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Summary
The leaf is a crucial organ evolved with remarkable morphological diversity to maximize plant

photosynthesis. The leaf shape is a key trait that affects photosynthesis, flowering rates, disease

resistance and yield. Although many genes regulating leaf development have been identified in

the past years, the precise regulatory architecture underlying the generation of diverse leaf

shapes remains to be elucidated. We used cotton as a reference model to probe the genetic

framework underlying divergent leaf forms. Comparative transcriptome analysis revealed that

the GhARF16-1 and GhKNOX2-1 genes might be potential regulators of leaf shape. We

functionally characterized the auxin-responsive factor ARF16-1 acting upstream of GhKNOX2-1

to determine leaf morphology in cotton. The transcription of GhARF16-1 was significantly higher

in lobed-leaved cotton than in smooth-leaved cotton. Furthermore, the overexpression of

GhARF16-1 led to the up-regulation of GhKNOX2-1 and resulted in more and deeper serrations

in cotton leaves, similar to the leaf shape of cotton plants overexpressing GhKNOX2-1. We found

that GhARF16-1 specifically bound to the promoter of GhKNOX2-1 to induce its expression. The

heterologous expression of GhARF16-1 and GhKNOX2-1 in Arabidopsis led to lobed and curly

leaves, and a genetic analysis revealed that GhKNOX2-1 is epistatic to GhARF16-1 in Arabidopsis,

suggesting that the GhARF16-1 and GhKNOX2-1 interaction paradigm also functions to regulate

leaf shape in Arabidopsis. To our knowledge, our results uncover a novel mechanism by which

auxin, through the key component ARF16-1 and its downstream-activated gene KNOX2-1,

determines leaf morphology in eudicots.

Introduction

The aerial parts of higher plants are derived from a group of

pluripotent stem cells in the shoot apical meristem (SAM), which

leads to the generation of new outgrowth, leaves and flowers (Du

et al., 2018; Shi et al., 2018). In comparison to the vibrant and

diverse colours of flowers, leaves are typically more monotonously

coloured. Nonetheless, leaves display remarkable morphological

diversity with highly diversified geometry. Leaves can be simple

with smooth margins or small marginal protrusions (serrations) as

in Arabidopsis thaliana, while some can be complicated with

protrusions of different sizes and patterns (e.g. teeth or lobes,

depending on the depth of sinuses). Variation in leaf morphology

is due to environmental or genetic factors (Nicotra et al., 2011).

However, the extraordinary diversity is mostly attributed to

genetic control, through which gene regulatory networks or

signalling pathways control leaf formation from a small bulge on

the SAM to a fully developed lateral outgrowth with diverse

shapes (Dkhar and Pareek, 2014).

Genetic studies have identified the KNOTTED1-LIKE HOMEO-

BOX (KNOX) family genes, such as KNAT1, SHOOT MERISTEM-

LESS (STM) and BREVIPEDICELLUS (BP), as key regulators of leaf

shape (Chuck et al., 1996; Lincoln et al., 1994; Spinelli et al.,

2011). In Arabidopsis, KNAT2 is mainly expressed in the SAM and

its overexpression induces highly lobed and curled rosette leaves

in Arabidopsis (Chuck et al., 1996; Scofield et al., 2008). In A.

thaliana, ASYMMETRIC LEAVES1 (AS1) and AS2 repress the

activity of KNAT1 and KNAT2 in the leaves (Byrne et al., 2000;

Byrne et al., 2002). Both as1 and as2 mutants display abnormal

lobed leaves with ectopic expression of BP and KNAT2 (Byrne

et al., 2000; Byrne et al., 2002). A transcriptional repressor

complex POLYCOMB REPRESSIVE COMPLEX (PRC)2 interacts with

the AS1-AS2 protein complex to stably silence the KNAT1 and

KNAT2 genes in leaf primordia (Lodha et al., 2013). Nonetheless,

it is still unknown how the key factor KNOX is enlisted to

determine leaf diversity during the diversification of plant species.

In addition to the KNOX family genes, the CUP-SHAPED

COTYLEDON (CUC) and REDUCED COMPLEXITY (RCO) genes are
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also important regulators in determining leaf morphology (Bar

and Ori, 2014; Bilsborough et al., 2011; Streubel et al., 2018;

Vlad et al., 2014). CUC2, a member of the NAC gene family, plays

a key role in the development of serrated leaf margins (Nikovics

et al., 2006), and its ectopic expression leads to greater sinus

width and lobe appearance rate in Arabidopsis (Blein et al., 2013).

In Cardamine hirsuta, which belongs to the Brassicaceae family

and shares a very close common ancestor with Arabidopsis, the

homeodomain-leucine zipper (HD-ZIP) transcription factor gene

ChRCO is specifically expressed in developing leaves and pro-

motes leaflet development by repressing growth at the flanks of

protrusions generated by CUC-auxin patterning (Sicard et al.,

2014; Vlad et al., 2014).

Moreover, auxin is involved in the regulation of leaf morphology.

The local peaks of auxin activity are mediated by the auxin efflux

carrier PIN-FORMED. PIN1 regulates the growthof the leafmargin to

affect leaf morphology (Barkoulas et al., 2008; Mohammed et al.,

2018), which is evidenced by the fact that a loss-of-function

mutation of PIN1 leads to smooth margins in C. hirsuta. Auxin

response factors (ARFs) regulate the expression of auxin-responsive

genes by directly binding to the auxin-responsive element (AuxRE,

TGTCTC) (Israeli et al., 2019). The ARF proteins contain two

conserved domains, an N-terminal DNA-binding domain and a C-

terminal dimerization domain that mediates protein–protein inter-

action (Gray et al., 2001). In response to auxin, the auxin/

indoleacetic acids (Aux/IAAs) are targeted for proteolysis through

the ubiquitin-mediated pathway, relieving ARFs, which regulate

downstream gene transcription (Serino and Deng, 2003). Genetic

analyses have shown that the ARF10, ARF16 and ARF17 genes

regulate leaf morphology (Hendelman et al., 2012; Mallory et al.,

2005; Wang et al., 2005). Interestingly, the ARF10, ARF16 and

ARF17 mRNAs are targeted and negatively regulated by miR160

(Jones-Rhoades et al., 2006; Natarajan and Banerjee, 2020; Sunkar

et al., 2012). The expression of a miR160-resistant form of ARF10/

ARF16/ARF17 results in the interference of auxin signalling, leading

to the changes of leaf shape (Rubio-Somoza et al., 2009). Likewise,

in cotton,ARF10, ARF16andARF17,were also targetedbymiR160.

Overexpression of miR160 led to significant decrease of ARF10 and

ARF17, while down-regulation of miR160 resulted in increased

transcripts ofARF10 and ARF17 (Ding et al., 2017; Liu et al., 2020).

Despite all these significant advances, the signalling pathways

acting downstream of auxin to modulate leaf shape remain

enigmatic. Furthermore, the genetic basis for the auxin-mediated

morphological diversity of leaves is still poorly understood.

In this study, we used Gossypium (cotton) species, one of the

most important economic crops, to clarify the genetic underpin-

nings of the generation of divergent leaf forms. We show that the

Gossypium auxin-responsive factor ARF16-1 acts as a key regu-

lator that directly binds to the promoter of KNOX2-1 to fine-tune

its expression levels and, consequently, determines leaf shape

diversity among the genus Gossypium. Notably, the Gossypium

ARF16-KNOX2 interaction paradigm was also successfully imple-

mented in Arabidopsis, which resulted in similar divergent leaf

forms that were observed in Gossypium spp., suggesting that this

regulatory mechanism is evolutionarily conserved in eudicots.

Results

Identification of candidate genes for divergent leaf
shapes in Gossypium species

Gossypium species exhibit diverse morphological variations

because of natural selection and artificial domestication. Here,

we used three completely sequenced cotton species, including

one allotetraploid species, G. hirsutum and two diploid species,

G. arboreum and G. raimondii, as reference plants to study leaf

shape diversity as well as the genetic basis of the divergent leaf

morphology during the diversification of the genus Gossypium.

We showed that the leaves of G. arboreum were typically lobed,

whereas those of G. raimondii were classic smooth (Figure 1a).

Interestingly, we observed both lobed and smooth leaves

occurring simultaneously in the same G. hirsutum plant. The

shape of a leaf is determined by the geometric form of its

epidermal cells (Tao et al., 2013). Therefore, we analysed the leaf

epidermal cell shape using scanning electron microscopy. The

epidermal cells of mature smooth leaves of G. raimondii and G.

hirsutum showed a jigsaw-puzzle-piece shape, whereas the much

smaller epidermal cells of mature lobed leaves of G. arboreum

and G. hirsutum displayed a homogeneous shape. Furthermore,

we used three different leaf parameters to quantitatively analyse

the leaf shape of the three Gossypium species: (i) leaf dissection

index (perimeter2/4p 9 leaf area), (ii) number of teeth/leaf

perimeter, and (iii) tooth area/leaf area (Bilsborough et al.,

2011; Royer et al., 2008; Zheng et al., 2016). The results showed

that G. arboreum had a more pronounced leaf margin serration

than G. raimondii, and distinct serrations were also observed

between the lobed and smooth leaves of G. hirsutum (Figure 1b–
d). Moreover, we calculated the ratio of lobed to smooth leaves in

G. hirsutum and quantified the number of teeth on each leaf. Our

calculations showed that the lobed leaves were the dominant

type in G. hirsutum (Figure S1), and the number of teeth on each

leaf in G. raimondii was nearly the same as that on a smooth leaf

of G. hirsutum. However, the numbers of teeth on the lobed

leaves of G. arboreum and G. hirsutum were much higher than

those on the smooth leaves of G. raimondii and G. hirsutum

(Figure S2). These results revealed the diversity in leaf margins of

the three different cotton species.

To uncover the genetic underpinnings of leaf margin variation

in Gossypium, we firstly analysed the differentially expressed

genes between G. arboreum and G. raimondii using the RNA-Seq

data (Data S1). Subsequently, we summarized all genes poten-

tially involved in the regulation of leaf morphological differences

in Arabidopsis (Table S1). Finally, we investigated the expression

of the cotton genes homologous to these potential Arabidopsis

genes. Our results showed that the KNOX2-1 and AUXIN

RESPONSE FACTOR16 (ARF16) genes were significantly up-

regulated in the lobed leaves of G. arboreum compared to the

smooth leaves of G. raimondii (Figure 1e), indicating that these

genes might be recruited to regulate leaf shape differences

among the Gossypium species. Moreover, the quantitative real-

time PCR (qRT-PCR) results showed predominantly higher expres-

sion levels of GhARF16-1 and GhKNOX2-1 in lobed leaves than in

smooth leaves, further supporting the expression profiles of

ARF16-1 and KNOX2-1 (Figure S1f,g and S3). To confirm that

dissimilar leaf profiles were attributed to the differentiated

expression profiles of ARF16-1 and KNOX2-1, we introduced

another diploid Gossypium species, G. trilobum, whose genome

constitution (D-genome, DD) highly resembles that of G.

raimondii. Compared to the smooth leaves of G. raimondii, the

leaves of G. trilobum were lobed, as indicated by their greater

values of leaf dissection index, number of teeth/leaf perimeter

and tooth area/leaf area (Figure S4a–d). Consistent with the

above-mentioned phenotypic analysis results, the transcriptional

levels of ARF16-1 and KNOX2-1 in G. trilobum leaves were much

higher than those in G. raimondii leaves (Figure S4e,f), suggesting
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Figure 1 Candidate genes evolved to mediate leaf shape diversity among different Gossypium (cotton) species. (a) Left, morphological analysis of the

leaves of Gossypium hirsutum (Gh), Gossypium arboreum (Ga), and Gossypium raimondii (Gr). From top to bottom, the first true leaf of G. arboreum, the

first true leaf of G. raimondii, the fourth true leaf of G. hirsutum (Gh-lobed, Gh-l), and the first true leaf of G. hirsutum (Gh-smooth Gh-s). In each image,

from left to right, the representative leaves from three different developmental stages (5, 15, and 30 days, respectively). Bars = 4 cm. The right column of

the images shows scanning electron micrographs of the epidermal cells at the base of the abaxial side of mature leaves of Ga, Gr, Gh-l, and Gh-s,

respectively, from top to bottom. Bars = 50 µm. (b) to (d) Quantitative comparisons of the leaf shapes of Ga, Gr, Gh-l, and Gh-s from (a) based on the leaf

dissection index (perimeter2/4p 9 leaf area) (b), the number of teeth/leaf perimeter (c), and the tooth area/leaf area (d). A total of 10 leaves from each

genotype were used for the measurement. Data are presented as mean � SE. Error bars represent standard errors of the means from three independent

experiments. Statistical significance was determined using one-way analysis of variance (ANOVA) combined with Tukey’s test: *P < 0.05, **P < 0.01,

***P < 0.001. (e) Expression profiles of the genes involved in the regulation of leaf shape in Ga and Gr. Scaled log2 expression values are shown from green

to red, indicating low to high expression levels, respectively. (f) Quantitative real-time PCR (qRT-PCR) analysis of KNOX2-1 transcriptional levels in leaf

primordia of Ga, Gr, Gh-l, and Gh-s. The expression level of the KNOX2-1 gene in Gr was set to 1.0. (g) qRT-PCR analysis of the ARF16-1mRNA levels in the

leaf primordia of Ga, Gr, Gh-l, and Gh-s. The expression level of the ARF16-1 gene in Gr was set to 1.0. Each qRT-PCR experiment was performed in three

biological replicates, and the error bars represent standard errors of the means from three independent experiments. Statistical significance was determined

using one-way ANOVA combined with Tukey’s test. **P < 0.01; ***P < 0.001.
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that ARF16-1 and KNOX2-1 might modulate leaf patterning

during the diversification of these cotton species.

GhARF16-1 and GhKNOX2-1 are key regulators that
control cotton leaf shape

To verify that the two candidate genes, GhARF16-1 and

GhKNOX2-1, are the key regulators that modulate leaf shape

variation in Gossypium species, we constructed several transgenic

lines that overexpressed or down-regulated GhARF16-1 and

GhKNOX2-1 in G. hirsutum.

A sequence analysis of GhARF16-1 showed that GhARF16-1

had a high sequence similarity with Arabidopsis ARF16 (Fig-

ure S5), and GhARF16-1 mRNA containing an miR160 comple-

mentary sequence (Figure S6). To obtain a GhARF16-1

overexpressing line, a mutated version of GhARF16-1

(GhmARF16-1), which modifies only miRNA160 complementary

sequences by synonymous substitutions without altering the

protein sequence (Figure S6) (Wang et al., 2005), was generated

and introduced into cotton plants under the control of its own

native promoter (Table S2). After pedigree selection assisted with

kanamycin and transgene PCR amplification, 16 and 21 inde-

pendent homozygous transgenic lines (approximately 10 plants

per line) were regenerated for pARF16::GhmARF16-1 and

GhmARF16-1-RNAi, respectively. Because the modification of

miRNA160 disrupts its affinity for GhmARF16-1, which results in

the promotion of the stability of GhmARF16-1, the expression

level of GhARF16-1 in the pARF16::GhmARF16-1 lines was much

higher than that in wild-type G. hirsutum (Figure S7). As a result,

these transgenic plants produced deeper lobed leaves as com-

pared to the wild-type leaves (Figure 2a,c,d). In contrast, the

transgenic GhARF16-1-RNAi lines with reduced expression of

GhARF16-1 exhibited leaf-type similar to that of the wild type

(Figure 2b,d). The epidermal cell shape was polygonal in mature

leaves of wild-type and GhARF16-1-RNAi lines, but was more

regular in mature lobed leaves of pARF16::GhmARF16-1 (Fig-

ure 2a–c). The quantitative analysis of leaf morphology revealed

that the pARF16::GhmARF16-1 plants had significantly greater

leaf dissection index, number of teeth/leaf perimeter, tooth area/

leaf area, and teeth number compared to the wild-type and

GhARF16-1-RNAi line (Figure 2e–h). These results suggest an

important role of GhARF16-1 in regulating leaf shape in cotton.

To determine the role of GhKNOX2-1 in cotton leaf develop-

ment, we generated the GhKNOX2-1 overexpression (35S::

GhKNOX2-1) andGhKNOX2-1 knocked down (GhKNOX2-1-RNAi)

transgenic plants. After pedigree selection assistedwith kanamycin

and transgene PCR amplification, 34 and 16 independent homozy-

gous transgenic lines (8–12 plants per line) were regenerated for

35S::GhKNOX2-1 andGhKNOX2-1-RNAi, respectively. The expres-

sion level of GhKNOX2-1 in the 35S::GhKNOX2-1 line was much

higher than that in thewild-type plants (Figure S8). Comparedwith

thewild-type plants, the 35S::GhKNOX2-1 plants displayed deeper

lobed leaves (Figure 3a,c,d), resembling the leaves of pARF16::

GhmARF16-1 (Figure 2a–d). Conversely, the GhKNOX2-1-RNAi

line exhibited decreasedGhKNOX2-1 transcription (Figure S8) and

smooth leaves (Figure 3b,d), a phenotype similar to that of thewild

type. Furthermore, the epidermal cell patterning of mature leaves

of both wild-type and GhKNOX2-1-RNAi lines were polygonal

(Figure 3a,b), whereas the cells of mature leaves of the 35S::

GhKNOX2-1 line showed a more homogeneous shape (Figure 3c).

Compared to the wild-type plants, the 35S::GhKNOX2-1 trans-

genic plants exhibited significantly greater values of the leaf

dissection index, number of teeth/leaf perimeter, tooth area/leaf

area and number of teeth on each leaf (Figure 3e,h). These results

suggest that GhKNOX2-1 is also a key regulator that determines

leaf shape in cotton.

GhKNOX2-1 is the direct target of GhARF16-1

The lobed leaves of the 35S::GhKNOX2-1 line are reminiscent of

the leaf shape of the pARF16::GhmARF16-1 transgenic G.

hirsutum, implying that GhARF16-1 and GhKNOX2-1 might

regulate leaf shape in a common regulatory network. To

preliminarily investigate a functional relationship between the

GhARF16-1 and GhKNOX2-1 genes, we analysed the transcrip-

tional level of GhKNOX2-1 in the pARF16::GhmARF16-1 and

GhARF16-1-RNAi transgenic plants. The GhKNOX2-1 transcripts

were up-regulated in G. hirsutum plants expressing GhmARF16-1

and were markedly down-regulated in the GhARF16-1-RNAi line

compared to the wild-type control plants (Figure 4a), suggesting

that GhKNOX2-1 may act as a downstream target gene of

GhARF16-1. In line with this hypothesis, the transcriptional levels

of GhARF16-1 in 35S::GhKNOX2-1 and GhKNOX2-1-RNAi trans-

genic plants were comparable to its transcriptional levels in the

wild-type plants (Figure 4b).

To investigate whether GhARF16-1 and GhKNOX2-1 are

transcription factors, we analysed their subcellular localization.

Our results showed that both GhARF16-1 and GhKNOX2-1 were

localized to the nucleus (Figure 4c, Figure S9). A dual-luciferase

reporter assay was performed to further examine the transcrip-

tional activity of GhARF16-1 and GhKNOX2-1 in Arabidopsis

protoplasts. The results showed that the luciferase activities of

GhARF16-1 and GhKNOX2-1 were much higher than those of the

negative control (Figure 4d, Figure S10), indicating that both

GhARF16-1 and GhKNOX2-1 have transcriptional ability in vivo.

Coincidently, the cis-element analysis of the GhKNOX2-1

promoter (�1425 bp from the start codon ATG) showed that

an AuxRE (TGTCTC) element was located at a region spanning

from nucleotide �379 to �374 relative to the ATG start codon

(Tables S3), which is a reported binding site for ARF transcription

factor (Cherenkov et al., 2018). To confirm the interaction

between the transcription factor GhARF16-1 and the GhKNOX2-

1 promoter, the GhKNOX2-1 promoter fragments containing

either native or mutated ARF-binding site were used separately

for an electrophoretic mobility shift assay (EMSA) (Figure 4e,f).

The results revealed that the recombinant GhARF16-1 protein

had significant affinity to the GhKNOX2-1 promoter fragment

containing the AuxRE motif (Figure 4g). Moreover, the binding

efficiency was gradually reduced by the addition of increasing

amounts of unlabelled native fragment probes (cold probe)

(Figure 4h). However, the application of the unlabelled mutated

fragment probes did not affect the binding ability of GhARF16-1

to the 32P-label native GhKNOX2-1 promoter fragments. To

further examine the DNA-binding activity and transcriptional

activity of GhARF16-1 bound to the GhKNOX2-1 promoter, we

performed a dual-luciferase reporter assay, in which GhARF16-1,

driven by the CaMV 35S promoter, was coexpressed with a

luciferase reporter driven by the GhKNOX2-1 promoter contain-

ing either a native or mutated ARF-binding site (Figure 4i).

Significant luciferase activity was detected only when GhARF16-1

was coexpressed with the GhKNOX2-1 promoter containing the

native ARF-binding site (Figure 4j), suggesting that the AuxRE

sequence in the GhKNOX2-1 promoter is essential for GhARF16-

1-mediated transcriptional activation of GhKNOX2-1. Addition-

ally, a yeast one-hybrid assay showed that GhARF16-1 was able

to bind to the GhKNOX2-1 promoter with the native but not the
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mutated AuxRE site (Figure 4k), which further confirmed the

interplay between GhARF16-1 and GhKNOX2-1 promoter in vivo.

Furthermore, to understand how the GhKNOX2-1 promoter

regulates its gene expression in the leaf, a 1501-bp GhKNOX2-1

promoter fragment upstream of the ATG initiation codon was

fused with a b-glucuronidase (GUS) reporter gene to generate the

pGhKNOX2-1::GUS construct. After transferring this construct

into Arabidopsis, the expression patterns of the GhKNOX2-1

gene in Arabidopsis leaves were examined. Our results showed

that a strong GUS activity was observed at the leaf margins

(Figure 4l,m). Taken together, our results suggest that GhARF16-

1 binds to the AuxRE in the GhKNOX2-1 promoter and

subsequently activates the expression of GhKNOX2-1 at the leaf

margin, thus regulating leaf shape.

GhARF16-GhKNOX2 signalling module regulates leaf
shape in Arabidopsis

With respect to sequence similarity, the GhKNOX2-1 and

GhARF16-1 proteins shared 71.12% and 62.14% identity with

the AtKNAT2 and AtARF16 proteins, respectively. To clarify the

GhARF16-1-mediated GhKNOX2-1 function in leaf morphology,

we used the model flowering plant Arabidopsis to verify the

working machinery. First, we expressed the gain-of-function

GhmARF16-1 mutation into Arabidopsis under the control of its

native promoter. A qRT-PCR analysis revealed that the GhARF16-

1 transcripts were strongly expressed in the pARF16::GhmARF16-

1 transgenic Arabidopsis plants (Figure S11). Compared to the

wild-type and arf16 mutant plants, the transgenic Arabidopsis

plants carrying the pGhARF16::GhmARF16-1 construct displayed

lobed leaves (Figure 5a–d, Figure S12), and their leaf epidermal

cells were regular in shape. Moreover, the leaf patterning analysis

indicated that the leaves of the pGhARF16::GhmARF16 trans-

genic Arabidopsis plants displayed significantly higher leaf

dissection index, number of teeth/leaf perimeter, tooth area/leaf

area and teeth number (Figure 5e–h) than those of the wild-type

and arf16 mutant plants. These results suggest that the heterol-

ogous expression of cotton GhARF16 also promotes leaf serration

in Arabidopsis. Notably, in Arabidopsis, expression of mARF17

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2 GhARF16-1 is involved in regulating leaf shape in cotton. (a)–(c) Top, from left to right, 48-d-old phenotypes of wild-type Gossypium hirsutum

(a), GhARF16-1 RNAi (b), and pARF16-1::GhmARF16-1 transgenic G. hirsutum plants (c). Bars = 4 cm. Bottom, from left to right, scanning electron

micrographs of the leaf epidermal cells at the base of the abaxial side of mature leaves of wild-type, GhARF16-1 RNAi, and pARF16-1::GhmARF16-1

transgenic lines. Bars = 50 µm. (d) Close-up view of the leaves of 48-d-old wild-type, GhARF16-1 RNAi, and pARF16-1::GhmARF16-1 transgenic plants.

(e)–(g) Quantitative comparisons of the leaf shapes of wild-type, GhARF16-1 RNAi plants, and pARF16-1::GhmARF16-1 transgenic lines based on the leaf

dissection index (perimeter2/4p 9 leaf area) (e), the number of teeth/leaf perimeter (f), and the tooth area/leaf area (g). (h) Statistical analysis of number of

teeth per leaf of wild-type, GhARF16-1 RNAi, and pARF16-1::GhmARF16-1 transgenic plants. A total of 10 leaves from each line were used for each

measurement. Data are presented as mean � SE. Statistical significance was determined using one-way analysis of variance combined with Tukey’s test.

**P < 0.01; ***P < 0.001.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3 GhKNOX2-1 regulates leaf shape in cotton. (a)–(d) Top, from left to right, phenotypic analysis of 48-d-old wild-type Gossypium hirsutum (a),

GhKNOX2-1 RNAi (b), and 35S::GhKNOX2-1 transgenic G. hirsutum plants (c). Bars = 4 cm. Bottom, from left to right, the scanning electron micrographs

of the leaf epidermal cells at the base of the abaxial side of mature leaves of wild-type, GhKNOX2-1 RNAi and 35S::GhKNOX2-1 transgenic plants.

Bars = 50 µm. (d) Close-up images of the leaves of 48-d-old wild-type plant (top), GhKNOX2-1 RNAi (middle) and 35S::GhKNOX2-1 transgenic plants

(bottom). Bars = 4 cm. (e)–(g) Quantitative comparisons of leaf shapes of wild-type, GhKNOX2-1 RNAi and 35S::GhKNOX2-1 transgenic lines based on the

leaf dissection index (perimeter2/4p 9 leaf area) (e), the number of teeth/ leaf perimeter (f) and the tooth area/leaf area (g). A total of 10 leaves from each

line were used for each measurement. (h) Statistical analysis of number of teeth per leaf from the wild-type, GhKNOX2-1 RNAi and 35S::GhKNOX2-1

transgenic plants. A total of 10 leaves from each line were used for ach measurement. Data are presented as mean � SE. Statistical significance was

determined using one-way analysis of variance combined with Tukey’s test. *P < 0.05; **P < 0.01. WT, wild type.

Figure 4 GhKNOX2-1 is targeted by GhARF16-1. (a) qRT-PCR analysis of the GhKNOX2-1 mRNA levels in wild-type, GhARF16-1 RNAi and pARF16::

GhmARF16-1 transgenic plants. (b) qRT-PCR analysis of the GhARF16-1 mRNA levels in wild-type, GhKNOX2-1 RNAi and 35S::GhKNOX2-1 transgenic

plants. Each qRT-PCR experiment in (a) and (b) was performed in three biological replicates, and the error bars represent the standard errors of the means

from three independent experiments. Statistical significance was determined using one-way analysis of variance (ANOVA) combined with Tukey’s test.

***P < 0.001. WT, wild type. (c) The subcellular localization of GhARF16-1 in Nicotiana benthamiana leaf cells. Nuclei were counterstained with 40,60-
diamidino-2-phenylindole (DAPI). The merged images of green fluorescent protein (GFP), DAPI and bright-field microscopy. (d) Transcriptional ability of

GhARF16-1 in Arabidopsis protoplasts. Upper panel, schematic diagrams of various constructs used in the transient expression assay. Lower panel,

transcription activity of GhARF16-1. The empty GAL4 DNA-binding domain (BD) and BD-VP16 vectors were used as negative and positive controls,

respectively. The transcriptional assay was performed in three biological replicates, and the error bars represent the standard errors of the means from three

independent experiments. (e) An ARF-binding site was identified in the KNOX2-1 promoter region. The red rectangle indicates the predicted ARF-binding

sequence in G. hirsutum (Gh), G. arboreum (Ga) and G. raimondii Gr. (f) to (h) Electrophoretic mobility shift assay (EMSA) showed that GhARF16-1 binds

directly to the ARF-binding site of the GhKNOX2-1 promoter. The 32P-labelled DNA fragments of the GhKNOX2-1 promoter containing the intact (upper) or

mutated (lower) ARF-binding site (h) were incubated with the gradient concentrations of maltose-binding protein (MBP)-GhARF16-1 fusion protein (g). The
32P-labelled DNA fragments were incubated with MBP-GhARF16-1 to compete with different concentrations of the cold probes (without 32P-labelling) of

intact or mutated ARF-binding site (h). (i) Schematic diagrams of various constructs used in the transient expression assay. (j) Transient expression assay of

GhKNOX2-1 transcriptional activity modulated by GhARF16-1 in Arabidopsis protoplasts. Either pGhKNOX2-1-LUC or pGhKNOX2-1 mutant-LUC was co-

transformed with the effector or empty vector (negative control) into Arabidopsis protoplasts. Transient expression assays were performed using three

biological replicates, and the error bars represent the standard errors of the means from three independent experiments. (k) Yeast one-hybrid assay of

protein–DNA interaction. The 3x fragments of the GhKNOX2-1 promoter described in (e) and (f) were used. (l) and (m) GUS staining of the 25-d-old

Arabidopsis seedlings expressing pGhKNOX2-1::GUS. Bars = 0.25 cm in (l) and 0.5 cm (m).
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under its own promoter rather than mARF16 phenocopied

pARF16::GhmARF16-1 leaf shape, suggesting that cotton

GhARF16-1 showed similar function to Arabidopsis ARF17. The

reason might be that in Arabidopsis, ARF16 and ARF17 originated

from a common ancestor gene, and slightly undergo the

functional divergence during the evolution process. However,

ARF16 and ARF17 genes are functional conserved in cotton,

leading to the similar function between GhARF16 and Arabidop-

sis ARF17.

Likewise, we generated the GhKNOX2-1-overexpressing Ara-

bidopsis transgenic line 35::GhKNOX2-1. A qRT-PCR analysis

revealed that GhKNOX2-1 was highly expressed in the 35::

GhKNOX2-1 transgenic Arabidopsis plants (Figure S13). Com-

pared with the leaves of the wild-type plants, the null mutant

knat2 exhibited a similar leaf phenotype with smooth margins,

while the 35S::GhKNOX2-1 line produced lobed leaves (Fig-

ure 6a–d, Figure S14). Similar to the observations in Gossypium,

the epidermal cells of mature leaves of both wild-type and knat2

mutant Arabidopsis plants were polygonal, while the cells of

mature lobed leaves of the 35S::GhKNOX2-1 transgenic Ara-

bidopsis plants showed a more homogeneous form. In contrast to

the wild-type leaves, the 35S::GhKNOX2-1 transgenic Arabidop-

sis leaves showed greater values of leaf dissection index, number

of teeth/leaf perimeter, tooth area/leaf area and number of teeth

(Figure 6e–h). These results suggest that GhKNOX2-1, which

regulates Gossypium leaf patterning, can also function in the

modification of Arabidopsis leaf shape.

GhKNOX2-1 functions epistatically to GhARF16-1 to
regulate leaf shape in Arabidopsis

Although the overexpression of the G. hirsutum genes

GhKNOX2-1 and GhARF16-1 in Arabidopsis resulted in a

phenotype similar to that in Gossypium, it is still unclear whether

the GhARF16-GhKNOX2 interaction paradigm is also conserved

in Arabidopsis. To elucidate this, we first generated the arf16/

35S::GhKNOX2-1 transgenic Arabidopsis line overexpressing

GhKNOX2-1 in the arf16 mutant. As a result, the arf16/35S::

GhKNOX2-1 Arabidopsis produced irregularly shaped lobed

leaves (Figure 7a,e), resembling the phenotype of the 35S::

GhKNOX2-1 line rather than the phenotype of the arf16 mutant.

In the transgenic Arabidopsis line knat2/pARF16::GhmARF16-1,

in which the gain-of-function GhmARF16-1 was heterologously

expressed in the Arabidopsis knat2 mutant under the control of

its native promoter, the leaf patterning was similar to that

shown by the knat2 mutant with smooth and undivided

margins, and its leaf epidermal cells were polygonal-shaped.

Overall, these characteristics of the transgenic line knat2/pARF16::

GhmARF16-1 differed from those of pARF16::GhmARF16-1

(a) (b) (c)

(d)

(e) (f)

(g) (h)

Figure 5 Cotton GhARF16-1 also functions in modulating leaf shape in Arabidopsis thaliana. (a)–(c) Top, from left to right, 21-d-old phenotypes of wild-

type (a), arf16 mutant (b) and pARF16::GhmARF16-1 transgenic Arabidopsis plants (c). Bars = 4 mm. Bottom, from left to right, scanning electron

micrographs of the leaf epidermal cells at the base of the abaxial side of mature leaves of wild-type, arf16 mutant and pARF16::GhmARF16-1 transgenic

Arabidopsis plants. Bars = 50 µm. (d) Close-up images of the leaves of 21-d-old wild-type (top), arf16 mutant (middle) and pARF16::GhmARF16-1

transgenic plants (bottom). (e)–(g) Quantitative comparisons of the leaf shapes of wild-type, arf16 mutant and pARF16::GhmARF16-1 transgenic plants

based on the leaf dissection index (perimeter2/4p 9 leaf area) (e), number of teeth/leaf perimeter (f) and tooth area/leaf area (g). (h) Statistical analysis of

the number of teeth per leaf from wild-type, arf16 mutant and pARF16::GhmARF16-1 transgenic plants. A total of 10 leaves from each line were used for

each measurement. Data are presented as mean � SE. Statistical significance was determined using one-way analysis of variance combined with Tukey’s

test. ***P < 0.001. WT, wild type.
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(Figure 7b,e). These results suggest that GhKNOX2-1 can act as a

downstream target of GhARF16-1 to regulate leaf morphology in

Arabidopsis.

To further investigate the crucial role of the AuxRE binding site

in the GhKNOX2-1 promoter of the GhARF16-GhKNOX2 regu-

latory machinery, we expressed GhKNOX2-1 in knat2/pARF16::

GhmARF16-1 Arabidopsis using the native (pGhKNOX2-1) or

mutated (pGhKNOX2-1mu) promoter (without AuxRE, Figure 4f).

Compared to its strong expression in the knat2/pGhKNOX2-1::

GhKNOX2-1/pARF16::GhmARF16-1 transgenic line with the

native promoter pGhKNOX2-1, the GhKNOX2-1 gene showed

barely detectable transcription levels in the knat2/pGhKNOX2-

1mu::GhKNOX2-1/pARF16::GhmARF16-1 transgenic Arabidopsis

plants whose leaves displayed a smooth margin comparable to

those of the knat2 mutant (Figure 7c,d, Figure S15). An electron

microscopic analysis revealed that the regular shape of epidermal

cells was observed only in the lobed leaves of the transgenic line

with the native promoter pGhKNOX2-1 (Figure 7c), but not in the

line with the mutated promoter pGhKNOX2-1mu (Figure 7d).

Additionally, the knat2/pGhKNOX2-1::GhKNOX2-1/pARF16::

GhmARF16-1 transgenic line carrying the native promoter

pGhKNOX2-1 had significant positive effects on the leaf

dissection index, number of teeth/leaf perimeter, number of

teeth per leaf and tooth area/leaf area, compared to the knat2/

pGhKNOX2-1mu::GhKNOX2-1/pARF16::GhmARF16-1 transgenic

Arabidopsis with the mutated promoter pGhKNOX2-1mu (Fig-

ure 7f–i) These results strongly suggest that GhARF16-1 regulates

GhKNOX2-1 via the AuxRE motif in the GhKNOX2-1 promoter,

and the GhARF16-GhKNOX2 interaction paradigm can also

regulate leaf shape in Arabidopsis.

Discussion

Understanding the genetic basis of auxin signalling-mediated leaf

shape diversity provides an attractive opportunity to reveal the

morphological diversity of a plant form during evolution.

Recently, leaf morphological differences have been illustrated in

numerous reference plants, including Pelargonium sp., grape vine

(Vitis sp.), tomato (Solanum lycopersicum) and species of the

poppy family (Papaveraceae), demonstrating that small genetic or

hormonal changes can yield significantly different patterns (Bar

and Ori, 2014; Scarpella et al., 2010; Scarpella et al., 2006). The

divergent leaf shapes were also studied at the molecular level in a

comparative context with two related plant species from the

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6 Ectopic expression of GhKNOX2-1 leads to lobed leaves in Arabidopsis thaliana. (a)–(d) Top, from left to right, 21-d-old phenotypes of wild-type

A. thaliana (a), knat2 mutant (b) and 35S::GhKNOX2-1 transgenic Arabidopsis (c). Bars = 4 mm. Bottom, from left to right, scanning electron micrographs

of the leaf epidermal cells at the base of the abaxial side of mature leaves of wild-type, knat2 mutant and 35S::GhKNOX2-1 transgenic Arabidopsis.

Bars = 50 µm. (d) Close-up images of the leaves of 21-d-old wild-type (top), knat2mutant (middle) and 35S::GhKNOX2-1 transgenic Arabidopsis (bottom).

(e)–(g) Quantitative comparisons of the leaf shapes of wild-type, knat2 mutant and 35S::GhKNOX2-1 transgenic lines based on the leaf dissection index

(perimeter2/4p 9 leaf area) (e), number of teeth/leaf perimeter (f) and tooth area/leaf area (g). (h) Statistical analysis of the number of teeth per leaf of wild-

type, knat2 mutant and 35S::GhKNOX2-1 transgenic Arabidopsis. A total of 10 leaves of each phenotype were used for each measurement. Data are

presented as the mean � SE. Statistical significance was determined using one-way analysis of variance combined with Tukey’s test. *P < 0.05;

***P < 0.001. WT, wild type.
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(a) (b) (c) (d)

(e) (f) (g)

(h) (i)

Figure 7 GhKNOX2-1 is functionally epistatic to GhARF16-1 in regulating leaf morphology. (a)–(d) Top, from left to right, 21-d-old phenotypes of the

arf16/35S::GhKNOX2-1 transgenic Arabidopsis line overexpressing GhKNOX2-1 in the arf16 mutant (a), knat2/pARF16::GhmARF16-1 line overexpressing

GhmARF16-1 in the knat2 mutant (b), knat2/pARF16::GhmARF16-1/pGhKNOX2-1::GhKNOX2-1 line overexpressing GhARF16-1 and GhKNOX2-1 in the

knat2 mutant under the control of their respective native promoters (c) and knat2/pARF16::GhmARF16-1/pGhKNOX2-1mu::GhKNOX2-1 line

overexpressing GhARF16-1 under the control of its native promoter and GhKNOX2-1 under the control of its mutated promoter (pGhKNOX2-1mu;

designated in Figure 4f) in the knat2 mutant (d). Bars = 4 mm. Bottom, from left to right, scanning electron micrographs of the leaf epidermal cells at the

base of the abaxial side of mature leaves of transgenic lines (a)–(d). Bars = 50 µm. (e) Close-up images of the leaves of 21-d-old Arabidopsis transgenic lines

(a)–(d). Bars = 4 mm. (f)–(h) Quantitative comparisons of the leaf shapes of (a)–(d) plants based on the leaf dissection index (perimeter2/4p 9 leaf area) (f),

number of teeth/leaf perimeter (g) and tooth area/leaf area (h). (i) Statistical analysis of the number of teeth per leaf of transgenic plants (a)–(d). A total of

10 leaves from each phenotype were used for each measurement. Data are mean � SE. Statistical significance was determined using one-way analysis of

variance combined with Tukey’s test. *P < 0.05; ***P < 0.001.
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family Brassicaceae: A. thaliana, which has simple leaves with

nearly smooth margins, and C. hirsuta, which has compound

leaves with individual leaflets (Kierzkowski et al., 2019). Here, we

used different species of the genus Gossypium, belonging to the

mallow family Malvaceae, which is phylogenetically adjacent to

the family Brassicaceae, as reference plants to illustrate differen-

tiated leaf forms and reveal the genetic underpinnings of leaf

shape diversity among Gossypium species. The KNOX family

genes have been identified as the key regulators of leaf shape

diversity in distinct plant species (Kierzkowski et al., 2019). Our

work revealed that distinct amounts of ARF16-1 proteins that

bind to the AuxRE motif in the KNOX2-1 promoter can fine-tune

the expression levels of KNOX2-1 in different Gossypium species

and, thus, determine their diverse leaf morphologies (Figure 8).

Generally, this auxin signalling module mediating leaf shape

might apply to other plant species in eudicots.

ARF transcription factors are able to be negatively regulated by

different miRNAs. It has been reported that the ARF10, ARF16

and ARF17 were specifically targeted by miR160. ARF10, ARF16

and ARF17 shared very high sequence similarities and formed a

subgroup (Figure S5) in the phylogenetic tree of ARF family

members, suggesting that the miR160-targeted ARFs are con-

served for the ARF members in the same subgroup. In Arabidop-

sis, expression of a miR160-resistant version of ARF17 under its

native promoter resulted in rosette and cauline leaf margin

serration (Mallory et al., 2005), whereas expression of a miR160-

resistant version of ARF16 resulted in upcurled and occasionally

serrated leaves (Wang et al., 2005). Similarly, in cotton,

ARF10, ARF16 and ARF17 were also identified, and they were

predicted to be targeted by miR160 (Liu et al., 2020). The

previous work confirmed that overexpression of miR160 in cotton

resulted in significant decrease of ARF10 and ARF17 (Ding et al.,

2017). Our work further revealed that transgenic Arabidopsis

carrying the pGhARF16::GhmARF16-1 construct displayed

upcurled and occasionally serrated leaves (Figure 5), which pheno-

type was more similar to that in Arabidopsis ARF16 overexpressing

plants. Moreover, in tomato, constitutive expression of miR160-

resistant ARF10 caused a deeply divided leaf phenotype with

completely separated stripe-like lobes (Hendelman et al., 2012). In

addition, overexpression of miR160 gene under a constitutive

CaMV-35S promoter in tomato resulted in an entire leaflet blade

phenotype compared to the wild-type leaves. Meanwhile the

expression level of the tomato Knotted 2 protein (Tkn2) was

negatively correlated with miR160 levels and positively correlated

withARFgeneexpression levels, such asARF16 (Damodharan et al.,

2018). Consistently, in our study, expression of a miR160-resistant

GhARF16 gene in Arabidopsis and cotton led to significantly

increasedGhKNOX2-1 transcripts anddeeply serrated leafmargins.

We speculate that miR160 may cleave the ARF16 transcripts and

repress the expression of ARF16, which resulted in the down-

regulation of KNOX2 gene. By elevating cytokinin levels and

repressing gibberellin levels, which in turn promoted cell division

and repressed cell differentiation,ARF-KNOX2module participated

in the establishment of leafmorphogenesis (Hay and Tsiantis, 2010;

Jasinski et al., 2005; Yanai et al., 2005). Combing these studies,

therefore we proposed that the miR160-targeted ARF-KNOX2

module was conserved in leaf development.

In A. thaliana and C. hirsuta, researchers determined that two

key genes, STM (KNOX family) and RCO, worked in combination

to regulate variation in leaf shape (Hay and Tsiantis, 2010; Rast-

Somssich et al., 2015; Vlad et al., 2014; Vuolo et al., 2016). Here,

we revealed that the Gossypium proteins KNOX2-1 and ARF16-1

likely act as two key regulators of leaf shape variation during the

evolution or artificial domestication of Gossypium spp. By co-

manipulating STM (KNOX family member) and RCO in Arabidop-

sis leaves, Kierzkowski et al. (2019) produced a dissected leaf

pattern resembling that of C. hirsuta (Kierzkowski et al., 2019).

Likewise, by manipulating the expression of GhKNOX2-1 and

GhARF16-1 in G. hirsutum, we were able to modify its original

leaf form to resemble that of the other Gossypium species.

Additionally, other KNOX or ARF members might be functionally

redundant to the GhKNOX2 and GhARF16 proteins in the

regulation of Gossypium leaf shape because the GhARF16-1

and GhKNOX2-1 RNAi transgenic lines showed no obvious

alteration of leaf shapes.

Previous studies have indicated that the LATE MERISTEM

IDENTITY 1 (LMI1)-like transcription factor plays an important role

in the regulation of cotton leaf shape (Andres et al., 2017; Chang

et al., 2016). Silencing the LMI1-like gene with the virus-induced

gene silencing (VIGS) method led to a change in cotton leaf

patterning from okra to broad. The overexpression of the LMI1-

like gene significantly enhanced the depth of the leaf lobes in

Arabidopsis. In Arabidopsis, LMI1 was reported to directly activate

WEE1, a conserved mitosis blocker, to regulate stipule propor-

tions (Vuolo et al., 2018). Although the LMI1-like gene was found

to coordinate with the KNOX gene to regulate leaf development

Figure 8 Working model for ARF16-

KNOX2 interaction paradigm in regulating

diverse leaf shapes. In the lobed leaves,

where ARF16-1 is highly expressed, a large

amount of ARF16-1 protein binds directly

to the ARF-binding site [Auxin-responsive

element (AuxRE)] in the KNOX2-1

promoter regions to activate an abundance

of KNOX2-1 transcripts that result in lobed

leaves. In the smooth leaves, where ARF16-

1 is weakly expressed, a deficiency of

GhARF16-1 transcripts leads to a low

expression level of KNOX2-1 that results in

the production of smooth leaves.
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in plants (Chang et al., 2019), it remains to be investigated

whether the Gossypium LMI1-like gene is integrated into the

GhARF16-GhKNOX2 network or it works in parallel with the

ARF16-KNOX2 pathway to collaboratively regulate the complex-

ities of leaf morphology in Gossypium.

The allotetraploid cotton, G. hirsutum (AADD genome),

speciated through an allopolyploidization event in which an A-

genome species resembling G. arboreum (AA) and a D-genome

species resembling G. raimondii (DD) were reunited approxi-

mately 1 to 2 million years ago (Chen et al., 2020; Guan et al.,

2014). We postulated that the Gossypium ARF16-KNOX2 inter-

action paradigm might have evolved prior to the formation of the

allotetraploid cotton because the diploid cotton species G.

trilobum (D-genome) and G. raimondii (D-genome) displayed

divergent leaf shapes – lobed in G. trilobum and smooth in G.

raimondii (Figure S4). Moreover, the differential expression levels

of ARF16-1 and KNOX2-1 were also observed between the two

diploid cotton species.

Our work not only provides new insights into the genetic basis

of auxin-regulated morphological diversity during plant evolu-

tion, but also offers a potential theoretical basis for breeding

better varieties of crops. Leaf shape, one of most important

characteristics of plants, directly affects crop growth and yield

(Blein et al., 2008; Tsukaya, 2018). Leaf morphology can affect

fibre yield, timing of crop maturation, disease resistance and

even efficiency of foliar chemical application (Andres et al.,

2014). Identifying genes involved in leaf shape and revealing the

mechanisms of leaf morphogenesis will enrich our toolkit for

agronomic trait improvement and horticultural applications in

the future.

Methods

Plant materials and growth conditions

Gossypium hirsutum ‘Xuzhou 142,’ G. arboreum ‘Shixiya 1,’ G.

raimondii ‘CMD10,’ and G. trilobum (Mocono & Sesse ex DC)

were used in this study and grown in a climate-controlled

greenhouse with a 16-h light and 8-h dark cycle at 30 °C (Xiao

et al., 2018). Arabidopsis thaliana plants were grown on soil in

growth chambers with a 16-h light and 8-h dark cycle at 23 °C.
The Arabidopsis mutant lines with disrupted KNAT2 (knat2-5,

SALK_099837) and ARF16 (arf16-2, SALK_ 021448) were T-DNA

insertion alleles obtained from the SALK collections (Arabidopsis

Biological Resource Center: Columbus, OH; http://signal.salk.edu).

Seeds were surface sterilized with 0.1% HgCl2, germinated on

Murashige and Skoog (MS) medium for 2 weeks, transferred to

soil and grown in a fully automated control system (Percival) with a

16-h light and 8-h dark cycle at 23 °C in 70% humidity (Zhang

et al., 2015).

Cotton transformation

All overexpression and RNAi constructs were introduced into the

Agrobacterium strain LBA4404. Seeds (G. hirsutum cv. YZ1) were

sterilized and cultured in a chamber without light for 6 days at

30 °C. The Agrobacterium-mediated cotton transformation was

performed using hypocotyl segments as explants, as described

previously (Jin et al., 2006; Li et al., 2009). After cutting into 5-

mm segments, the explants were immersed in the Agrobacterium

tumefaciens suspension (OD = 0.2–0.4) for 15 min. The infected

explants were transferred onto a callus-induced medium. After

callus induction, proliferation, embryogenic callus induction,

embryo differentiation and plantlet regeneration, the putative

transgenic plants were transferred into pots and grown in the

greenhouse with a 14-h light and 10-h dark condition at 25 °C.

RNA extraction and quantitative RT-PCR (qRT-PCR)
analysis

For cotton samples, the plant material was frozen in liquid

nitrogen and then ground to a fine powder with a mortar and

pestle using a modified method (He et al., 2018). For Arabidopsis

samples, total RNA was isolated from rosette leaves and seedlings

at 0, 2, 4, 8, 12 and 20 days after germination. Total RNA was

extracted using the PureLinkTM RNA Mini Kit (Lot no. 1687455;

Invitrogen: Waltham, MA) according to the manufacturer’s

instructions, and cDNA was reverse-transcribed from 5 lg of

the total RNA as described previously (Xiao et al., 2018). The

cDNA sequences of G. KNOX and ARF family genes were

obtained from the Cotton Functional Genomics Database

(https://cottonfgd.org/). The accession numbers and IDs of the

identified genes are given in Tables S4 and S5. In the qRT-PCR

experiments, each gene was run in three biological and three

technical replicates with the following reaction parameters: 95 °C
for 10 min, followed by 40 cycles of 95 °C for 10 s and 56 °C for

30 s. A melting curve was generated from 65 to 95 °C. The

SigmaStat software was used to statistically analyse data by one-

way analysis of variance (ANOVA). The housekeeping genes

GhUBQ7 and AtUBQ5 were used as internal controls for cotton

and Arabidopsis, respectively.

RNA-Seq analysis

The leaf primordia of G. arboreum and G. raimondii leaf were

used for RNA extraction and RNA-Seq. Total RNA was isolated

using the PureLinkTM RNA Mini Kit (Invitrogen: Waltham, MA).

The RNA was digested with RNase-free DNase (Qiagen: German-

town, MD) and checked for integrity by capillary gel elec-

trophoresis and Agilent 2100 Bioanalyzer (Agilent: Santa Clara,

CA). The RNA [with RNA integrity number (RIN) ≥8] was pooled

from the three biological replicates of each sample and then

submitted to Novogene Bioinformatics Technology Co., Ltd.

(Beijing, China) for high-throughput sequencing via the Illumina

HiSeq2000 sequencer. For RNA library construction, mRNA was

enriched using oligo(dT) magnetic beads and then immediately

broken into short segments in a fragmentation buffer. Subse-

quently, double-stranded cDNA was synthesized and purified,

followed by adaptor ligation. After the libraries were sequenced

to generate > 30 million 125-bp paired-end (PE) reads for each

sample, high-quality reads were obtained after several steps of

quality checks, which included trimming, removal of adaptor/

primer sequences and low-quality reads.

We used HISAT2 and Cufflinks software for the RNA-seq

expression analysis. In brief, RNA-seq reads were mapped to the

corresponding each cotton genome using HISAT2 (Version 2.1.0).

Then, the expression of each gene was calculated using RPKM

(Reads per kilobase of gene per million mapped reads) with

Cufflinks (Version 2.2.1). The values for the heatmap in Figure 1e

were displayed by log2RPKM. The differentially expressed genes

between the two sets of samples were obtained by inputting read

counts of each genes as expression matrix into the edgeR

package. Only the genes with (P value <= 0.01 and fold change

>= 2.0) were considered as significantly differential expressed.

Transcription factor activity assay

The transcription factor assay was performed on Arabidopsis

protoplasts (Wang et al., 2013). The reporter plasmid contained
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the firefly luciferase gene under the control of the 35S promoter

with five GAL4-binding elements upstream of the gene. The

effector plasmids containing 35S-BD and 35S-BD-VP16 were

used as the negative and positive controls, respectively. The

coding regions of GhARF16-1 and GhKNOX2-1 were amplified

by PCR using the primers listed in Table S6, digested with Spe I

and EcoR I, and cloned into the pRT-BD vector to generate

effector plasmids containing the 35S-BD-GhARF16-1 and 35S-

BD-GhKNOX2-1 constructs, respectively. The reporter, effector

and control plasmids were co-transfected into Arabidopsis

protoplasts by polyethylene glycol transformation. Luciferase

assays were performed using the dual-luciferase reporter assay

system and a luminometer (GloMax20-20, Promega: Madison,

WI, USA).

GUS staining and microscopy

Histochemical GUS staining was carried out as described previ-

ously (Tao et al., 2013). Tissues from the GhKNOX2-1-GUS

transgenic lines were immersed in the staining buffer. Samples

were vacuumed for 5 min and incubated overnight at 37 °C,
after which the staining buffer was removed. Samples were

stored in 70% ethanol before microscopic observation.

Scanning electron microscopy was conducted as described

previously (Tao et al., 2013). The 5th leaf was sampled from the

25-d-old Arabidopsis plants and from 40-d-old cotton plants. The

fifth-leaf samples were fixed in FAA buffer (50% ethanol, 6%

glacial acetic acid and 5% formaldehyde) for 4 h at 25 °C. After
serial ethanol dehydration and isoamyl acetate substitution, the

samples were dried in liquid carbon dioxide and then analysed

using scanning electron microscopy (Hitachi S-3400N, Hitachi,

Tokyo, Japan).

Transcriptional activation assay

The dual-luciferase reporter assay was performed as described

previously (Wang et al., 2013). The native coding region of

GhARF16-1 was amplified by PCR using the primers listed in

Table S6, digested with Spe I and EcoR I and cloned into the pRT-

BD vector driven by the constitutive 35S promoter to generate an

effector plasmid. The native and mutated GhKNOX2-1 promoter

sequences were separately amplified by PCR using the primers

listed in Table S6, digested with HindIII and Pst I, and inserted into

a pGreen-LUC vector to drive the firefly luciferase reporter gene

as reporter plasmids. The plasmid containing the Renilla luciferase

gene, driven by the 35S promoter, was the control plasmid. The

effector, reporter and internal control plasmids were mixed at a

ratio of 6:6:1. These mixtures were then co-transfected into

Arabidopsis protoplasts by the polyethylene glycol transformation

method (Zhang et al., 2015). After culturing for 16 h, the

transcriptional activation assay was conducted by determining the

luciferase activity using the dual-luciferase reporter assay system

according to the manufacturer’s manual. The assay was per-

formed with three biological replicates, and the error bars

represent the standard errors of the means from three indepen-

dent experiments.

Electrophoretic mobility shift assay (EMSA)

The EMSA assay was performed using the chemiluminescent

EMSA kit according to a previously described method (Hou et al.,

2014). The promoter fragment of GhKNOX2-1 containing the

native or mutant AuxRE element, was labelled with biotin on both

ends of the probe. Sequences of DNA probes are as follows:

Native probe, 50–

TAGTCATTAGCAGAGAGCATTAATTCTCACTTTCTATTA-

CAAAATCCTCTCTGTCT CTCGAGCTTCTTTTGCACTTGTTTG-

GAAGAAAAGAAAGACAGAA-30, mutant probe, 50-
TAGTCATTAGCAGAGAGCATTAATTCTCACTTTCTATTA-

CAAAATCCTCTCATA GTATCGAGCTTCTTTTGCACTTGTTTG-

GAAGAAAAGAAAGACAGAA-30. The assay was conducted by

incubating the labelled probe with purified GhARF16-1 proteins

at 25 °C for 1 h and separated by 8% native PAGE in 0.5X TBE

buffer. Non-labelled probes were used as cold competitors.

Yeast one-hybrid assay

The yeast one-hybrid (Y1H) assay was performed as previously

described (Xiao et al., 2018). Briefly, the ORFs of GhARF16-1 was

constructed into the pGADT7 vector using homologous recom-

bination. The 1425 bp sequence of GhKNOX2-1 promoter at

the upstream of ATG (Tables S3) was amplified and inserted into

the pAbAi vector with the Sac I and Kpn I. Y1HGold yeast strain

cells were transformed with a pGADT7 prey vector carrying the

ORF of GhARF16-1 and a constructed pAbAi bait vector described

above. The transformed yeast cell suspension was dropped on SD

[DDO for –Leu, with or without Aureobasidin A (AbA)] medium

plates and cultured at 30 °C for 3 days.

Leaf margin analysis

Leaf shape was recorded for transgenic cotton at the six-leaf

stage and then confirmed at the flowering stage. A leaf margin

analysis was conducted as described previously (Zheng et al.,

2016). Individual leaves were photographed using a camera (D3-

U3., Nikon, Tokyo, Japan). The leaf dissection index (perimeter2/

4p 9 leaf area), number of teeth/leaf perimeter and/tooth area/

leaf area were used to quantify leaf margins (Bilsborough et al.,

2011). Leaf area and perimeter were measured using the ImageJ

software. A total of 10 leaves each from wild-type and mutant

plants were chosen for analysis. Statistical significance was

determined by one-way ANOVA using the SigmaStat 3.5

software combined with Tukey’s test.

Vector construction and retro-transformation

The full-length sequences (from the start codon to the stop

codon) of GhKNOX2-1 and GhARF16-1 were amplified from the

cDNA using the primers listed in Table S6. For GhmARF16-1, the

miR160-binding site of the GhARF16-1 gene was mutated to

generate GhmARF16-1 according to a previous report (Wang

et al., 2005). The product of each gene was digested with KpnI

and XbaI, then cloned into the digested pQG110 vector driven by

the constitutive cauliflower mosaic virus 35S promoter, and the

construct was further introduced into A. tumefaciens strain

GV3101 for the transformation of A. thaliana via the floral dip

method. The transgenic plants were selected on solid half-

strength MS medium plates containing 50 mg/mL of appropriate

antibiotics (Zhang et al., 2015) and were further validated by

genomic PCR. The expression levels of GhKNOX2-1 and

GhARF16-1 were also investigated in transgenic seedlings. Leaves

from wild-type and transgenic plants were used for further

analysis.
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