the municipal level in
China. Figure 5 presents the results of single threshold

parameter from AP to COVID-19 by the method of likelihood
ratio (such as PM2.5, PM10, SO2, CO, NO2, O3, etc.).
Obviously, air pollution has a threshold effect on COVID-19
infection in example analysis.

Table 7 presents the results for threshold relationship be-
tween AP and COVID-19. First, the threshold value of PM2.5

indicates different size from the municipal level (it is 26) and
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Fig. 4 Non-linear relationship between air pollution and COVID-19 infection (take PM2.5 as an example). Note: The black vertical line in the middle is
the cut point, and the red curve on the left and right sides of the cut point is the non-linear fitting line
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Fig. 5 Single threshold parameter fromAP toCOVID-19. Note: The first row from left to right is PM2.5, PM10, and SO2; the second row from left to right
is CO, NO2, and O3; and the red dotted line is the optimal likelihood ratio given by bootstrap replication

Table 7 Threshold relationship
from air pollution to COVID-19
infection

Variables Dependent variable: newly confirmed cases of COVID-19 infection

PM2.5 PM10 SO2 CO NO2 O3

Threshold 26 35 12 1.3 24 66

α1 1.594*

(0.764)

1.895**

(0.676)

1.766**

(0.742)

109.414**

(38.322)

1.618*

(0.815)

0.841*

(0.414)

α2 −0.045*

(0.022)

0.106

(0.232)

−0.062*

(0.024)

66.029*

(33.008)

−0.331*

(0.165)

−0.166***

(0.048)

PM2.5 −0.095
(0.326)

−0.092
(0.326)

−0.037
(0.327)

−0.116
(0.326)

−0.076
(0.326)

PM10 0.048

(0.230)

−0.021
(0.228)

−0.019
(0.228)

−0.029
(0.228)

−0.006
(0.228)

SO2 −0.491
(1.451)

−0.677
(1.449)

−0.508
(1.453)

−0.616
(1.449)

−0.358
(1.453)

CO 81.224*

(33.257)

75.777*

(33.082)

75.025*

(33.162)

76.082*

(33.106)

65.137*

(33.180)

NO2 −0.937*

(0.423)

−0.843
(0.526)

−1.080*

(0.523)

−1.167*

(0.526)

−1.139
(0.722)

O3 −0.404**

(0.159)

−0.345*

(0.160)

−0.424*

(0.159)

−0.427*

(0.159)

−0.410**

(0.159)
LR test 5.912 9.105 1.114 3.577 6.324 8.812

Note: 6 air pollution indicators for threshold variable, respectively; the standard errors are shown in brackets
·P < 0.1; *P < 0.05; **P < 0.01; ***P < 0.001
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national level in China (108.19); we can conduct the reason
from three aspects: (i) span of the time is inconsistent; the
national level is from 21 Jan to 20 May, while the municipal
level is 28 Jan to 31 May; the disturbance effects in the time
dimension may exist; (ii) objects are different; China as a
whole from the average degree at the national level, while it
reflects the differences of 27 individuals at the municipal lev-
el, the disturbance effects in spatial dimension may exist; and
(iii) the measurement standards are different; they are mea-
sured by America in the national level, while they are mea-
sured by China in the municipal level; measurement errors
may exist.

Second, coupled with the conclusions before, PM2.5 has a
significant non-linear effect on COVID-19 infection no matter
at the national level or municipal level. It is manifested that the
increase in PM2.5 will aggravate the speed of COVID-19 in-
fection, but this relationship has the same effect and will
weaken with the emergence of the threshold. Moreover, the
most sensitive ones in China are still PM2.5 and CO when air
pollution is taken into account on COVID-19 infection,
among the 6 indicators of air pollution. Hence, according to
air pollution on COVID-19 infection with or without internal
differences, the policy implications may differ in China.

Third, when PM10, SO2, CO, NO2, and O3 are used as
threshold variables, their non-linear threshold effects on
COVID-19 infection are also significant. Specifically, differ-
ent from the other 5 indicators, the positive effect of CO on
COVID-19 infection is the strongest with a coefficient of
109.414 before the threshold (13 mg/m) is reached; moreover,
the coefficient of CO on COVID-19 infection reduced to
66.029 after the threshold, and still aggravated the spread of
COVID-19, but the spread will slow down. For PM10, its
increase intensifies COVID-19 infection only before the
threshold (35 μg/m3) is taken. For the remaining 4 indicators
of air pollution, they are positive before the threshold and
negative after the threshold on COVID-19 infection, but also
have differences; among them, the positive effect of O3 on
COVID-19 infection is the weakest (0.814) before the thresh-
old (66 μg/m3) is reached. Overall, the threshold effect of air
pollution on COVID-19 infection is significant, and the in-
crease in air pollution will not continue to accelerate the
spread of COVID-19 infection. Therefore, the policy of air
pollution indicators should be further adjusted according to
the thresholds, which has achieved the purpose of effectively
controlling the external environment of COVID-19 infection
in China.

Table 8 presents the results for the deviation of air pollution
indicators to thresholds in China at the municipal level.
Among the 6 indicators, only the threshold of PM10 on
COVID-19 infection (1.3) is greater than the mean value
(0.73); this shows that the aggravating effect of CO on
COVID-19 has a certain mitigating effect in China from the
provincial aspect, and it is difficult to control the spread of

COVID-19 by reducing CO emissions. For the remaining 5
indicators, thresholds of air pollution are less than mean
values in all; the effects of PM2.5, PM10, SO2, NO2, and O3

on COVID-19 infection are in the accelerated stage before the
attached thresholds, which indicates that the relative external
environment that slows down the spread of COVID-19 infec-
tion can be provided by controlling the emissions of these 5 air
pollution indicators.

Discussion and conclusion

In this study, the concentrations of air pollution on COVID-19
infection were used in order to explain the spatial variation of
newly confirmed cases in 9 countries at the national level from
three regions (such as Asia, North America, and Europe), and
explain the internal difference in 27 provinces at the municipal
level from China. The data at the national level and municipal
level shows three main air pollution hotpots on COVID-19
infection over countries and provinces: (i) there is a threshold
non-linear effect of air pollution on the spread of COVID-19
infection; the increase of air pollution will greatly intensify the
newly confirmed cases of COVID-19 before the threshold is
reached, but this aggravating effect will be weakened after the
threshold; (ii) the impact intensity of the 6 air pollution indi-
cators on COVID-19 is significantly different; PM2.5 is the
key air pollution indicator for preventing and controlling
COVID-19 at the national level, and PM10, PM2.5, and SO2

are the key points at the municipal level; (iii) the impact of
different air pollution indicators on COVID-19 is different not
only between countries but also within countries.

According to these results, high air pollution concentration
accompanied by a decline in air quality causes an increase in
newly confirmed cases of COVID-19 infection. Considering
the complex and volatile nature of the geographical location at
the national and municipal levels, this topographical structure
combined with reversed atmospheric conditions can prevent
the spread of air pollutants (such as PM2.5, PM10, SO2, CO,
NO2, O3, etc.), which can lead to a high incidence of respira-
tory problems and inflammation in the local population.
Long-term exposure could be an important reason for newly
confirmed cases of high COVID-19 infection in these regions.
As earlier studies have shown, the six indicators of air

Table 8 Deviation of air pollution indicators to thresholds in China

PM2.5 PM10 SO2 CO NO2 O3

Threshold 26 35 12 1.3 24 66

Mean 38.80 67.37 9.77 0.73 31.69 101.50

Min 3 0 2 0.1 4 7

Max 906 644 50 2.8 119 283
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pollution can hardly reach the threshold during the sample
period, whether it is at the national or municipal level.
Therefore, it is believed that there is a very sensitive relation-
ship between serious air pollution and the newly confirmed
cases of highly COVID-19 infection. In other words, the ex-
posure to air pollution causes inflammation in the lungs, by
PM2.5 and PM10 for European countries and PM2.5 and O3 for
North American countries in particular; it is now necessary to
examine whether the presence of an initial inflammatory con-
dition is related to the response of the immune system to the
coronavirus. Hence, increasing air pollution means poisoning
our own body and when it experiences a chronic respiratory
stress, its ability to defend itself from infections is limited.

In addition, based on the results of this study, more studies
should be conducted which focus on additional factors such as
terrain structure and composition of main environmental pol-
lutants along with the different threshold effects of pre-
exposure to PM2.5, PM10, SO2, CO, NO2, and O3 on
hypercytokinemia in order to verify their impact on newly
confirmed cases due to the COVID-19 pandemic.
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