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Abstract

With the advent of deep learning, convolutional neural networks (CNNs) have evolved as an 

effective method for the automated segmentation of different tissues in medical image analysis. 

In certain infectious diseases, the liver is one of the more highly affected organs, where 

an accurate liver segmentation method may play a significant role to improve the diagnosis, 

quantification, and follow-up. Although several segmentation algorithms have been proposed 

for liver or liver-tumor segmentation in computed tomography (CT) of human subjects, none 

of them have been investigated for nonhuman primates (NHPs), where the livers have a wide 

range in size and morphology. In addition, the unique characteristics of different infections or 

the heterogeneous immune responses of different NHPs to the infections appear with a diverse 

radiodensity distribution in the CT imaging. In this study, we investigated three state-of-the-art 

algorithms; VNet, UNet, and feature pyramid network (FPN) for automated liver segmentation in 

whole-body CT images of NHPs. The efficacy of the CNNs were evaluated on 82 scans of 37 

animals, including pre and post-exposure to different viruses such as Ebola, Marburg, and Lassa. 

Using a 10-fold cross-validation, the best performance for the segmented liver was provided by 

the FPN; an average 94.77% Dice score, and 3.6% relative absolute volume difference. Our study 
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demonstrated the efficacy of multiple CNNs, wherein the FPN outperforms VNet and UNet for 

liver segmentation in infectious disease imaging research.
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1. Introduction

Effective volumetric segmentation of livers from computed tomography (CT) images is 

crucial for dose estimation, follow-up assessment, and evaluation of therapeutic response. 

The liver is a spatially complex, three-dimensional (3D) organ that usually shows similar 

density to the nearby organs on non-contrast CT scans. Manual delineation of liver is 

considered as the gold-standard, however the process is time-consuming and suffers from 

inter- and intra-observer variability. Specifically, for a large dataset, the manual process 

is quite unmanageable in a short period of time. Therefore, an effective and automated 

segmentation method is highly desirable to accurately segment the liver and allows faster 

processing of large data sets, while removing inter- and intra-observer biases and variation.

Among recent methods, a number of 2D and 3D convolutional neural network (CNN) based 

automated liver and liver-tumor segmentation methods were reported in the Liver Tumor 

Segmentation (LiTS) challenge [1] with a primary focus on liver tumor segmentation. Han 

et al. [2] proposed a combination of two UNet-like models in a 2.5 D framework, where the 

first model was used only for coarse liver segmentation and the second model was trained 

with the segmented liver region to segment both liver and tumors in a fine-tuned manner. 

Li et al. [3] developed another UNet based model in a hybrid densely connected fashion 

(H-DenseUNet) for liver and liver-tumor segmentation. Chlebus et al. [4] also employed 

a UNet like fully convolutional network architecture for liver tumor segmentation. The H­

DenseUNet consisting of a 2D DenseUNet and a 3D counterpart aggregates the volumetric 

contexts in an auto-context mode [5]. Jin et al. [6] used a 3D hybrid residual attention-aware 

segmentation method RA-UNet for liver and liver-tumor segmentation, which has a basic 

3D UNet structure with low-label and high-label feature fusion to extract the contextual 

information. On the other hand, Jiang et al. [7] proposed a 3D fully connected network 

structure, composed of multiple attention hybrid connection blocks (AHCBlocks) densely 

connected with both long and short skip connections and soft self-attention modules for 

liver-tumor segmentation. Although the above methods were effective in human livers and 

liver-lesion segmentation from contrast-enhanced CT scans, their performances haven’t been 

evaluated yet for animal models. Recently, Solomon et al. [8] proposed an atlas-based 

liver segmentation for NHPs to support quantitative image analysis of preclinical studies. 

However, the performance of the atlas-based method depends on the closest matching of 

a rigid registration process and suffers mis-classification if the shape and radiodensity of 

pathologic liver is not well represented or the field of view differs significantly in the atlas.

The automated liver segmentation evaluated in this study using whole-body CT scans 

of these NHP animal models is challenging due to the diversity of the subjects that 
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includes different species with a wide range of animal ages/sizes. In addition, the infected 

livers appear with heterogeneous radiodensity distribution, changes in size and shape (e.g. 

enlarged left lobe of the liver due to the infectious disease process), and the motion blur 

due to breathing artifact. Example images shown in Figure 1 demonstrate the challenges 

associated with this segmentation task. In this study, we employed three CNN methods; 

VNet [9], UNet [10], and feature pyramid network (FPN) [11] to investigate the efficacy 

of different CNNs for automated liver segmentation in animal models. To the best of our 

knowledge, this is the first study that uses CNN-based liver segmentation in nonhuman 

primates (NHPs) with a history of infectious diseases.

2. Materials and Methods

2.1. Dataset

A total of 82 CT images were acquired from 37 nonhuman primates (rhesus (Macaca 
mulatta) and cynomolgus (Macaca fascicularis) macaques), ranging in weight from 3 kg to 

14 kg. Pre and post-exposure scans at different time intervals for different studies were used 

for this project. These animals were exposed to either Ebola (EBOV), Marburg (MARV) or 

Lassa (LASV) viruses. The data set is summarized in Table 1. Sixty-four non-contrast and 

eighteen contrast-enhanced scans were obtained from using either a Philips Gemini 16-slice 

CT scanner or a Philips Precedence 16-slice CT scanner (Philips Healthcare, Cleveland, OH, 

USA) in helical scan mode. The whole-body CT scans acquired for this study covered either 

head to pelvis or head to knee of the animals. The scanner parameters were set at 140 kVp, 

250 or 300 mAs/slice, 1-mm thickness with 0.5-mm increments.

2.2. Ground-truth creation

The manual liver outlining was performed by a previously trained imaging fellow and 

monitored by a CT body radiologist. The contours were drawn in the axial plane using the 

2D brush, Contour Copilot, and interpolation tools within MIM software (MIM Maestro 

version 6.9 Cleveland, Ohio). If breathing motion was observed (even if subjects were 

anesthetized and intubated), the contour was drawn halfway through the extents of the 

breathing artifact. The gallbladder was excluded if it was clearly visible. The 82 CT images 

and associated manual liver masks used in this study have been made publicly available for 

researchers to download at https://www.synapse.org/#!Synapse:syn22174612/wiki/604069.

2.3. Preprocessing

In the pre-processing step, first, all the CT images were resampled to 1 mm3 isotropic 

voxels using cubic interpolation. Second, the density values were thresholded to include the 

range [–40, 160] that excluded irrelevant organs and objects. Finally, the thresholded image 

intensities were rescaled between 0 to 1. An anisotropic diffusion filter [12] was applied to 

each image for noise reduction and boundary preservation.

2.4. CNN architecture

In order to measure the efficacy of the CNN-based method, we applied a 3D version of 

UNet [10] which is one of the most evaluated [1, 2, 3, 6, 4] state-of-the-art algorithms 

that has been successfully applied in many segmentation tasks in medical image analysis. 
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In addition, VNet [9] is also applied as it has been effective in CT image analysis [13]. 

We also employed feature pyramid network, FPN [11], which has also been adopted in 

many object-recognition tasks [14, 15]. Recognizing objects at vastly different scales is a 

fundamental challenge in computer vision. A standard solution to this scale-variant issue 

is to use feature pyramids that enables a model to detect objects across a large range of 

scales by scanning the model over both positions and pyramid levels. Recently, FPN has 

been seen in various semantic [16, 17] and instance [18] segmentation tasks. The FPN 

consists of two pyramidal pathways; bottom-up and top-down. The top-down architecture 

with lateral connections builds the high-level semantic feature maps at all scales. The 

principle advantage of FPN is that it produces a multi-scale feature representation in which 

all levels are semantically strong, including the high-resolution levels [19]. For the bottom­

up feature encoder, we have chosen to use ResNet50 [20] architecture with four resolution 

levels. Instead of five as in the original ResNet50 [20] structure, we chose four which is 

the maximum number of levels achievable by downsampling our input patches described 

in a later section. Following Kirillov et al. [16], we implemented the network overhead 

for semantic segmentation (shown by the red box in Figure 2) and then adjusted the filter 

parameters for our application. However, our primary focus in this work was to experiment 

with state-of-the-art deep learning segmentation methods and implement the most accurate 

method for the novel application of liver segmentation in CT scans of NHPs.

2.5. Training CNNs

Training parameters: All the networks were trained using input patches of size 

64×64×64 voxels. The input patches were extracted randomly from both liver and non-liver 

areas with equal numbers. Patches were called liver or non-liver patches based on the center 

voxel. The corresponding manual segmentation mask was blurred with a 3D Gaussian filter 

with sigma equal to 1 × 1 × 1 mm3. We set the mini-batch size to 90. The parameter updates 

were performed using the Adam optimizer with a learning rate of 5 × 10−5 and decay rate 

of 5×10−5. The model was trained for 30 epochs, whereas the input patches were reshuffled 

before each epoch.

Loss function: Segmentation of any organ is often seen as a voxel-wise classification 

task, where high class-imbalance (sample ratio of different classes) has a significantly 

negative impact on the performance. Considering the variation of class-ratios (foreground/

background) among the subjects and hard-to-detect boundaries with the nearby organs, we 

chose focal [21] as the loss function which is defined as;

FLoss =
−α 1 − gi

σlog gi ; if pi = 1

− 1 − α giσlog 1 − gi ; if pi = 0

Where, gi is the probability of voxel, i to the foreground, and pi is the ground-truth. The 

parameter, α is a weighting factor to adjust the class imbalance and (1 − gi)σ is called the 

modulating factor that gives more weight for hard-to-detect samples and less weight for 

easy-to-detect samples in training. Empirically, α = 0.3, and σ = 2 was found the best fit in 

this liver segmentation task.

Reza et al. Page 4

Acad Radiol. Author manuscript; available in PMC 2022 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2.6. Post-processing

The output of the CNN is a probability map image at 1 mm3 resolution. This probability 

map image was resampled to the original image size. Similar to the preprocessing step, 

a Gaussian filter was used to smooth the resampled probability map image. Later, an 

empirically chosen threshold of value 0.5 was used to suppress the low probability values 

and set higher probability values as the liver.

2.7. Quantitative Evaluation

To validate the effectiveness and robustness of our approach, we used four metrics; 

Dice coefficient, sensitivity, relative absolute volume difference (RAVD), and average 

surface distance (ASD). For the last two metrics, the smaller the value is, the better 

the segmentation. The above metrics are commonly used to measure the segmentation 

performance [22] and defined as follows:

Dice = 2 ∗ S ∩ M
S ∩ M + S ∪ M

where S is the automated segmentation and M is the manual mask of the liver.

Sensitivity = TP
TP + FN

where TP and FN stand for True Positive and False Negative, respectively.

RAV D =
V s − V M

V M

where VS and VM indicate liver volumes by automated and manual segmentation, 

respectively.

ASD = 1
nsD + nsM

∑
pD = 1

nsD
d pD, SM + ∑

pM = 1

nsM
d pM, SD

where nsD, nsM are the number of voxels on the surface of the detected liver and manually 

outlined liver, d(pD,SM) measures the minimum distance between the detected voxels and 

surface of the manual mask and d(pM,SD) measures the opposite.

2.8. Statistical Analysis

Mean, standard deviation, median, maxima, and minima were used for descriptive statistics 

of the above metrics; Dice coefficient, Sensitivity, RAVD, and ASD. A Wilcoxon signed­

rank test which is a non-parametric version of the paired T-test was used to measure the 

statistical significance (p < 0.05) between the performances of two models. All the statistical 

analysis was performed in Python using SciPy and NumPy tools.
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3. Results

We performed subject-wise 10-fold cross-validation using images from 37 animals. In other 

words, all pre and post scans of the test subjects/animals were left out from the training. 

Animal images were randomized before splitting into 10 folds. The example images shown 

in Figure 3 are the the probability maps provided by the CNNs. Figure 4 shows example 

images of the segmented liver for a comparison among VNet, UNet, and FPN. As seen in 

the CT images, when the livers appear with an iso-dense distribution with the surrounding 

tissues like muscles, kidney, stomach, and the partial volume effect of the gallbladder, the 

segmentation algorithms mostly suffer in finding a clear boundary between the tissues. In 

Figure 4 as example, we observed that the proposed FPN is better than VNet and UNet in 

these regions. Architecturally, FPN provides multiple predictions: one for each up-sampling 

layer. Although the FPN has the lateral connections between the bottom-up pyramid and the 

top-down pyramid as UNet, the FPN applies a 1×1 convolutional layer before adding them 

whereas UNet only copies and appends the features. This allows the FPN to use any suitable 

architecture for the bottom-up pyramid, in this case, ResNet50, extracts strong semantic 

features than simple down-sampling. Intutively, the above characteristics of FPN offer better 

generalizability than the other two networks. Therefore, the FPN has a better performance in 

handling the variation of the livers that appears in our dataset.

In order to understand the effect of virus infections on the liver, we separately evaluated the 

segmentation performance of the pre- and post-exposure scans for all three algorithms. The 

average scores of these metrics can be found in Table 2. More detail statistics on the above 

scores can be found in Figure 5.

4. Discussion

Infectious diseases are the second leading cause of death worldwide. In the preclinical 

studies of infectious diseases, animal models permit enhanced information through 

longitudinal studies for a better understanding of pathogenesis and drug development [23]. 

Specifically, animal models are important for Ebola, SARS, and MERS outbreaks to study 

the responses to vaccines and therapies in a manner that is often not possible with human 

subjects.

In automated liver segmentation, one of the most challenging aspects is to detect a clear 

boundary between liver and the nearby organs such as gallbladder, muscles, kidney, and 

stomach. Example images in Figure 4 suggests that FPN is capable of handling the diversity 

and has better boundary detection capability than VNet and UNet. The false negatives were 

also significantly reduced by FPN as seen in Figure 4. In this study of automated NHP liver 

segmentation, we obtained 94.77% overall Dice coefficient which is on par with the reported 

scores in the LiTS challenge [1]. Also, the proposed deep learning-based method FPN (Dice: 

mean 94.77%, Std. 1.43%, median 94.80%) significantly outperforms the atlas-based [8] 

(Dice: mean 89.0%, Std. 5.0%, median 91.0%) method.

In Table 2, we notice the overall scores for VNet, UNet, and FPN by our chosen metrics 

are comparable, however, a closer look at those metrics in Figure 5 indicates that the 
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scores are compromised by a few outliers. The FPN significantly (p < 0.05) improves 

the Dice coefficients, indicating the effectiveness of the network. All three CNNs show 

better performance on the pre-scan images than the post-infection scans. Specifically, for 

the post-infection scans, the Dice scores are lower with more outliers (Figure 5.b). From 

the subject-wise outputs, we noticed that most of these outliers came from the scans with 

severely infected animals. Note that after exposure to the viruses, different animals have 

varying host responses to the viruses, causing variability in liver shape, size and density. 

In this study, only a few animals had shown severe changes in the post-exposure liver 

characteristics which were under-represented in our dataset. Well-represented training data 

might improve those scans’ outputs.

Regarding the computational time, the training was performed on a 16 core Intel Xeon E5 

3.2 GHz CPU and three NVIDIA GeForce 12 GB TitanX GPUs. The average training time 

for one fold of the 10-fold cross-validation procedure took approximately 8 hours for any 

of the three CNNs. The inference time for a test scan was ~1.5 minutes for a 1 mm3 3D 

whole-body CT image.

An important part of these infectious disease studies is tracing the affected organs, such 

as liver, lung, spleen. Manual tracing of these organs’ boundary is a time-consuming task 

and suffers from intra- and inter-rater variability. Our proposed method provides effective 

results in this challenging segmentation task and establishes a baseline study for automated 

liver segmentation in NHPs. In a high consequence infectious disease, the liver is one of 

the most affected organs and has a spatially heterogeneous response where an automated 

segmentation method is highly beneficial to investigate viral pathogenesis as well as to 

test medical countermeasures. Effective countermeasure development and approval process 

would be enhanced by a rapid and reproducible method of quantification.

5. Conclusion

In this work, we investigated the efficacy of CNN-based methods for automated liver 

segmentation in nonhuman primates using whole-body CT scans. Published research has 

focused on liver tumor segmentation in human subjects, whereas for animal models the liver 

segmentation task is limited likely due to the challenging nature of the effort. To the best 

of our knowledge, this is the first work that proposes a CNN-based automated segmentation 

method for liver in NHPs with active viral infections. Our study is aimed to find a suitable 

deep learning based method for NHPs’ liver segmentation. Future work will include data 

augmentation with spatial deformations [24], which may help to represent the scans from 

heavily infected animals well in the training. We also plan to apply cascaded CNNs [25] 

in auto-context mode [5] which have been shown effective in many segmentation tasks. 

In addition, we plan to apply our FPN-based method on human subjects to see if it is 

translatable to humans.
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Figure 1. 
Challenges related to automated liver segmentation in virus infected nonhuman primates. 

The liver appears within a range of fields of view (a)-(b), heterogeneous radiodensity 

distribution due to infection (b)-(c), deformation due to the presence of intra-abdominal fat, 

indicated by the blue arrow (d), and motion blur due to breathing artifacts, indicated by the 

yellow arrow (e). The liver margins are shown by the red polygons.
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Figure 2. 
The schematic diagram of the proposed FPN for liver segmentation.
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Figure 3. 
Example images of liver segmentation; column-wise from left to right, original CT images, 

the probability maps provided by VNet, UNet, FPN, and manual mask, respectively. Note: 

All the images are cropped and zoomed for better visualization.
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Figure 4. 
State-of-the-art comparison. From left to right, original CT image, segmented liver by VNet, 

UNet, FPN, and the manual liver mask. Example images are shown to demonstrate where 

FPN outperforms VNet and UNet (marked by the yellow arrows). Note: All the images are 

cropped and zoomed for better visualization.
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Figure 5. 
State-of-the-art comparison using evaluated score; (a) overall Dice coefficient and 

sensitivity, (b) Dice, (c) sensitivity for pre/post scans, and (d) RAVD. The small red squares 

show the average. The * corresponds to p < 0.05 according to the Wilcoxon signed-rank test. 

Comparisons without * corresponds to p ≥ 0.05.
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Table 1

Diversity in the dataset for automated liver segmentation.

Virus types277
# of animals (total 37) # of scans (total 82) Range of animal weights (kg) Range of liver volumes (ml3)

Rhesus Cynomolgus Pre Post min max min max

EBOV 25 0 25 21 3.06 14.52 61.78 253.14

LASV 0 6 9 9 3 10 99.14 122.88

MARV 6 0 12 6 4.8 10 128.65 279.486
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Table 2

Statistics on the quantitative scores using VNet, UNet, and FPN. The best scores are in bold

Scans278 Metrics
Dice Coefficient (%) Sensitivity (%) RAVD(%) ASD (mm)

VNet UNet FPN VNet UNet FPN VNet UNet FPN VNet UNet FPN

Pre

Mean 92.50 92.55 94.77 89.13 89.41 94.45 8.14 7.79 3.60 1.57 1.11 0.49

Std. 2.48 3.21 1.43 4.82 5.87 2.65 5.01 6.23 3.20 4.32 1.76 0.20

Median 92.88 93.92 94.80 89.38 91.13 94.81 7.15 5.84 2.58 0.62 0.60 0.45

Max 96.13 95.84 96.58 96.15 97.93 98.41 18.32 27.52 16.90 26.89 9.90 1.38

Min 86.46 82.81 90.75 79.11 71.42 86.21 0 0.18 0.14 0.36 0.35 0.30

Post

Mean 91.88 91.36 93.19 88.84 88.19 92.44 8.13 7.80 4.53 1.49 1.16 0.90

Std. 3.00 3.05 5.71 4.82 5.92 8.61 5.70 6.66 8.63 3.19 1.20 1.62

Median 92.77 92.05 94.30 90.22 89.53 94.73 6.06 6.12 2.13 0.71 0.83 0.55

Max 95.83 95.34 96.52 96.24 96.05 98.07 23.66 24.86 50.52 19.41 6.67 10.38

Min 82.17 82.91 62.34 72.45 72.80 46.59 0.68 0.11 0.07 0.37 0.45 0.32

Overall

Mean 92.23 92.03 94.08 89.00 88.87 93.57 8.14 7.80 4.01 1.54 1.13 0.67

Std. 2.74 3.20 3.93 5.23 5.92 6.12 5.32 6.42 6.22 3.86 1.54 1.10

Median 92.81 93.01 94.63 89.81 90.56 94.75 6.75 5.97 2.27 0.65 0.68 0.49

Max 96.13 95.84 96.58 96.24 97.93 98.41 23.66 27.52 50.52 26.89 9.90 10.38

Min 82.17 82.81 62.34 72.45 71.42 46.59 0 0.11 0.07 0.36 0.35 0.30
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