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a b s t r a c t 

In December 2019, first case of the COVID-19 was reported in Wuhan, Hubei province in China. Soon 

world health organization has declared contagious coronavirus disease (a.k.a. COVID-19) as a global pan- 

demic in the month of March 2020. Over the span of eleven months, it has rapidly spread out all over 

the world with total confirmed cases of ~ 41.39 M and causing a total fatality of ~1.13 M. At present, the 

entire mankind is facing serious threat and it is believed that COVID-19 may have been around for quite 

some time. Therefore, it has become imperative to forecast the global impact of COVID-19 in the near 

future. The present work proposes state-of-art deep learning Recurrent Neural Networks (RNN) models 

to predict the country-wise cumulative confirmed cases, cumulative recovered cases and the cumulative 

fatalities. The Gated Recurrent Units (GRUs) and Long Short-Term Memory (LSTM) cells along with Recur- 

rent Neural Networks (RNN) were developed to predict the future trends of the COVID-19. We have used 

publicly available data from John Hopkins University’s COVID-19 database. In this work, we emphasize 

the importance of various factors such as age, preventive measures, and healthcare facilities, population 

density, etc. that play vital role in rapid spread of COVID-19 pandemic. Therefore, our forecasted results 

are very helpful for countries to better prepare themselves to control the pandemic. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

Coronavirus disease (COVID-19) is a respiratory illness caused 

y severe acute respiratory syndrome coronavirus-2 (SARS -CoV- 

), which is a strain of coronaviruses. It was first identified in De- 

ember 2019 when a group of patients demonstrated novel form 

f viral pneumonia with similar history of visiting wet market 

n Wuhan China. On March 11 th , 2020, World Health Organiza- 

ion (WHO), declared novel coronavirus (2019-nCoV) outbreak as 

lobal pandemic [1] . Since then, several preventive measures such 

s lockdowns, rapid testing, wearing masks, self-quarantine, social 

istancing are being applied by the countries to stop the spread 

f COVID-19 pandemic. Despite these measures, COVID-19 is prop- 

gating rapidly and affecting both human health and global econ- 
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my, due to various reasons such aspopulation density, total popu- 

ation, lifestyle, worldwide travel, and precautionary measures etc. 

s of today (June 11 th , 2020), there have been about a total con- 

rmed case of 7.37 M and about 0.41 M total fatalities across the 

orld. Most of these 7.37 M confirmed cases are concentrated in 

op 10 countries [2] such as USA, Brazil, India, Russia, South Africa, 

exico, Peru, Chile, United Kingdom (UK) and Iran. Firstly, the ma- 

or concern of the people and the government authorities is to get 

n estimate about what would be the daily new cases, recovery 

ate, total fatalities, total number of confirmed cases by forecasting 

he reported data. Secondly, how long it would take to stop the 

pread of pandemic COVID-19, ultimately helping the governments 

nd healthcare systems to prepare in-advance for the forecasted 

umber of cases. Recently, machine learning, and deep learning 

echniques have gained immense interest due to the availability 

f abundant data. These techniques are very helpful for obtaining 

he relationships from the data without defining them priori [3] . 

urther these techniques are also capable of forecasting the trends 

https://doi.org/10.1016/j.chaos.2021.110861
http://www.ScienceDirect.com
http://www.elsevier.com/locate/chaos
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ased on the reported time-series data over a known period of 

ime. Several researchers have used the machine learning and deep 

earning models to predict short-term forecast of COVID-19 pan- 

emic. The following paragraph very briefly summarizes the litera- 

ure reported on the machine learning-based forecast of COVID-19 

ases. 

Ghoshal et al. [4] have used the linear regression and multi- 

le linear regression to predict the number of deaths in India for 

pcoming six weeks. Authors have predicted that the total deaths 

n India will be doubled if the COVID-19 preventive measures are 

nchanged or not implemented strictly. Parbat and Chakraborty 

5] have used the Support Vector Regression (SVR) for predicting 

he COVID-19 cases in India for 60 days based on the time se- 

ies data reported for the period of ~ 60 days (1 st March 2020 

o 30 th April 2020). Their model has ~ 97% accuracyin predict- 

ng the cumulative confirmed cases, total recovered, total fatalities, 

nd has 87% accuracy in predicting the daily new cases. Maleki 

t al. [6] have employed Autoregressive time-series models based 

n two-piece scale mixture normal distributions to forecast the 

onfirmed and recovered COVID-19 cases. Their model performed 

ell in forecasting the confirmed and recovered COVID-19 global 

ases. Benvenuto et al. [7] have reported very briefly about the 

pplication of Autoregressive Integrated Moving Average (ARIMA) 

odel to predict the future trends of prevalence and incidence of 

OVID-19 data. Fotios et al. [8] have used non-seasonal exponen- 

ial smoothing models to forecast cumulative cases of COVID-19 

ntil 21 st march 2020. In another study, Ram Kumar Singh et al. 

9] applied holt-winter models and Susceptible, Infected and Re- 

overed (SIR) model on COVID-19 data of India. They reported that 

OVID-19 cases in India will be highest during the first week of 

ovember 2020 and India will return to normalcy by last week of 

ebruary 2021. Similarly, in another studyShaobo He et al., used 

EIR (Susceptible-Exposure-Infective-Recovered) model on COVID- 

9 data of Hubei province of China. They used particle spam op- 

imization to estimate the parameters of the SEIR model. More- 

ver, their model considered quarantine and treatment for fore- 

asting the COVID-19 cases [10] . Further details on the SIR and 

EIR model can be found elsewhere [9-13] . Ribeiro et al. [14] have 

sed ARIMA, Cubist Regression, Random Forest, Ridge Regression, 

VR, and Stacking-ensemble learning for short-term forecasting of 

OVID-19 confirmed cases in Brazilian states. Their paper reveals 

he order of best to worst performing models, the best performing 

odels are found to be SVR and ARIMA. Kumar et al. [15] have 

sed ARIMA model with machine learning approach to forecast 

he trajectories of COVID-19 pandemic in top 15 countries in the 

onth of April 2020. Their ARIMA model was successfully able 

o predict the COVID-19 trends in countries such as Iran, Italy, 

pain and France. Ardabili et al. [16] have used the machine learn- 

ng techniques for predicting the COVID-19 outbreak, they found 

hat the multi-layer perceptron model and adaptive network-based 

uzzy interface system are found to give promising results. Their 

tudy has recommended that individual machine learning models 

re needed for each country due to the presence of fundamental 

ifferences between the countries. The following paragraph briefly 

ummarizes the reported work on the deep learning-based forecast 

f COVID-19 cases. 

Chimmula and Zhang [17] have used the state-of-art deep 

earning model using Long Short-Term Memory (LSTM) networkto 

redict the possible ending time of the COVID-19 pandemic in 

ANADA. Based on their LSTM model, they estimated that the time 

equired for ending the pandemic is about three months. Salgo- 

ra et al. [18] have developed models based on the genetic pro- 

ramming for forecasting the total confirmed cases and total fatal- 

ties in highly affected states of India and as well as for total In-

ia. Authors have reported that their model is less sensitive to the 

ariables and highly reliable in predicting the confirmed cases and 
2 
eaths. Qi et al. [19] have used the generalized adaptive model to 

nderstand the associations of daily average temperature and rela- 

ive humidity with the daily COVID-19 cases in different provinces 

n China. Their model found that the increase in the daily aver- 

ge temperature and with increase in the average relative humid- 

ty decreases the COVID-19 cases. However, there is no clear trends 

or the COVID-19 cases throughout main land China. In a study, Is- 

ail et al. [20] conducted a comparative study based on ARIMA, 

STM, Non-linear Autoregressive Neural Networks (NARNN) mod- 

ls toforecast the COVID-19 cases in Denmark, Belgium, Germany, 

rance, United Kingdom, Finland, Switzerland, and Turkey. They 

ound that the LSTM offers lowest Root Mean Square Error (RMSE) 

ompared to other models. Shawni Dutta et al. [21] have used 

STM, Grated Recurrent Unit (GRU), Recurrent Neural Networks 

RNN) to predict the confirmed, released, negative, death cases of 

OVID-19 pandemic. Their study revealed that the combined LSTM 

ased (RNN) model provided a better prediction when compared 

o the individual models. Anuradha Tomar et al. [22] have used 

STM and curve fitting for the prediction of the number of COVID- 

9 cases in India for 30 days ahead and effect of preventive mea- 

ures such as lockdowns and social distancing on COVID-19 spread. 

heir results shed light on the importance of social distancing and 

mplementation of lockdowns. The actual number of daily cases 

ecreased as estimated by the LSTM and curve fitting methods. 

ehdi et al. [23] have used RNN, LSTM, Seasonal Autoregressive 

ntegrated Moving Average (SARIMA) and Holt winter’s exponen- 

ial smoothing and moving average methods to forecast COVID-19 

ases of Iran. Their comparative study on these methods showed 

hat LSTM model outperformed other models in terms of less er- 

or values for infection development in Iran. 

Based on the aforementioned reports, all the models proposed 

n the literature are confined to very less data points, few coun- 

ries, or few states in a country or for a very short forecast time. 

herefore, there is still room to develop country specific deep 

earning models to predict the 60-day forecast of the COVID-19 

rends in top 10-countries that are highly impacted by COVID-19. 

ence, the aim of the present work is to predict the future trends 

f the cumulative confirmed cases, cumulative recovered cases and 

umulative fatalities of the top 10 countries using RNN along with 

ated Recurrent Units (GRUs) andLong Short-Term Memory (LSTM) 

ells. These models were trained on the training data and tested 

n the testing data, ultimately, the validated models have used to 

orecast the trend of COVID-19 cases for 60 daysin top-10 highly 

ffected countries. These models were developed in Python based 

pen source PyTorchdeep learning library and simulations were 

erformed on Graphical Processing Units (GPUs) of the Google CO- 

AB cloud computing platform. These models have trained and 

ested on the John Hopkin’s publicly available COVID-19 datasets 

24] . 

. Recurrent neural networks 

The methods for forecasting the time-series data can be mainly 

lassified into two types, machine learning and deep learning 

ethods. Deep learning models are superior over the statistical 

achine learning models for forecasting the non-linear applica- 

ions such as prediction of weather, stock prices [25] , electro car- 

iogram (ECG) recordings [26] and crude oil prices [27] etc. Feed 

orward Neural Networks (FFNNs) and Recurrent Neural Networks 

RNNS) are two types of widely used deep learning techniques but 

FNNs are not suitable for forecasting as they are not capable of 

onsidering the trends in the time-series data. Whereas RNNs are 

owerful and robust type of artificial neural networks that uses ex- 

sting time-series data to predict the future data over a specified 

ength of time. RNNs are very promising techniques due to the in- 

ernal memory that can remember the important features of the 
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Fig. 1. Schematic representation of (A) simple Recurrent Neural Network (RNN) cell 

(B) Long-Short Term Memory (LSTM) cell (C) Gated Recurrent Unit (GRU) cell. 
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nput sequential data which allows them to accurately predict the 

uture. Unlike FFNNs, where the information flows strictly in one 

irection from layer to layer, in RNNs, the output from the previ- 

us time stamp along within put from the present time stamp will 

e fed into RNN cell, so that the current state of the model is in-

uenced by its previous states. The following equation explains the 

unction of the single RNN cell: 

 t = tanh ( W [ h t−1 , x t ] + b ) (1) 

Where, W is the weight matrix, b is the bias matrix, h t and 

 t−1 are hidden state at current time-step and previous time-step, 

espectively. RNNs perform computations, very similar to FFNN, us- 

ng the weights, biases, and activation functions for each element 

f the input sequence ( Fig. 1 A). Essentially a neuron in RNN has a

ingle hyperbolic tangent function in which h t−1 and x t are com- 

ined and multiplied by some weight matrix and then adding a 

ias to it followed by passing it through the hyperbolic tangent 

unction which gives back h t . Hyperbolic tan function ( tanh ) is 

sed to scale the actual values so that the values fall in between 

he range of -1 to + 1. At each time step, the output of the RNN

ell is updated using a sigmoid function, which is a widely used 

on-linear activation function in artificial neural networks. The fol- 
3 
owing equation is a mathematical representation of the sigmoid 

unction: 

f ( x ) = 1 / 
(
1 + e −x 

)
(2) 

RNN can only recollect the recent information but cannot rec- 

llect the earlier information. Though the RNNs can be trained by 

ack-propagation, it will be very difficult to train them for long in- 

ut sequences due to vanishing gradients. Hence, the main draw- 

ack of the RNN architecture is its shorter memory to remember 

he features, vanishing and exploding gradients. Hence, we have 

sed the combination of RNN with GRU cells and LSTM cells to 

vercome these drawbacks. 

.1. Long short-term memory (LSTM) 

Hochreiter and Schmidhuber [28] have proposed LSTM to over- 

ome the vanishing and exploding gradients problem. The memory 

f LSTM cell will be stored and converted from input to output in 

ell state. The general architecture of the LSTM cell can be found 

n the Fig. 1 B. LSTM cell is comprised of the forget gate, output 

ate, input gate and update gates. As the name indicates, forget 

ate decides what to forget from the previous memory units, the 

nput gate decides what to accept into the neuron, the update gate 

pdates the cell, and the output gate generates the new long-term 

emory. These four main components of LSTM will work and in- 

eract in a special manner, as it accepts long-term memory, short- 

erm memory, input sequence at a given time step and generates 

ew long-term memory, new short-term memory and output se- 

uence at a given time step. The input gate decides which infor- 

ation must be transferred to the cell; the input gateis mathemat- 

cally represented as following: 

 t = σ ( W i ∗ [ h t−1 , x t ] + b i ) (3) 

The operator ‘ ∗’ represents the element-wise multiplication of 

he vectors. 

The information to be neglected from the previous memory is 

ontrolled by forget gate which is mathematically defined as fol- 

owing: 

f t = σ
(
W f ∗ [ h t−1 , x t ] + b f 

)
(4) 

The cell state is updated by the update gate, expressed mathe- 

atically by the following equations: 

˜ 
 t = tanh ( W c ∗ [ h t−1 , x t ] + b c ) (5) 

 t = f t ∗ c t−1 + i t ∗ ˜ c t (6) 

The hidden layer of the previous time step is updated by the 

utput gate which is also responsible for the updating the output 

s it is given by: 

 t = σ ( W o ∗ [ h t−1 , x t ] + b o ) (7) 

 t = o t ∗ tanh ( c t ) (8) 

.2. Gated recurrent unit (GRU) 

Gated Recurrent Units were proposed by Chung et al. 

29] which is a simplified version of LSTM and requiresless training 

ime with improved network performance. The operation of a GRU 

ell is similar to the operation of LSTM cell but GRU cell usesone 

idden state that merges the forget gate and the input gate into a 

ingle update gate. Further, it combines the cell state and hidden 

tate into one state and hence the total number of gates in GRU is 

alf (update and reset gates) of the total number of gates in LSTM. 
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ence, it is popular and simplified variant of LSTM cell. The hidden 

tate of the GRU cell is updated by the following equation: 

 t = ( 1 − z t ) ∗ h t−1 + z t ∗ ˜ h t (9) 

The update gate is computed by the following equation, which 

ecides how much of the GRU unit get updated: 

 t = σ ( W z ∗ [ h t−1 , x t ] ) (10) 

The reset gate is computed very similar to the update gate, it is 

iven by the following equation: 

 t = σ ( W r ∗ [ h t−1 , x t ] ) (11) 

The new remember gate is generated by applying hyperbolic 

an function to the reset gate, which is described by the follow- 

ng function. 

˜ 
 t = tanh ( W ∗ [ r t ∗ h t−1 , x t ] ) (12) 

.3. Simulation methodology 

Scripts were written in PyTorch package of Python (Ver. 3.7) 

rogramming language and the simulations were performed on 

 Google COLAB cloud computing platform. Optimizing the set 

f hyper parameters, such as number of nodes in each layer 

10,10 0,20 0,30 0), number of hidden layers (1,2,3,4,5) and the learn- 

ng rate (0.1, 0.01, 0.001, 0.0 0 01, 0.0 0 0 01), is very important for

chieving the best sequential prediction. The values in the paren- 

hes is shows the range of the respective variables we have tested 

or proposing an optimized model. We have proposed customized 

eep learning models for country specific time-series data by find- 

ng the best combination of hyper parameters. Adam optimizer is 

sed for iteratively optimizing the network weights with the mean 

quared error (MSE) function as loss function. As the RNNs are 

ery sensitive to the fluctuations in the time series data and to 

apturing the trends in the time series data, the data has to be 

ormalized before feeding it to the neural network. We have used 

he MinMaxscaler to normalize the data and the following equa- 

ion ( Eq. 13 ) is a mathematical representation of MinMaxscaler: 

 n = 

x − x min 

x max − x min 

(13) 

Where x , x n , x min , and x max represents the original time-series 

ata, the normalized time-series data, minimum and maximum 

alue of the time series data, respectively. MinMaxscaler translates 

ach observation within the feature such that the minimum and 

aximum values of the observations lie between 0 and 1. The ad- 

antages of using MinMaxscaler is that after transforming the data, 

inMaxscaler retains the shape of original distribution of the data 

nd does not alter the information that is embedded within the 

riginal data. The normalized data is split into testing and train- 

ng datasets, testing dataset is comprised of last 14 data points of 

he time-series dataset and the training dataset is comprised of en- 

ire time series data excluding the last 14 data points. The train- 

ng time-series data is divided into several data sequences each of 

ength 30. Each sequential data is fed to the RNN (i.e., the data 

rom day 1 to day 30) to predict the 31 st data point (data belongs

o 31 st day). In the consequent step, the next sequence of the data 

day 2- day 31) is fed to RNN to predict the 32 nd day data point.

imilarly, all the sequences were fed to RNN to complete one set of 

redictions and which also completesone epoch. Simulations were 

unning for ~ 50 0 0 epochs and the best epoch was considered for 

he final forecast which corresponds to the global minimum of the 

oss function. Initially, the RNN models were trained on the train- 

ng data set and the model’s prediction was validated against the 

esting data. This process was repeated for each country and for 

ach of the three time-series datasets (cumulative cases, recovered 

ases and total fatalities) to propose a customized RNN models. 
4 
hen each optimized and validated model was used to forecast 

he trends. Mean Square Error (MSE) and Root Mean Square Er- 

or (RMSE) were used to evaluate the performance of the proposed 

odels, the following equations represents the MSE ( Eq. 14 ) and 

MSE ( Eq. 15 ) functions: 

SE = 

1 

n 

n ∑ 

i =1 

( y i − y ) 2 (14) 

MSE = 

√ 

1 

n 

n ∑ 

i =1 

( y i − y ) 
2 

(15) 

Where, y is model predicted value, y i is actual value. 

. Results and discussion 

This section describes the forecasted trends of cumulative 

onfirmed, cumulative recovered and cumulative fatalities of the 

OVID-19 cases in top -10 countries using RNN-LSTM and RNN- 

RU models. The top-10 countries based on cumulative confirmed 

ases, as of August 3 rd , 2020, are USA, Brazil, India, Russia, South 

frica, Mexico, Peru, Chile, United Kingdom (UK) and Iran. The 

ataset for each country comprises of three time-series data sets: 

umulative confirmed cases, cumulative recovered cases, and cu- 

ulative fatalities. The forecast was done for each of the three 

ime-series data of individual country by independently feeding 

he time-series data into the optimized LSTM and GRU based RNN 

etworks, i.e., a total of 30 simulations were performed. 

.1. Cumulative confirmed cases 

We have presented the 60-day forecast of the cumulative con- 

rmed cases obtained from the RNN-LSTM and RNN-GRU mod- 

ls for top-10 countries. For each country, we have proposed cus- 

omized models and compared the forecast of RNN-GRU model 

gainst the forecast of RNN-LSTM model. In the process of model 

evelopment for achieving an optimized forecasting model, RNN- 

RU and RNN-LSTM models were trained and tested for each of 

he time-series data of USA, Brazil, India, Russia, South Africa, Mex- 

co, Peru, Chile, UK, and Iran. The optimization of hyper parame- 

ers such as number of epochs, hidden size, number of layers and 

earning rate used for developing RNN-GRU and RNN-LSTM mod- 

ls is done for each country. The details of the optimized hyper 

arameters, and evaluation metrics (MSE and RMSE) of the pro- 

osed models for forecasting the cumulative confirmed cases of 

ach country were given in the Table 1 . The well-trained mod- 

ls with optimized parameters were selected to forecast the cu- 

ulative confirmed cases until October 1 st , 2020. The 60-day fore- 

ast of the cumulative confirmed cases of the top-10 countries as 

 function of time (i.e., number of days) is shown in Fig. 2 . The

eported cases were represented by black line, the LSTM predic- 

ions of the test data is represented by green line, the GRU pre- 

iction of the test data was represented by blue line, similarly, the 

STM and GRU model’s forecasts were represented by red and pur- 

le color lines respectively. Even though countries such as India, 

SA, UK have implemented moderate to stringent preventive mea- 

ures such as social distancing, lockdowns, the forecast of these 

ountries have continuous growth. It is clear from the results that 

he forecast of the cumulative confirmed cases in most of the top 

0 countries have shown a steady increasing trend. 

For the forecast of USA’ confirmed cases, it is evident ( Fig. 2 )

hat both LSTM and GRU models performed reasonably well in 

he validation phase of the model development. Though the pre- 

ictions of the LSTM and GRU models did not varied much from 

he test data, LSTM has lesser MSE and RMSE ( Table 1 ). The LSTM
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Fig. 2. 60-day ahead forecast of cumulative confirmed cases for top-10 countries based on RNN-GRU and RNN-LSTM models. 

5 



K.E. ArunKumar, D.V. Kalaga, Ch.M.S. Kumar et al. Chaos, Solitons and Fractals 146 (2021) 110861 

Table 1 

Models used for forecasting cumulative confirmed cases and their parameters. 

No. Country RNN model Epochs Hidden size Number of layers Learning rate MSE RMSE 

1 USA GRU 5.00E + 02 3.00E + 02 2.00E + 00 1.00E-05 2.96E + 12 1.72E + 06 

LSTM 1.69E + 03 3.00E + 02 3.00E + 00 1.00E-05 2.87E + 12 1.69E + 06 

2 Brazil GRU 3.00E + 02 3.00E + 02 2.00E + 00 1.00E-05 1.86E + 10 1.36E + 05 

LSTM 1.00E + 02 3.00E + 02 2.00E + 00 1.00E-05 1.76E + 10 1.33E + 05 

3 India GRU 1.00E + 02 3.00E + 02 2.00E + 00 1.00E-05 4.58E + 08 2.14E + 04 

LSTM 1.80E + 03 3.00E + 02 2.00E + 00 1.00E-05 5.57E + 08 2.36E + 04 

4 Russia GRU 1.00E + 03 3.00E + 02 2.00E + 00 1.00E-05 8.79E + 05 9.37E + 02 

LSTM 2.56E + 02 3.00E + 02 2.00E + 00 1.00E-05 1.10E + 06 1.05E + 03 

5 South Africa GRU 1.52E + 03 3.00E + 02 2.00E + 00 1.00E-05 1.08E + 07 3.29E + 03 

LSTM 2.00E + 03 3.00E + 02 2.00E + 00 1.00E-05 3.64E + 07 6.03E + 03 

6 Mexico GRU 5.00E + 02 3.00E + 02 2.00E + 00 1.00E-05 1.60E + 07 4.00E + 03 

LSTM 1.50E + 03 3.00E + 02 2.00E + 00 1.00E-05 2.36E + 07 4.86E + 03 

7 Peru GRU 6.00E + 02 3.00E + 02 2.00E + 00 1.00E-05 5.37E + 07 7.33E + 03 

LSTM 7.00E + 01 3.00E + 02 2.00E + 00 1.00E-05 1.97E + 07 4.44E + 03 

8 Chile GRU 3.00E + 03 3.00E + 02 2.00E + 00 1.00E-05 6.52E + 06 2.55E + 03 

LSTM 1.30E + 03 3.00E + 02 2.00E + 00 1.00E-05 1.49E + 06 1.22E + 03 

9 UK GRU 2.50E + 02 3.00E + 02 2.00E + 00 1.00E-05 1.77E + 05 4.21E + 02 

LSTM 3.00E + 02 3.00E + 02 2.00E + 00 1.00E-05 3.84E + 05 6.91E + 02 

10 Iran GRU 4.50E + 02 3.00E + 02 2.00E + 00 1.00E-05 3.06E + 05 5.52E + 02 

LSTM 7.05E + 02 3.00E + 02 2.00E + 00 1.00E-05 1.78E + 04 1.33E + 02 

Table 2 

Models used for forecasting recovered cases and their parameters. 

No. Country RNN model Epochs Hidden size Number of layers Learning rate MSE RMSE 

1 USA GRU 2.50E + 02 3.00E + 02 2.00E + 00 1.00E-05 3.61E + 11 6.01E + 05 

LSTM 2.30E + 01 3.00E + 02 3.00E + 00 1.00E-05 3.72E + 11 6.10E + 05 

2 Brazil GRU 6.56E + 02 3.00E + 02 2.00E + 00 1.00E-05 8.53E + 09 9.24E + 04 

LSTM 4.02E + 02 3.00E + 02 2.00E + 00 1.00E-05 1.44E + 12 1.20E + 06 

3 India GRU 1.52E + 03 3.00E + 02 2.00E + 00 1.00E-05 7.67E + 04 2.76E + 02 

LSTM 1.26E + 03 3.00E + 02 2.00E + 00 1.00E-05 6.62E + 04 2.57E + 02 

4 Russia GRU 3.00E + 02 3.00E + 02 2.00E + 00 1.00E-05 1.17E + 06 1.08E + 03 

LSTM 1.00E + 02 3.00E + 02 2.00E + 00 1.00E-05 7.65E + 06 2.77E + 03 

5 South Africa GRU 2.70E + 03 3.00E + 02 2.00E + 00 1.00E-05 1.67E + 07 4.08E + 03 

LSTM 2.00E + 03 3.00E + 02 2.00E + 00 1.00E-05 2.15E + 06 4.05E + 03 

6 Mexico GRU 6.50E + 02 3.00E + 02 2.00E + 00 1.00E-05 1.61E + 08 1.27E + 04 

LSTM 1.65E + 03 3.00E + 02 2.00E + 00 1.00E-05 1.73E + 08 1.32E + 04 

7 Peru GRU 2.66E + 02 3.00E + 02 2.00E + 00 1.00E-05 6.56E + 06 2.56E + 03 

LSTM 7.50E + 01 3.00E + 02 2.00E + 00 1.00E-05 2.13E + 07 4.61E + 03 

8 Chile GRU 3.00E + 02 3.00E + 02 2.00E + 00 1.00E-05 1.32E + 06 1.15E + 03 

LSTM 2.60E + 02 3.00E + 02 2.00E + 00 1.00E-05 7.65E + 05 8.74E + 02 

9 UK GRU 3.00E + 02 3.00E + 02 2.00E + 00 1.00E-05 1.19E + 01 3.40E + 00 

LSTM 6.46E + 02 3.00E + 02 2.00E + 00 1.00E-05 9.20E + 00 3.03E + 00 

10 Iran GRU 7.00E + 02 3.00E + 02 2.00E + 00 1.00E-05 1.09E + 06 1.04E + 03 
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odel required 1694 epochs to converge, whereas GRU model re- 

uired only 500 epochs. This could be because of the lesser num- 

er of parameters in the GRU model when compared to that of the 

STM model’s parameters, along with the intrinsic data trends. The 

SA’s LSTM model required 3 hidden layers with 300 neurons per 

ach layer whereas, GRU required 2 hidden layers with 300 neu- 

ons in each layer. The 60-day ahead forecast of USA follows an ex- 

onential growth (as per LSTM model) and gradual steady increase 

as per GRU model) in the number of cumulative confirmed cases 

n USA. Therefore, there will be ≈7 M confirmed cases according 

o GRU by the end of September 2020. However, the LSTM model 

redicted ≈12 M total number of cumulative confirmed cases, by 

he end of September 2020 in USA which will be much higher 

han the GRU based forecast. For forecasting the Brazil’s cumula- 

ive confirmed cases, the predictions from the LSTM and GRU mod- 

ls are almost same with the projection of 5.75 M cases by the 

nd of September 2020. The LSTM model of Brazil required 200 

esser epochs to converge, whereas the other parameters -learning 

ate, number of hidden layers, hidden size remained the same for 

oth GRU and LSTM models of Brazil. Interestingly, both LSTM and 

RU models have very similar values of MSE and RMSE. LSTM fore- 

asted that the confirmed cases would approach a plateau in con- 

rast to the GRU model’s linear increasing trend. 
6 
The number of cumulative confirmed cases in India are on raise 

o 3.5 M according to the LSTM model, GRU model for India has 

orecasted that cumulative confirmed cases would reach a total of 

.7 M by the end of September 2020. Both LSTM and GRU mod- 

ls shows that cumulative cases are approaching plateau by the 

rst week of September 2020. For the same combination of hy- 

er parameters, the GRU model for India has lesser RMSE and MSE 

alues when compared to that of the LSTM model. The GRU and 

STM models of Russia did reasonably well in terms of predictions, 

ith small difference in the RMSE and MSE values. However, as 

e have seen the performance of the models varied from coun- 

ry to country according to information embedded in the data. In 

ase of Russia, GRU performed well with lesser RMSE than that of 

he LSTM and the cumulative confirmed cases forecasted by LSTM 

ere ≈90,0 0 0 greater than the GRU forecast. From Fig. 2 , it is ev-

dent that according to LSTM model the maximum number of cu- 

ulative confirmed cases in Russia will be ≈1,20 0,0 0 0 by the end 

f September. 

According to Fig. 2 , number of cumulative confirmed cases in 

outh Africa are increases at a faster pace as the trend is following 

n exponential growth phase since April 2020. Both LSTM and GRU 

odels predicted an approaching plateau by the end of Septem- 

er 2020. The LSTM and GRU models predicted that there will be 
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675,0 0 0 and ≈710,0 0 0 confirmed cases in South Africa by the 

nd of September 2020. For the Mexico’s data, the GRU model out 

erformed LSTM model with lower values of MSE and RMSE. The 

orecasted number of cumulative confirmed cases by GRU model 

f Mexico are ≈30 0,0 0 0 lesser than the LSTM based predictions. 

For the Peru’s forecast, both LSTM and GRU models have shown 

he similar trend, but GRU’s predictions are higher than the LSTM 

redictions ( Fig. 2 ). Both models show that cumulative confirmed 

ases reach a steady value (plateau) by the end of September 2020. 

or the same combination of hyper parameters, the LSTM model 

as lesser MSE and RMSE values when compared to the evaluation 

etrics of GRU model. For the rest of the countries such as Mexico, 

hile, UK and Iran, GRU model predicted a gradual increment but 

STM model predicted a sharp rise in the cumulative confirmed 

ases for next 60 days. According to the LSTM model, the maxi- 

um number of confirmed cases for countries Mexico, Chile, UK, 

nd Iran will reach ≈1 M, ≈0.7 M ≈0.4 M ≈0.57M, respectively. 

imilarly, GRU’s model predicted maximum number of cases ≈0.8 

, ≈0.42 M ≈0.34 M ≈0.47M for countries Mexico, Chile, UK and 

ran respectively. The MSE and RMSE of GRU model are lower than 

hat of the LSTM model for countries Mexico, UK ( Table 1 ). How-

ver, for Chile and Iran, LSTM model has lesser MSE and RMSE val- 

es. 

.1.1. Factors contribute to the surge in the confirmed cases 

From the above-mentioned results, it is evident that the fore- 

asted number of cumulative confirmed cases of top 10 countries is 

larmingly increasing. Our forecasted trends and values give these 

op 10 countries, a good picture of the upcoming surge in the num- 

er of cumulative confirmed cases to review their precautionary 

easures, healthcare policies and interpositions. Moreover, the re- 

ults of cumulative confirmed cases provide the information of the 

pcoming number of cases there by helping governments to pre- 

are the long term and short-term response to the ongoing COVID- 

9 crisis. For example, according to the forecast of the cumula- 

ive confirmed cases of USA there will be 12M new cumulative 

onfirmed cases by the end of September 2020. By knowing the 

pcoming number of cases, USA can avoid or cutdown the fore- 

asted number of confirmed cases by implementing social distanc- 

ng practices, curtailing the travel, and limiting the social gath- 

ring at local businesses such as restaurants etc. Our forecasted 

esults can also assist countries that are implementing or imple- 

ented strict lockdowns. One such country is India, as it went 

nto lockdown for 3 months during early April 2020. By consid- 

ring our forecasted cumulative confirmed cases, India can plan 

or economic recovery by opening borders, local businesses, public 

chools etc. to new normalcy, while planning a better preventive 

easure thereby decreasing the potential number of forecasted cu- 

ulative confirmed cases. Our forecast results of cumulative con- 

rmed cases not only alert these top 10 countries but also help 

est of the world to prepare for the ongoing COVID-19 crisis. 

To control the escalation of the number of the COVID-19 cases, 

long with the government’s involvement there must be a proper 

esponse from the public as well, because there are many factors at 

he personal level which are in control of the citizens rather than 

he government. Some of those factors include social habits, quality 

hygiene) of the homes, choice of mobility and the use of masks. 

ccording to a Germany’s data-based case study on relationship 

etween social habits and odds ratio for wearing masks published 

y Cornelia et al., people who avoid handshaking are more likely to 

ear masks to protect themselves and others. However, as of 12 th 

f May 2020, there are 60% of the sample population think these 

olicies are exaggerated [30] . In such scenario it is important to 

onitor the adherence to the compulsory infection control mea- 

ures in the public places. Deep learning and artificial intelligence 

an help monitor control measures. In a study published by Shashi 
7 
adav [31] , he proposed a deep learning algorithm based on Mo- 

ileNetV2 architecture and Convolutional Neural Networks (CNN) 

hich can differentiate people wearing masks from the popula- 

ion. Their model detected the face masks with a precision score 

f 91.7% and 0.7 confidence score. Such automation is useful in 

ighly populated regions where the risk of infection is high for 

ecurity personals. The COVID-19 infection rate is directly propor- 

ional to the population density as the probability of the exposure 

ncreases as the population density increases [32] . The mortality 

ate is higher in extremely populated areas as the health care fa- 

ilities are insufficient to meet the demand of increasing new cases 

33] . However, in a study, the R 

2 value of the relation between 

nfection rate and population density was found to be moderate 

0.67) [34] . This indicates only a fraction of the infection rate is de- 

cribed by population density meaning other factors contribute to 

he increase in new daily cases of COVID-19. Mobility restriction is 

nother factor that plays a key role in the spread of the infection. 

fter implementing mobility controls, UK [35] and China has seen 

ecline in the association between the fatalities and social mobility 

36] . 

.2. Cumulative recovered cases 

To propose the best model for each country, we have devel- 

ped and validated GRU and LSTM models for forecasting the cu- 

ulative recovered cases in top-10 countries that are severely af- 

ected by the COVID-19 pandemic. For countries USA, Brazil, Rus- 

ia, Mexico and Peru, GRU performed better than LSTM accord- 

ng to the values of evaluation metrics - RMSE and MSE. The 

MSE values of GRU models of these countries are lesser 6.01E + 05 

USA), 9.24E + 04 (Brazil) 1.08E + 03 (Russia), 1.27E + 03 (Mexico), 

nd 2.56E + 03 (Peru) in comparison to that of the RMSE val- 

es of LSTM models of these countries 6.10E + 05 (USA), 1.20E + 06 

Brazil), 2.77E + 03 (Russia), 1.32E + 04 (Mexico), 4.61E + 03 (Peru). 

or rest of the top-10 countries, India, South Africa, Chile, U.K. 

nd Iran, LSTM model performed better than GRU model. The 

STM models of these countries (India, South Africa, Chile, U.K., 

nd Iran) have RMSE values of 2.57E + 02, 4.05E + 03, 8.74E + 02,

.03E + 00 and 4.25E + 02 respectively. Whereas, the GRU models 

ave RMSE values of 2.76E + 02, 4.08E + 03, 1.15E + 03, 3.40E + 00

nd 1.04E + 03, respectively (Table 2) . Fig. 3 shows the number 

f reported recovered cases and 60 day forecast from the latest 

ate of reported recovered cases in top-10 countries. It is clear 

rom Fig. 3 , according to GRU based model the number of re- 

overed cases in USA, Brazil, India, Russia, South Africa, Mex- 

co, Peru, Chile, UK and Iran by the end of September 2020 will 

e ≈2,650,0 0 0, ≈3,250,0 0 0, ≈3,0 0 0,0 0 0, ≈1,0 0 0,0 0 0, ≈850,0 0 0,

810,0 0 0, ≈510,0 0 0, ≈370,0 0 0, ≈1,50 0 and ≈350,0 0 0 respectively.

ccording to LSTM models of USA, Brazil, India, Russia, South 

frica, Mexico, Peru, Chile, UK, and Iran the cumulative recovered 

ases will be ≈2,10 0,0 0 0, ≈3,770,0 0 0, ≈2,50 0,0 0 0, ≈1,0 0 0,0 0 0,

70 0,0 0 0, ≈870,0 0 0, ≈510,0 0 0, ≈,380,0 0 0 ≈1,50 0, and ≈470,0 0 0

espectively. It is found that there are two different trends that 

an be observed, one with continuous increase in the recovered 

ases and the other with reaching a stagnant value of the recov- 

red cases (plateau). 

For countries Russia, Peru, Mexico, Chile, and UK, both the mod- 

ls have shown very similar trend and similar predictions. For USA, 

ndia, Brazil, South Africa, and Iran both the models have predicted 

imilar values for the initial couple of weeks and after that starts 

eviating from eachother. For countries UK, Chile, India, and South 

frica both GRU and LSTM models are showing an approaching 

lateau. Approaching a plateau in recovered cases can only be pos- 

ible if there is an implementation of stringent measure to con- 

rol the spread of COVID-19. Further, in countries such as UK and 

hile there is very negligible number of recovered cases forecasted. 
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Fig. 3. 60-day ahead forecast of cumulative recovered cases for top-10 countries based on RNN-GRU and RNN-LSTM models. 
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his could be explained by observing the Fig. 3 , during the period 

etween March and July 2020 very few recovered cases were re- 

orted. In contrast to this observation, when we examine the data 

f the USA, it is evident that the reported recovered cases during 

he same period (March to July 2020) has an exponential trend. 

.2.1. Factors contribute to the variation in reported recovered cases 

The above discussed contradiction in the observations from 

ountry to country implies that the definition of recovered case 

nd the process of reporting the cumulative recovered cases is dif- 

erent from country to country. For example, in USA [37] , there 

re 16 states that have no definition for recovered case and do 

ot report or document the recovered cases. Another 8 states of 

SA count the number of hospital discharges as recovered case. In 

tates such as South Dakota the recovered case is defined as day- 

ased meaning the infected individual is free from any symptoms 

or 3 – 42 days. According to John Hopkins, a COVID-19 patientis 

onsidered recovered only if the patient is appearing symptom free 

or 10 days since the occurrence of the first symptom and no fever 

or 24 hours without using fever reducing medication. Whereas, 

he loss of smell and taste for weeks cannot be considered in 

efining the recovered cases [38] . However, the reverse transcrip- 

ion polymerase chain reaction (RT-PCR) test conducted on the four 

atients who met the criteria for hospital discharge were tested 

ositive after 10 days of the hospital discharge [39,40] . In a study, 

8] Fotios presented a brief insight on the importance of recovered 

ases, They reported the recovered cases are increasing exponen- 

ially as the number of days in the pandemic increase. However, 

heir study was restricted to short time-series data. Whereas in In- 

ia few tests are conducted per 1,0 0 0 population [41] therefore the 

eported cumulative cases do not represent the actual number of 

umulative recovered cases. 

Despite the above-mentioned results and limitations, from 

ig. 3 , it is evident that the recovery rate is increasing in most of

he countries. The increase in number of recovered cases depends 

ot only on the definition of recovered case, on the process of the 

ecording the recovered cases but also on various factors such as 

ge, underlying health conditions, preventive measures, and local 

eather conditions. The recovery statistics [42] show that 60% pa- 

ients between the age group 20-40 years have recovered. The per- 

entage of patients recovered decreased to 56% for the age groups 

0-59 and > 60 years. Moreover, the susceptibility to the COVID-19 

nd rate of transmission of the disease was varied based on the age 

f the person. In a case study [43] , it is reported that the percent-

ge of manifestation of the clinical symptoms in age group over 70 

ears is 69% and in individuals under 20 years of age have only 

1% chance of manifestation of clinical symptoms. In this scenario, 

ur results based on LSTM and GRU models not only provide in- 

ormation about the number of recovered cases of the near future 

ut alsoshed light on the importance of factors that control the 

umber of recovered cases and the importance in consistency of 

he process of record keeping of the recovered cases all over the 

orld. 

.3. Cumulative fatalities 

The forecast of the cumulative fatalities for top-10 countries 

ere presented in this section. Fig. 4 depicts the forecasted trends 

f cumulative fatalities and the corresponding simulation details 

f both the models for each country are given in Table 3 . From

he Fig. 4 , it is evident that the number of cumulative fatalities in

SA will be in between 20 0,0 0 0 and 240,0 0 0 according to fore-

asts of the GRU and LSTM based models, respectively. As per 

oth the models, the fatalities are continuously increasing as the 

umber of days into the pandemic is increasing. For the number 

f cumulative fatalities in USA, Peru, Chile, and UK, GRU based 
9 
odel performed better than the LSTM model which is evident 

rom the Table 3 . The MSE and RMSE values of the GRU based

odels for countries USA, Peru, Chile, and UK are lesser than 

he MSE and RMSE values of their respective LSTM models, The 

MSE values of GRU models of the USA, Peru, Chile, and UK, 

re 4.57E + 02, 5.89E + 03, 6.64E + 01, and 4.40E + 01, respectively. The

MSE value of LSTM model of these countries is greater than the 

MSE value of GRU models as described in Table 3 . From the 

ig. 4 and based on GRU model of the countries - Peru, Chile, 

nd UK there will be ≈26,0 0 0, ≈12,10 0, ≈49,0 0 0, cumulative fa-

alities, respectively. Whereas the LSTM model of these countries 

redicted that there will be ≈31,0 0 0, ≈12,10 0, ≈49,0 0 0 cumula- 

ive death cases by the end of September 2020. Whereas for fatal- 

ties in other countries – Brazil, India, Russia, South Africa, Mex- 

co and Iran, LSTM model performed better than the respective 

RU models. The RMSE value of the LSTM models of these coun- 

ries are 3.66E + 04, 2.57E + 02, 7.20E + 01, 8.74E + 02, 3.04E + 02, and

.20E + 01 respectively. The number of cumulative fatalities pre- 

icted by LSTM models of Brazil, India, Russia, South Africa, Mex- 

co, and Iran are ≈130,0 0 0, ≈70,0 0 0, ≈21,0 0 0, ≈10,0 0 0, ≈65,0 0 0,

27,0 0 0, respectively. Similarly, the RMSE values of the GRU mod- 

ls of the countries are described in the Table 3 . The number of 

umulative fatalities forecasted by the GRU models of Brazil, In- 

ia, Russia, South Africa, Mexico, and Iran are ≈139,0 0 0, ≈81,0 0 0, 

17,650, ≈16,0 0 0, ≈70,0 0 0 and ≈26,0 0 0, respectively. The fore- 

asted trends for Mexico, Chile, UK and Iran are almost same for 

oth LSTM and GRU models and both models show that the cu- 

ulative fatalities will reach a plateau by the end of September 

020. Fatalities in Peru, South Africa, Russia also followed a plateau 

ut the agreement between the models is not good. Similar devi- 

tion between the models were observed for countries USA, Brazil 

nd India, but the fatalities found to continuously increasing as the 

andemic is increasing. According to Fig. 4 , the number of cumu- 

ative death cases are either increasing (USA, Brazil, India Russia, 

exico, Chile and Iran) or reaching a steady value (South Africa, 

eru and UK) as the pandemic period is increasing. 

.3.1. Factors contribute to the variation of trends in fatalities 

The varied trends in the graphs as shown in Fig. 4 could be 

ecause of the lesser availability of infrastructure such as num- 

er Intensive Care Units (ICU), number of hospital beds [44] , avail- 

ble healthcare workers per number of patients [45] in develop- 

ng countries such as South Africa, Mexico, Peru, Brazil, India etc. 

ut the raise of the number of fatalities in wealthy nations could 

e not only because of the above-mentioned factors but also due 

o lack of strict social distancing, and other preventive measures. 

oreover, the average age of the nation also determines the num- 

er of fatalities caused by COVID-19. For example in USA, there 

re 54.3 million residents who are 65 years and older [46] , to 

hom COVID-19 can cause severe illness and can be fatal when 

ompared to younger people of the population [47] . The increased 

isk of hospitalizations of senior citizens is described elsewhere by 

enter for Disease Control and Prevention (CDC) [47] . The raise 

f number of cases is directly related to social distance practices 

nd implementation of other preventive measures. This is evident 

rom the reported data of USA until 3 rd August 2020 of the Fig. 2 .

he number of cumulative confirmed cases increased drastically 

rom the first reported case in USA. Similarly, there are other fac- 

ors that contribute to the higher mortality in some regions of the 

orld and countries. Such factors include, economic status [48] , 

ace/ethnicity [49,50] , housing conditions [51] . Moreover, there is 

 positive correlation between the poor housing conditions and 

OVID-19 occurrence and mortality. In USA, the deaths related to 

OVID-19 pandemic were high in the communities with higher 

ercentage of poor housing conditions [52] . Moreover, there is a 

trong evidence for the positive correlation between the COVID - 
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Fig. 4. 60-day ahead forecast of cumulative fatalties for top-10 countries based on RNN-GRU and RNN-LSTM models. 
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Table 3 

Models used for forecasting cumulative death and their parameters. 

No. Country RNN model Epochs Hidden size Number of layers Learning rate MSE RMSE 

1 USA GRU 5.00E + 02 3.00E + 02 2.00E + 00 1.00E-05 2.09E + 05 4.57E + 02 

LSTM 2.01E + 02 3.00E + 02 3.00E + 00 1.00E-05 2.91E + 05 5.39E + 02 

2 Brazil GRU 6.00E + 01 3.00E + 02 2.00E + 00 1.00E-05 1.47E + 05 3.83E + 02 

LSTM 1.50E + 02 3.00E + 02 2.00E + 00 1.00E-05 1.34E + 09 3.66E + 04 

3 India GRU 2.50E + 02 3.00E + 02 2.00E + 00 1.00E-05 7.67E + 04 2.76E + 02 

LSTM 2.00E + 02 3.00E + 02 2.00E + 00 1.00E-05 6.62E + 04 2.57E + 02 

4 Russia GRU 2.00E + 02 3.00E + 02 2.00E + 00 1.00E-05 5.48E + 03 7.40E + 01 

LSTM 6.40E + 02 3.00E + 02 2.00E + 00 1.00E-05 5.27E + 03 7.20E + 01 

5 South 

Africa 

GRU 3.50E + 01 3.00E + 02 2.00E + 00 1.00E-05 1.71E + 06 1.31E + 03 

LSTM 2.00E + 03 3.00E + 02 2.00E + 00 1.00E-05 7.64E + 05 8.74E + 02 

6 Mexico GRU 1.00E + 02 3.00E + 02 2.00E + 00 1.00E-05 6.78E + 05 8.23E + 02 

LSTM 7.00E + 02 3.00E + 02 2.00E + 00 1.00E-05 9.29E + 04 3.04E + 02 

7 Peru GRU 1.50E + 03 3.00E + 02 2.00E + 00 1.00E-05 3.47E + 07 5.89E + 03 

LSTM 1.50E + 03 3.00E + 02 2.00E + 00 1.00E-05 4.33E + 07 6.58E + 03 

8 Chile GRU 4.00E + 02 3.00E + 02 2.00E + 00 1.00E-05 4.42E + 03 6.64E + 01 

LSTM 2.00E + 03 3.00E + 02 2.00E + 00 1.00E-05 5.74E + 04 2.40E + 02 

9 UK GRU 3.00E + 03 3.00E + 02 2.00E + 00 1.00E-05 1.95E + 03 4.40E + 01 

LSTM 3.00E + 03 3.00E + 02 2.00E + 00 1.00E-05 5.81E + 03 7.60E + 01 

10 Peru GRU 1.75E + 02 3.00E + 02 2.00E + 00 1.00E-05 9.43E + 03 9.71E + 01 

LSTM 1.43E + 03 3.00E + 02 2.00E + 00 1.00E-05 2.76E + 03 5.20E + 01 
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9 fatalities and ethnicity. In USA, regions with higher population 

f Black and Latino residents had higher number of COVID-19 cases 

er 10 0,0 0 0 population [49] . COVID-19 mortality relation with the 

ealth at the county level is more pronounced in the non-urban 

ounties. In these counties the people who work on the farms, and 

ho have lower income are at high risk for COVID-19 mortality 

53] . Similarly in a country level case study, it is found that higher

OVID-19 mortality is associated with lower government effective- 

ess, fewer hospital beds and lower test number [54] . Based on the 

iscussion it is important to identify the vulnerable communities 

f the society so that the public health officials can develop strate- 

ies specific to such communities. Tiwari et al. [55] reported an 

nnovative COVID-19 impact assessment algorithm based on ran- 

om forest machine learning modelto identify and map vulnerable 

ounties. In such situation, our results not only provide an infor- 

ation on the upcoming number of fatalities, but also considers 

he various factors that play curial role in increasing the mortality 

aused by COVID-19 disease. 

. Conclusion 

The present study reported a 60-day forecast of the covid-19 

andemic using RNN-LSTM and RNN-GRU models. Model with less 

alues of MSE and RMSE is believed to be the best model for fore-

ast. For confirmed cases, LSTM model performs better for coun- 

ries such as USA, Brazil, South Africa, Peru, Chile and Iran, on the 

ther hand, GRU model performed better for India, Russia, Mex- 

co and UK. LSTM model has predicted to report an alarmingly rise 

n the confirmed cases in the USA, but GRU predicted a gradual 

ise in the cases. Confirmed cases in Brazil could reach a plateau 

LSTM model) or linear increase in counts (GRU). According to both 

he models, cumulative cases in India, South Africa and Peru could 

each a plateau, in contrast, cases in Russia, Mexico, Chile, UK and 

ran may continuously increase. 

For recovered cases, LSTM model performs better for India, 

outh Africa, Chile, UK and Iran, whereas GRU model performed 

etter for USA, Brazil, Russia, Mexico and Peru. The recovered cases 

n Mexico, Iran, Peru and Russia will increase according to both the 

odels. Though the GRU model is over predicting, recovered data 

n USA, India and South Africa will reach a plateau as per both 

he models. Similarly, Brazil will also reach plateau but with LSTM 

verpredicting compared to the GRU. Recovered cases in Mexico, 

ran, Peru and Russia will continuously increase in near future, ac- 

ording to LSTM and GRU models. The recovered cases in UK and 
11 
hile will reach a plateau in upcoming 60 days, which might be 

ot true due to inconsistency in the reported data. 

For the forecast of fatalities data, LSTM model outperformed 

RU model for Brazil, India, Russia, South Africa, Mexico and Iran. 

or fatalities data in countries USA, Peru, Chile and UK, GRU mod- 

ls outperformed LSTM model. Shockingly, the fatalities in USA, 

razil, Russia and India will be continuous to increase with re- 

pect to both the LSTM and GRU model. Mexico, Chile, UK and 

ran have reported to show a plateau with both model’s predic- 

ions very consistent with each other. Fatalities in South Africa and 

eru will reach a plateau but with less agreement between the 

odel’s predictions. Based on the results from the present work, 

t is highly recommended that to develop a deep learning models 

y feeding all three cumulative data sets (confirmed, recovered and 

atalities) simultaneously to predict the pandemic trends. Further, 

ore amount of data and accurate data is needed to develop ro- 

ust and accurate models to obtained forecasts with less margin of 

rror and to correlate the forecasts with factors that contribute to 

he COVID-19 rapid spread. Our study also helps countries realize 

he importance of the various factors that contribute to the spread 

f COVID-19 thereby helping them better prepare for the upcoming 

urge. 
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