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Introduction

The prefrontal cortex (PFC) modulates executive functions 
such as attention, decision-making and cognitive control.1 
The maturation of these behaviours parallels the structural 
refinement of the PFC, including the ingrowth of mesocor-
tical dopamine axons, which continues until early adult-
hood.2–11 The gradual maturational trajectory of mesocor-

tical dopamine connectivity — and of the PFC itself — is 
controlled by the guidance cue Netrin-1 and its receptor 
DCC, which determine the spatiotemporal targeting of 
growing axons.10,12 Studies in rodents show that variations 
in Dcc gene expression lead to differences in cognitive 
flexibility, behavioural inhibition, vulnerability to stress-
induced depression-like behaviours and altered sensitivity 
to drugs of abuse.10,11,13–18
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Background: Genetic variation in the guidance cue DCC gene is linked to psychopathologies involving dysfunction in the prefrontal cortex. 
We created an expression-based polygenic risk score (ePRS) based on the DCC coexpression gene network in the prefrontal cortex, 
hypothesizing that it would be associated with individual differences in total brain volume. Methods: We filtered single nucleotide poly-
morphisms (SNPs) from genes coexpressed with DCC in the prefrontal cortex obtained from an adult postmortem donors database 
(BrainEAC) for genes enriched in children 1.5 to 11 years old (BrainSpan). The SNPs were weighted by their effect size in predicting 
gene expression in the prefrontal cortex, multiplied by their allele number based on an individual’s genotype data, and then summarized 
into an ePRS. We evaluated associations between the DCC ePRS and total brain volume in children in 2 community-based cohorts: the 
Maternal Adversity, Vulnerability and Neurodevelopment (MAVAN) and University of California, Irvine (UCI) projects. For comparison, we 
calculated a conventional PRS based on a genome-wide association study of total brain volume. Results: Higher ePRS was associated 
with higher total brain volume in children 8 to 10 years old (β = 0.212, p = 0.043; n = 88). The conventional PRS at several different 
thresholds did not predict total brain volume in this cohort. A replication analysis in an independent cohort of newborns from the UCI 
study showed an association between the ePRS and newborn total brain volume (β = 0.101, p = 0.048; n = 80). The genes included in 
the ePRS demonstrated high levels of coexpression throughout the lifespan and are primarily involved in regulating cellular function. 
Limitations: The relatively small sample size and age differences between the main and replication cohorts were limitations. 
Conclusion: Our findings suggest that the DCC coexpression network in the prefrontal cortex is critically involved in whole brain devel-
opment during the first decade of life. Genes comprising the ePRS are involved in gene translation control and cell adhesion, and their 
expression in the prefrontal cortex at different stages of life provides a snapshot of their dynamic recruitment.
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In humans, an autosomal-dominant DCC mutation results 
in structural and functional alterations in the connectivity 
of mesocortical pathways, with an associated decrease in 
novelty-seeking behaviour and cigarette use.19,20 An increas-
ing number of meta-analyses of genome-wide association 
studies and postmortem human studies have shown that 
altered levels of DCC expression and the presence of specific 
genetic polymorphisms in the DCC gene are associated with 
psychiatric conditions,21 most notably major depressive dis-
order,15,17,22–35 schizophrenia34,36–38 and drug abuse.19,39–42 A 
study by the Cross-Disorder Group of the Psychiatric Gen
omics Consortium3 revealed that a PFC-enriched network of 
genes prominently affected 8 psychiatric disorders, and a 
DCC single nucleotide polymorphism (SNP) showed the 
highest pleiotropic association with all 8 disorders. A separate 
analysis of integrated multi-omics data on genes expressed in 
the dorsolateral PFC singled out DCC as a predictor of well-
being, cognitive function and neuroticism.43 The converging 
evidence suggests that DCC expression in the PFC is critical 
for neurodevelopment.

In this study, we went beyond investigating genetic muta-
tions or the contributions of SNPs to particular traits, ad-
dressing whether variations in the function of the DCC gene 
network in the PFC were associated with differential brain 
development in children from community-based samples. 
We used data from well-established child cohorts — the 
Maternal Adversity, Vulnerability and Neurodevelopment 
(MAVAN) study44 and the University of California, Irvine 
(UCI) project45,46 — and assessed general brain development, 
represented by total brain volume. Brain volume measures in 
children are associated with future cognitive outcomes47–49 
and were used in the present study as an indicator of promi-
nent neurodevelopmental differences.

Methods

MAVAN cohort

Sample
We used data collected from a community-based birth cohort 
as part of the MAVAN project,44 for which pregnant women 
18 years of age or older were recruited in Montréal (Quebec) 
and Hamilton (Ontario), Canada. Magnetic resonance 
imaging of the brain was acquired when the children were 
8 to 10 years of age.

Genotyping
As described elsewhere,50 autosomal SNPs were genotyped 
from 200 ng of genomic DNA derived from buccal epithelial 
cells according to manufacturer guidelines, using genome-
wide platforms (PsychArray/PsychChip, Illumina). Partici-
pant samples with a low call rate (< 90%) were removed, as 
well as SNPs with a low call rate (< 95%), a minor allele fre-
quency less than 5% or a Hardy–Weinberg equilibrium test 
p < 1 × E−40, resulting in 260 participants and 242 211 SNPs. 
We used PLINK 1.951 for quality control procedures. The 
remaining SNPs were submitted for imputation to Sanger 
Imputation Service using a Haplotype Reference Consortium 

(release 1.1) panel52 and post-imputation quality control, re-
sulting in 20 790 893 SNPs with imputation accuracy greater 
than 0.80. We recoded imputed dosage genotypes to hard-
called genotypes using posterior genotype probability 
greater than 0.90. Polygenic scores were calculated based on 
hard-called genotypes.

Because participants were from heterogeneous back-
grounds (classified as population stratification), which could 
have brought bias to genetic associations, we examined 
population structure using principal component analysis.53,54 
Genotyped SNPs with high linkage disequilibrium (r2 < 0.20) 
were pruned with a sliding window of 50 kilobases in incre-
ments of 5 using PLINK 1.9. We performed principal com
ponent analysis using SMARTPCA53 on this pruned data set 
and generated a scree plot. Based on the inspection of the 
scree plot, the first 3 principal components were the most 
informative of population structure and were included in all 
analyses as covariates.

Neuroimaging
We used high-resolution T1-weighted neuroimaging scans 
and processed them using Multiple Automatically Generated 
Templates Brain Segmentation Algorithm (MAGeTbrain).55,56 
Scans containing obvious artifacts (such as ghosting or blur-
ring due to head motion) were excluded. Each participant’s 
structural scan was segmented into grey matter, white matter 
and cerebrospinal fluid. Grey matter and white matter were 
used to calculate total brain volume.

Replication cohort: University of California Irvine

Sample
We used a prospective, longitudinal study of pregnant 
mothers and their offspring conducted in the Development, 
Health and Disease Program45,46 at the University of Califor-
nia, Irvine (UCI), as a replication cohort. Mothers were 
recruited during early pregnancy, and shortly after birth 
their newborns underwent an MRI brain scan during natural, 
unsedated sleep (postnatal age at scan, mean ± standard 
deviation 27 ± 13 days).

Genotyping
We used the HumanOmniExpress BeadChip (Illumina) to 
describe genetic variation in our replication cohort. We per-
formed quality control, imputations, hard-calling and princi-
pal component analysis using the same pipelines as for the 
MAVAN cohort. We performed quality control of the geno-
type data using PLINK 1.9,51 removing samples with a low 
call rate and variants with a low call rate (<  95%), minor 
allele frequency less than 5% or Hardy–Weinberg equilib-
rium test p < × E−25. A total of 584 711 genotypes and 142 sam-
ples passed quality control. We used the Sanger Imputation 
Service to impute missing genotypes using the Haplotype 
Reference Consortium (release 1.1) panel.52 Following post-
imputation quality control and applying an imputation accu-
racy score of 0.80, 25 060 157 SNPs were left for the down-
stream analyses. Similar to MAVAN, we recoded imputed 
dosage genotypes (posterior genotype probability above 0.90) 
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and used hard-called genotypes for polygenic scores. We 
applied principal component analysis to the pruned data set 
to describe population stratification in the UCI cohort and 
included the first 3 principal components in data analyses of 
this cohort.

Imaging and MRI acquisition
Infants were scanned using a Siemens 3.0 T Scanner (TIM 
Trio, Siemens Medical Systems Inc.) as previously de-
scribed.45,57 Tissue segmentation was performed using a neo-
nate multi-atlas-based (www.nitrc.org/projects/unc_brain_
atlas/), iterative expectation maximization segmentation 
algorithm as in previous studies from the same cohort.57 
Brain tissue was classified as grey matter, white matter and 
cerebrospinal fluid. Grey matter and white matter were used 
to calculate total brain volume, and all 3 tissue types were 
used to calculate intracranial volume, which was controlled 
for in the analyses.

Ethics

All clinical and neuropsychological assessments were con-
ducted in accordance with the approvals of the relevant eth-
ics committees for the 3 sites at which the data were col-
lected: 2 sites for MAVAN (Montréal and Hamilton 
approval for the MAVAN project from McGill University, 
Université de Montréal, Royal Victoria Hospital, Jewish 
General Hospital, Centre hospitalier de l’Université de Mon-
tréal, Hôpital Maisonneuve-Rosemount, St. Joseph’s Hospi-
tal and McMaster University) and 1 site for the replication 
cohort (UCI), for which the UCI institutional review board 
approved all assessments. All participants’ parents provided 
written informed consent.

Polygenic expression score

Following the protocol described by Silveira and colleagues50 
and Hari Dass and colleagues,58 we created our expression-
based polygenic risk score (ePRS) for the DCC coexpression 
network using brain region and age specificity from publicly 
available gene expression databases and genotypes from the 
2 prospective cohorts. We obtained a list of genes coexpres
sed with DCC in the human adult PFC (absolute correlation 
of 0.5 or more) from the BrainEAC database (www.braineac.
org). Then, we filtered this list to genes that are differentially 
expressed in children 1.5 to 11 years old compared to adults 
using data from BrainSpan (www.brainspan.org) by combin-
ing the dorsolateral PFC, ventrolateral PFC, medial PFC and 
orbitofrontal cortex. The resulting list comprised 175 genes; 
we screened it using the National Center for Biotechnology 
Information tool to identify annotated SNPs in humans 
(www.ncbi.nlm.nih.gov/variation/view). We subjected the 
resulting SNPs to linkage disequilibrium clumping (r2 > 0.2) 
to yield a list of independent SNPs that were representative 
of the region. Then, based on the genotype data, we used the 
count function of the number of alleles at a given SNP and 
weighed it by the slope coefficient from the GTEx regression 
model that predicted gene expression in the PFC tissue by 

genotype (www.gtex portal.org/home). As such, we calcu-
lated the ePRS as the sum of the number of effect alleles mul-
tiplied by the effect size of the association between the geno-
type at a given SNP and the gene expression.

Gene ontology enrichment analysis

To understand the biological functions of the 175 genes that 
comprised our score, we performed gene ontology enrichment 
analysis using MetaCore (Clarivate Analytics), a commercially 
available literature database that screens for main functional 
networks.

Gene-expression developmental trajectory

To map the DCC coexpression network for different develop-
mental periods, we plotted coexpression levels in the PFC in 
the 4 selected regions (dorsolateral PFC, ventrolateral PFC, 
medial PFC, orbitofrontal cortex) based on available post-
mortem data (BrainSpan): childhood ranged from 4 months 
to 8 years (n = 11); adolescence from 11 to 18 years (n = 4); 
and adulthood from 21 to 40 years (n = 6). We created a gene-
expression correlation matrix for each developmental stage 
and plotted the resulting data using the heatmaply package.59 
We ordered genes in a consistent manner across time points 
(based on the correlation matrix calculated for childhood; the 
order was repeated for the other stages) to help visualize 
changes in coexpression over time.

Comparison of the DCC ePRS with a conventional 
polygenic risk score for brain volume
Unlike ePRS, which takes into account the fact that co
expressed genes are part of the same network, conventional 
polygenic risk scores (PRSs) are widely used in population 
genetics to describe the cumulative, additive effects of a large 
number of SNPs and their contribution to variation in com-
plex phenotypes,60 including psychiatric disorders.61 To iden-
tify whether a conventional brain volume PRS would also be 
associated with total brain volume differences in the MAVAN 
sample, we calculated PRSs using our accelerated pipeline62 
(https://github.com/MeaneyLab/PRSoS). We created PRSs for 
each participant based on a meta-analysis of brain volume genome-
wide association studies.63 The data from the genome-wide 
association studies were created based on the UK Biobank, 
Enhancing NeuroImaging Genetics through Meta-Analysis 
partnered with Cohorts for Heart and Aging Research in 
Genomic Epidemiology (CHARGE), and Early Growth Gen
etics consortia. We used cumulative summary scores, com-
puted as the sum of the allele count weighted by the effect 
size described in the meta-analysis63 across SNPs at different 
p value thresholds.

Statistical analysis

In all analyses, we used the ePRS as a continuous variable to 
examine its main effect on total brain volume. For the descrip-
tive statistics, we compared children with high and low genetic 
scores (defined by a median split) on the main confounders.
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We used SPSS Inc. (version 20.0–25.0; IBM) and R (R Core 
Team, 2019) for data analysis. Findings were considered to be 
statistically significant at p < 0.05. We used a Student t test 
and χ2 tests to compare baseline characteristics. We performed 
linear regression analysis to investigate the association be-
tween genetic score (DCC ePRS) and total brain volume. We 
considered well-established variables that affect child neuro-
development as possible confounders. For the MAVAN co-
hort, we adjusted the model using age at scan, sex, z-score 
body mass index, principal components and site (Montreal or 
Hamilton). Because the UCI replication cohort consisted of 
newborns, we used pediatric age, birth weight ratio,64,65 sex, 
intracranial volume and principal components to adjust the 
model. We corrected the UCI cohort for intracranial volume 
to account for head size; we did not include this analysis for 
the MAVAN cohort because intracranial volume and total 
brain volume were highly correlated in the sample, and ad-
justing for intracranial volume would have posed a collinear-
ity issue, inflating the variance. We defined pediatric age as 
age at scan corrected by gestational age at birth.

Results

Dynamic DCC gene coexpression network pattern across 
the lifespan

To “map” variation in gene expression of the DCC coexpres-
sion network in the PFC over the human lifespan, we used 
the BrainSpan gene-expression database and compared post-
mortem data specific to the PFC from donors of various ages. 
We aggregated the data for childhood, adolescence and 
adulthood and calculated correlation matrices, presenting 
them with retained gene order (Fig. 1). The network’s co
expression pattern is dynamic across postnatal ages. During 
childhood there was robust synchrony of gene activity. In 

adolescence, when the PFC undergoes substantial matura-
tion, the correlation matrix of genes coexpressed with DCC 
showed no clear structure. By adulthood, gene expression 
appeared to concentrate into specific hubs of activity.

DCC ePRS predicted individual differences in brain size

As shown in Table 1 and Table 2, the participant demograph-
ics for the MAVAN and UCI cohorts were relatively homo
geneous, showing no differences between the low and high 
ePRS groups with respect to the confounders (p > 0.05).

We then sought to understand how the DCC coexpression 
network in the PFC is associated with total brain volume. We 
found a significant positive association between the ePRS 
and total brain volume (grey and white matter) among the 
children in MAVAN cohort (β = 0.212, p = 0.043; n = 88): par-
ticipants with a higher DCC ePRS tended to have a larger 
brain volume (Fig. 2A).

We replicated this result in the UCI cohort. Similar to the 
MAVAN cohort, the UCI cohort (n = 80) showed a significant 
association between DCC ePRS and newborn total brain vol-
ume (grey and white matter, adjusted by intracranial volume; 
β = 0.101, p = 0.048; Fig. 2B). These findings provided evi-
dence that the DCC coexpression network predicts differ-
ences in brain morphology development.

Specificity of the ePRS

We investigated whether a conventional PRS60,61 based on a 
genome-wide association study of brain volume63 was asso-
ciated with differences in brain volume in the cohort of the 
present study. We found no correlation between the PRS 
(for several p value thresholds) and brain volume in the 
MAVAN cohort (Table 3). The DCC ePRS was not only 
more biologically meaningful than the conventional PRS, 

Fig. 1: Using an Euclidean matrix, we show coexpression levels of the DCC gene network in the prefrontal cortex through 3 life stages (red = 
positive coexpression correlation; purple = inverse coexpression correlation; white = no correlation). The order of genes in the network has 
been retained for the different life stages. As indicated by large clusters of same-direction expression (red and purple), the network’s 
coexpression pattern has robust synchrony of gene activity, with notable clustering of the pattern as age increases.
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but also sensitive to predicting volumetric brain differences 
in community-based samples of children.

The DCC coexpression network in the PFC comprises 
genes involved in mRNA translation

To examine the functional ontology of the genes that com-
prised the DCC coexpression network in the PFC, we 
screened for functional networks. Predominant enrichment 
was for the mRNA translation initiation and termination pro-
cesses (Fig. 3). Gene ontology processes included cell adhe-
sion, immune and inflammation functional networks, and 
Notch signalling.

Discussion

We generated an ePRS to determine whether variations in the 
function of the DCC gene network in the PFC predicted total 
brain volume in children. The DCC ePRS for the PFC was posi-
tively associated with brain volume in 2 separate community-
based samples and was a stronger predictor than a convention-
ally computed PRS. Genes comprising the score are involved 
in cell function maintenance, and their activity in the PFC dur-
ing childhood, adolescence and adulthood provide a snapshot 
of their dynamic recruitment throughout the lifespan.

The DCC receptors are implicated in the organization of 
long-distance axonal wiring across early life and adoles-
cence.10,15,66,67 In humans, bialleic loss-of-function mutations in 
the DCC gene lead to broad disorganization of white matter 
tracts, developmental split-brain syndrome and cognitive 
deficits.68,69 People who are DCC-haploinsufficient exhibit 
morphological and connectivity alterations, including meso-
corticolimbic connectivity and volumetric alterations.19,20 The 
DCC receptors have been shown to play a critical role in PFC 
development.10,11,13,15,34,43,70 Our findings linking the DCC co
expression network in the PFC to total brain volume during 
normative childhood development suggests that early post-
natal PFC maturation influences brain-wide development. It 
is also likely that similar DCC gene networks are expressed 
throughout the brain regions, coordinating both local and 
overall neuronal networks.

The effect size between the DCC ePRS for the PFC and 
total brain volume is likely to be reflected in behavioural 
outcomes and vulnerability to psychiatric disorders. Brain 
volume is associated with intrinsic brain activity71 and im-
plicated in cognitive outcomes, including educational 
attainment and intelligence.72,73 Furthermore, brain volume 
is associated with psychiatric conditions such as autism 
spectrum disorder,74–76 schizophrenia77,78 and depression.79–81 
In forthcoming studies, we will assess whether the DCC 

Table 1: Participant characteristics, MAVAN*

Characteristics
Total

(n = 73)
Low ePRS

(n = 39)
High ePRS

(n = 34) p value†

Male, n (%) 35 (47.9) 20 (51.3) 15 (44.1) 0.54

Age at scan, yr 9.27 ± 1.46 9.35 ± 1.41 9.17 ± 1.53 0.60

Gestational age, wk 39.18 ± 1.18 39.03 ± 1.16 39.35 ± 1.20 0.24

Birth weight, g 3265 ± 476 3223 ± 429 3314 ± 527 0.42

Breastfeeding duration, mo 7.37 ± 4.88 6.96 ± 4.79 7.81 ± 5.01 0.46

Smoking during pregnancy, n (%) 13 (18.1) 6 (15.8) 7 (20.6) 0.60

Maternal education, university degree or above, n (%) 38 (52.1) 20 (51.3) 18 (52.9) 0.89

Low income, n (%) 11 (16.9) 5 (13.9) 6 (20.7) 0.47

ePRS = expression-based polygenic risk score; MAVAN = Maternal Adversity, Vulnerability and Neurodevelopment. 
*Data are presented as n (%) or mean ± standard deviation. Percentages were calculated based on the available data; for smoking during 
pregnancy, total n = 72, and for low income, total n = 65. 
†We found no significant differences between children in the low and high ePRS groups. 

Table 2: Participant characteristics, replication cohort (UCI)*

Characteristics
Total

(n = 80)
Low ePRS

(n = 44)
High ePRS

(n = 36) p value†

Male, n (%) 48 (60.0) 26 (59.1) 22 (61.1) 0.86

Corrected age at scan, d 21.08 ± 14.79 21.39 ± 16.27 20.69 ± 12.95 0.84

Gestational age, wk 39.18 ± 1.49 39.15 ± 1.67 39.22 ± 1.26 0.83

Birth weight, g 3336 ± 507 3361 ± 554 3305 ± 450 0.62

Breastfeeding duration, mo 6.41 ± 5.07 5.37 ± 4.89 7.7 ± 5.09 0.07

Smoking during pregnancy, n (%) 6 (7.5) 3 (6.8) 3 (8.3) 0.77

Maternal education, university degree or above, n (%) 27 (33.8) 12 (27.2) 15 (41.6) 0.13

Household income < $29 999/yr 26 (32.5) 14 (31.8) 12 (33.3) 0.28

ePRS = expression-based polygenic risk score; UCI = University of California, Irvine. 
*Data are presented as n (%) or mean ± standard deviation. Percentages were calculated based on the available data. 
†We found no significant differences between children in the low and high ePRS groups.  
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ePRS differs between healthy people and those vulnerable 
to mental illness.

The biological processes modulated by genes in the DCC 
network include mRNA translation, cell adhesion, particle 
transportation and inflammation. Based on the large clusters 
of genetic activity during childhood that we observed in the 
expression matrix and in the gene ontology analysis, it is 
likely that at this early age, the gene network regulates cellu-

lar fate and neural proliferation events. This idea is consistent 
with a recent analysis of genetic signatures of the human 
brain showing DCC among top 10% of genes with a consis-
tent transcriptional regulation pattern across 132 different 
brain structures.82 The DCC coexpression network is most 
likely part of a core network that modulates biological pro-
cesses across the entire brain and, according to our gene-
expression profile matrices across different life stages, 
remains dynamically active into adulthood.

The different DCC network expression patterns we ob-
served in the childhood, adolescent and adult matrices sug-
gest continuous recruitment and pruning of the network. 
Particularly interesting was the widespread reduction of syn-
chronous gene expression during adolescence, which most 
likely accounts for individual-based experience, and shapes 
the function of the network into adulthood. The importance 
of changes in coexpression patterning across ages can be 
inferred from rodent studies showing that the function of 
DCC receptors vary according to maturational stage. During 
prenatal and early postnatal development, DCC is involved 
in myriad processes across the central nervous system, from 
driving the migration of neural-crest-derived cells83 and par-
ticipating in fetal telencephalic cortical plate development,67 
to guiding the growth of corticospinal tract axons84,85 and 
retinal ganglion cell axons.86 From juvenile age to adoles-
cence, the role of the DCC receptors appears to become more 
specialized, as they are primarily involved in controlling the 

Fig. 2: Morphological differences predicted by DCC expression-based polygenic risk score (ePRS). In (A) the Maternal Adversity, Vulner
ability and Neurodevelopment (MAVAN) cohort and (B) the University of California, Irvine (UCI) replication cohort, higher ePRS is associ-
ated with larger total brain volume.
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Table 3: Conventional PRS association with total brain volume*

p value thresholds β p value SNP count

PRS т 0.0001 –0.113 0.31 2493

PRS т 0.001 –0.055 0.61 6764

PRS т 0.01 –0.184 0.12 23 929

PRS т 0.05 –0.145 0.24 65 567

PRS т 0.1 –0.189 0.13 103 097

PRS т 0.2 –0.151 0.25 161 534

PRS т 0.3 –0.144 0.28 208 446

PRS т 0.4 –0.152 0.25 248 433

PRS т 0.5 –0.156 0.24 282 935

GWAS = genome-wide association studies; MAVAN = Maternal Adversity, 
Vulnerability and Neurodevelopment. PRS = polygenic risk score; SNP = single  
nucleotide polymorphism.
*Association between PRSs using the GWAS for total brain volume63 and total brain 
volume in MAVAN children, with different PRS p value thresholds. We adjusted the 
regression models using the principal components of age, sex, site and population 
stratification.
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targeting decisions of dopamine axons in limbic regions and 
organizing their connectivity in local circuitries.10,15,70 In adult-
hood, DCC receptors are involved in axonal sprouting, main-
tenance of already established synaptic connections and syn-
aptic plasticity via the recruitment of nascent or immature 
synapses.87–92 The DCC coexpression network in the PFC may 
be involved in maintaining proliferative functions and estab-
lishing early global connections in childhood; fine-tuning 
network connectivity in adolescence; and maintaining local 
synaptic connectivity and function in adulthood.

Limitations

A limiting factor in this study was sample size.93 Be-
cause MRI data collection is challenging in young partici-
pants, the final number of processed imaging scans was 
small. However, the fact that our findings were replicated in 
a second community-based child cohort counteracts this 
limitation. It is important to note that only few child cohorts 
with neuroimaging and genotype data are available, and 
consistency in age between cohorts is difficult to achieve. 
The sample size of the gene-expression data from BrainSpan 
that we used to create the developmental period-specific 
gene-expression matrices was relatively small, limiting the 
interpretation of this result.

The use of brain volume as a phenotype has benefits and 
limitations. In this study, the use of total brain volume al-

lowed us to obtain a glimpse at global morphological differ-
ences according to the child’s ePRS. The population sample 
was that of a community cohort, so the variation in brain 
volume among individuals was expected to correspond to 
that observed in a healthy population. A higher association 
is likely to be identified in people with altered neuro
development. Using a gross measure such as total brain 
volume might mask some associations in which develop-
mental alterations are restricted to particular circuits. As 
well, our analysis did not discern between histological fea-
tures such as the ratio of neurons to glia, which can relate to 
variations in brain volume.

Conclusion

This study paves the path for research aimed at uncovering 
the pathways that underlie brain characteristics associated 
with psychiatric conditions. Coexpression gene networks 
provide information on biological processes. The DCC gene 
is an emerging hub gene associated with psychiatric illness, 
but the molecular pathways linking DCC dysfunction to 
pathological outcomes are only beginning to be elucidated. 
Our findings show that a network of genes coexpressed 
with DCC in the PFC and involved in basic cellular func-
tions is associated with the development of brain volume 
and highlight the dynamic nature of the genetic contribu-
tion to brain development.

Fig. 3: Using Metacore software, we analyzed the coexpression gene list for networks that depict main associations (top 10) with particular 
cellular processes. The y-axis shows the order of the networks by significance. IL-6 = interleukin-6.
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