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Abstract

The intestinal microbiota comprises diverse fungal and viral components, in addition to bacteria. 

These microbes interact with the immune system and affect human physiology. Advances in 

metagenomics have associated inflammatory and autoimmune diseases with alterations in fungal 

and viral species in the gut. Studies of animal models have found that commensal fungi and 

viruses can activate host-protective immune pathways related to epithelial barrier integrity, but can 

also induce reactions that contribute to events associated with inflammatory bowel disease. 

Changes in our environment associated with modernization and the COVID-19 pandemic have 

exposed humans to new fungi and viruses, with unknown consequences. We review the lessons 
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learned from studies of animal viruses and fungi commonly detected in the human gut and how 

these might affect health and intestinal disease.
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The intestinal microbiota contains bacteria, archaea, fungi, protozoans, and viruses. Among 

these, bacteria have received the most attention. The human intestine contains hundreds of 

bacterial species, reaching a density of 1012 cells per gram of intestinal content. Disruptions 

to microbial communities (dysbiosis) have been associated with diseases, and strategies to 

restore a composition associated with health are being developed as therapies. As 

demonstrated in mice, intestinal colonization by individual and groups of bacteria affect 

physiology via production of metabolites and/or direct effects on the immune system. 

However, bacteria are not the only microbes in the gut, and are not sufficient to mediate all 

the functions attributed to the intestinal microbiota.

We review viruses and fungi of the gut microbiota and their effects on the immune system 

(Figure 1). Increasing evidence suggest that viruses and fungi regulate physiology via 

multiple interactions with host cells during symbiosis with the human gastrointestinal tract, 

despite their relative low abundance compared with bacteria. Studies of the total genetic 

content of stool specimens have found that viral and fungal genomes each account for 1% or 

less of the total. Nevertheless, the absolute number of fungi and viruses are much more 

impressive (Figure 1). Each gram of stool contains 108–109 virus-like particles (VLPs), most 

of which are from phages that infect bacteria1. Phages shape the functions and composition 

of bacteria by lysing them or integrating into their genomes. Only few examples in the 

current literature demonstrate phages directly interacting with immune cells2,3, thus this 

review will focus on viruses that infect animal cells.

The gastrointestinal tract within the first few months after birth is exposed to animal RNA 

and DNA viruses from at least 16 families, including anelloviruses, picornaviruses (a large 

family that includes enteroviruses and coxsackieviruses), caliciviruses (noroviruses and 

sapoviruses), parvoviruses, adenoviruses, astroviruses, circoviruses, polyomaviruses, and 

papillomaviruses4,5. Although the degree to which these viruses establish long-term 

infections and affect human health is an active area of investigation, experiments in animal 

models indicate these viruses are not silent passengers. Shotgun sequencing studies of VLPs 

(to enrich for viruses) in feces have shown that individuals with inflammatory bowel 

diseases (IBD), celiac disease, colorectal cancer, or enteric graft vs host disease have 

alterations in viromes associated with increased phage diversity and the presence of certain 

animal viruses6–11. One study identified a new family of eukaryotic small circular DNA 

viruses of oro-respiratory viromes linked with periodontal and respiratory disease severity12. 

However, methodology hurdles have made it difficult to define a normal virome in a way 

that is quantitatively rigorous and inclusive of all RNA and DNA animal viruses. HIV-

positive individuals with low CD4+ T-cell counts have increases in adenoviruses and 

Iliev and Cadwell Page 2

Gastroenterology. Author manuscript; available in PMC 2022 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



anelloviruses in fecal samples13; it is likely that the immune system normally suppresses 

these viruses to levels below the threshold of detection by metagenomics.

Like bacteria and viruses, fungi are members of the normal microbiota. Metagenomic 

studies have found fungi to constitute 0.01%–0.1% of the human gut microbiome1415. There 

has been no accurate estimate of the fungal biomass in the gastrointestinal tract—such an 

endeavor would be confounded by differences in genome sizes, the lack of many annotated 

genomes, and different sizes of fungal cells. Exposure to fungal commensals, pathobionts, or 

environmental and food-associated species has effects on the immune system that should be 

studied, regardless of the absolute numbers of fungi in the gut or their degree of stable 

colonization16,17.

A systematic review of gut mycobiota studies found only 15 of the 267 identified species 

were detected in multiple studies18. Only 13 of those species, belonging to Candida, 
Saccharomyces, Aspergillus, Cryptococcus, Malassezia, Cladosporium, Galactomyces, and 

Trichosporon, can grow at 37°C and thereby potentially inhabit the gastrointestinal 

tract18,19. Studies that aimed to broadly define the human intestinal mycobiome analyzed 

fecal samples from 317 healthy donors from the Human Microbiome Project20 or 98 healthy 

volunteers21. Both studies found a high prevalence of Candida and Saccharomyces, followed 

by Malassezia or Cladosporium14,21. In addition to these most prevalent taxa, the studies 

reported another 177 and 63 fungal genera, respectively, that could be environmental and 

dietary transients22. These findings indicate that healthy humans might have a core 

mycobiome, with a highly diverse and variable remainder of less-represented fungi.

Effects of viruses on the immune response

When disease is absent, the presence of eukaryotic viruses in humans is frequently described 

as an asymptotic infection. However, viruses are intracellular parasites, so active viral 

replication can affect the immune system. Experiments with murine norovirus (MNV) 

indicate that enteric viruses can engage the immune system without causing diarrhea, with 

outcomes that are beneficial or adverse, depending on the circumstances. MNV is a positive-

strand RNA virus related to human noroviruses and was discovered in an animal facility in 

2003 as a transmissible virus that killed immunocompromised mice23. Related strains of 

MNV, many of which establish robust persistent infection without causing overt disease, 

were subsequently identified in a multitude of institutions and vendors worldwide. 

Observations made in microbiota-deficient mice support the concept that MNV is a viral 

member of the gut microbiota. Inoculating germ-free mice or mice that have been given 

antibiotics with a persistent strain of MNV reverses many of the intestinal defects observed 

in mice without microbiota, including aberrant morphology of the small intestinal villi, 

reduced numbers of local T cells, and susceptibility to chemical injury by dextran sodium 

sulfate (DSS)24.

The effects of intestinal viral infections are frequently mediated by interferons. Type I 

interferons (IFNs), such as IFNAs and IFNB, and type III IFNs, such as IFNLs, are 

produced in response to viral nucleic acids. Although best known as cytokines that induce 

expression of antiviral genes, IFNs have functions other than reducing viral burden. As an 
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example, production of type I IFNs in response to chronic infection by the herpesvirus 

murine cytomegalovirus (CMV) induces production of APOL9 by macrophages, which 

stimulates epithelial proliferation and wound repair in multiple organs, including the 

colon25. In vulnerable humans, CMV in the gut is associated with colitis. CMV infection of 

blood monocytes that are precursors of gut macrophages leads to upregulation of SMAD7 

and makes these cells resistant to TGFB signaling, promoting inflammation and 

differentiation26. It is possible that the IFN response is necessary to counteract such an 

inflammatory response for viruses that establish symbiotic relationships. Consistent with this 

possibility, the ability of MNV to compensate for the absence of intestinal bacteria is 

mediated by interleukin 22 (IL22)-producing innate lymphoid cells (ILCs), which are 

indirectly activated by type I IFN to protect epithelial cells27.

Much of our knowledge about how viral nucleic acid is sensed through pattern recognition 

receptors in the intestine comes from studies of noroviruses and rotaviruses as pathogens 

rather than commensals. Rotaviruses are double-stranded RNA viruses that were a leading 

cause of viral gastroenteritis and death in children until the introduction of the vaccine; 

although rotaviruses remain a major health concern, noroviruses have become the main 

threat in many regions of the world. Virus RNA activates toll-like receptor 3 (TLR3) and 

TLR7 signaling via MYD88 and TRIF, or RIG-I and MDA5, which interact with MAVS, to 

induce production of IFNs by infected cells28,29. However, rotaviruses and noroviruses 

encode virulence factors that block IFN signaling30–32. IFN-independent effector 

mechanisms potentially compensate, such as the NOD-like receptor (NLR) NLRP9b, which 

induces death of epithelial cells to prevent rotaviruses from completing replication33. Other 

cytokines can mediate mutually beneficial outcomes for viruses and their hosts. IL1A 

recruits monocytes and neutrophils that serve as new targets for propagation of the virus34. 

IL22 is produced as a consequence of a complex immune response involving multiple cell 

types coordinated by MAVS and chemotactic monocytes during MNV infection, which 

protects intestinal epithelial cells from intestinal injury27. Further studies of these innate 

immune pathways are needed to elucidate the symbiotic effects of intestinal viruses.

The mechanisms that inform vaccination strategy and whether it is possible to launch an 

effective adaptive immune response against enteric viruses is a subject of intense research 

(for a review, see35). Norovirus infections can persist and cause serious illness in 

immunocompromised individuals, but less is known about how prolonged shedding occurs 

in asymptomatic people with presumably intact adaptive immune responses36. In contrast to 

a strain that establishes an acute infection in myeloid cells, persistent strains of MNV infect 

intestinal epithelial tuft cells and evoke weak responses by CD8+ T cells37,38. Studies of the 

encephalomyocarditis virus have found that NLRP6 and its binding partner DHX15 are 

intestinal epithelium-specific sensors of RNA that might also detect noroviruses39,40. It will 

be important to elucidate how cell tropism, such as infection of goblet cells by enteroviruses, 

astroviruses, or adenoviruses41–43, affects innate and adaptive immune responses in the gut 

and long-term outcomes of colonization.

Small DNA viruses, such as adenoviruses, circoviruses, and anelloviruses, are ubiquitous in 

the gut4,5,44. It will be important to determine how DNA-sensing pathways downstream of 

TLR9 and cGAS and STING mediate the effects of the gut virome. The finding that α-
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defensins produced by Paneth cells, which are secretory epithelial cells in the small intestine 

with bactericidal activity, promote responses of neutralizing antibodies against 1 strain of 

mouse adenovirus while promoting infectivity of another strain indicates that we have much 

to learn about the interactions between the intestinal barrier and these ubiquitous 

viruses45,46.

Effects of fungi on the immune response

Gut fungi, their metabolites and toxins, and their effects on bacterial populations can directly 

or indirectly influence host immunity16,17. Pattern recognition receptors interact with 

carbohydrates on the surface of the fungal cell wall (Figure 2). C-type lectin receptors 

(CLRs) are mainly involved, but TLRs are considered to have secondary or additive effects. 

CLRs such as dectin 1, dectin 2, dectin 3, mincle, and the mannose receptor, recognize 

fungal cell wall components including β-glucan, mannans, and mannose-associated 

complexes. With the exception of the mannose receptor and MelLec, these CLRs signal via 

spleen associated tyrosine kinase (SYK), a CARD9–BCL10–MALT1 complex, and/or 

RAF147. Activation of SYK signaling requires an immunoreceptor tyrosine-based activation 

motif (ITAM) or ITAM-like motif within the receptor tail (dectin 1) or an associated FcRγ 
adapter molecule (dectin 1, dectin 2, dectin 3, mincle).

Dectin1 binds fungi in the intestines48. Mice lacking this receptor or dectin 3 develop more 

severe colitis following administration of DSS than wild-type mice, accompanied by 

expansion of opportunistic fungal genera such as Candida and Trichosporon; the antifungal 

drug fluconazole reduces the severity of colitis48,49. Dectin 1 deficiency in humans is 

associated with increased colonization of the gut by Candida and graft vs host disease 

following bone marrow transplantation50,51. Experiments with multi-CLR knockout mice 

revealed combined functions of dectin 1, dectin 2, and mincle in the immune response to 

Candida albicans, compared with any single receptor52. Activated dectin 3 induces the 

expression of mincle or forms heterodimers with dectin 2, which signals through FcRγ53. 

Mincle, alternatively, can affect dectin 1-mediated production of IL-12 by promoting 

degradation of interferon regulatory factor 1 (IRF1) via PI3K, AKT, and E3 ubiquitin ligase 

activation54. The E3 ubiquitin ligase CBLB mediates degradation of dectin 1 and dectin 2 to 

serve as a negative regulator of antifungal immunity55,56. There are therefore synergistic and 

antagonistic interactions among CLRs that regulate the antifungal immune response in the 

gut.

CLR signaling pathways are not redundant, but all include CARD9, based on studies of 

Card9−/− mice47. Gut fungal and bacterial communities are altered in Card9−/− mice, with 

notable loss of Lactobacillus spp57. Tryptophan-metabolizing bacteria, including 

lactobacilli, produce ligands for the aryl hydrocarbon receptor, which stimulate release of 

IL22 by group 3 ILCs and T-helper (Th) cells57,58. These abnormalities in the intestines of 

CARD9-deficient mice partially explain the decreased levels of aryl hydrocarbon receptor 

ligands, reduced expression of IL22, REG3G, and REG3B in colon. These phenotypes are 

partially rescued by supplementation with 3 strains of Lactobacilli57. CARD9 deficiency 

also affects immune modulation by gut fungi, which can affect colon cancer 

development59–61.
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Inflammasomes are cytosolic oligomers that mediate processing of IL1B and are part of the 

mucosal immune response to fungal infections. NLRP3 and NLRC4 inflammasomes protect 

mice from vaginal Candida infection via activation of IL1B by caspase 162,63. Detection by 

NLRP3 seems to depend on morphologic features of the fungi (yeast vs hyphae)—NLRP3 is 

activated by Candida hyphae and hyphae-produced secretory molecules64,65.

CLRs are expressed by and active in phagocytic cells, including macrophages, dendritic 

cells (DCs), and neutrophils. Among these, a population of mononuclear phagocytes 

(MNPs), marked by the fractalkine receptor CX3CR1, expresses the highest levels of dectin 

1, dectin 2, and mincle66 (Figure 2). CX3CR1+ MNPs phagocytose fungal species in the 

intestines, and then activate T cells.66,67. Intestinal colonization with Candida induces T-cell 

production of IL17 and IL22 and these Th17 cells control of specific commensal bacteria 

and fungi in mice and humans47,66,68–71. Activation of Th17 cells by CX3CR1+MNPs in 

response to mycobiota might help maintain intestinal homeostasis.

In addition to direct interaction with phagocytic cells, fungi alter phagocyte function via 

their secreted products. C albicans hyphae secrete the toxin canadidalysin, which induces 

NLRP3 inflammasome-dependent IL1B maturation via K+ efflux in macrophages and 

DCs65. Furthermore, Candida secrete aspartic proteases such as SAP3 and SAP6, which 

activate CLR-independent responses by monocytes, macrophages, and DCs via induction of 

K+ efflux and reactive oxygen species72. Fungal toxins and other soluble factors are 

absorbed through extension of “balloon-like” protrusions by a population of CX3CR1+ 

macrophages in the distal colon that protect the epithelium73.

Receptors expressed on cells outside of the immune system, such as ERBB2, EGFR, 

EPHA2, FIBCD1, and MelLec contribute to the antifungal immune response at mucosal 

surfaces, with less clear roles in the gut (Figure 2)74–78. In addition to receptor-mediated 

antifungal responses, C albicans can directly damage of oral and vaginal epithelium via the 

toxin candidalysin, resulting in production of inflammatory cytokines79,80. Candidalysin has 

been reported to damage human epithelial colorectal adenocarcinoma cells81, justifying 

further exploration of the effects of this toxin in the gut.

Balancing the viral and fungal communities

In the absence of an underlying condition or genetic deficiency, intestinal colonization by 

viruses and fungi might have immune-protective effects. Although it remains to be 

determined whether a healthy or normal virome exists, recognition of viral nucleic acid 

clearly has homeostatic effects that promote intestinal barrier function (Figure 3). 

Mimicking viral infection of the epithelium through administration of a RIG-I ligand offsets 

the intestinal barrier damage caused by radiation and chemotherapy20, consistent with a 

previous finding showing that MAVS signaling protects against DSS-mediated colitis82. 

Based on in vitro experiments, RIG-I recognition of RNA from the bacterial microbiota was 

originally suggested to protect against DSS82. However, providing mice with a cocktail of 

antivirals increases susceptibility to DSS83,84. According to one model, enteric viruses are 

essential for inducing IL15 downstream of RIG-I and MAVS, a cytokine necessary to 

maintain intra-epithelial lymphocytes with tissue regenerative properties83 (Figure 3).
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TLR3 and TLR7 agonists that mimic viral double-stranded and single-stranded RNA, 

respectively, induce production of type I IFNs by colonic plasmacytoid DCs (pDCs), which 

also protects against DSS84. This same study demonstrated a similar protective effect of 

inactivated rotavirus, and that TLR3 and TLR7 gene variants are associated with IBD 

susceptibility in humans. Also, a TLR7 agonist recreates the beneficial effect of MNV 

infection by enhancing resistance against vancomycin-resistant Enterococcus through IL22 

producing ILCs85 (Figure 3). IFNL has an anti-inflammatory effect in the gut by inhibiting 

reactive oxygen species production and degranulation by neutrophils86. In this study, an 

antiviral cocktail was used to implicate viral members of the microbiota in IFNL production 

(Figure 3). As with the other studies that rely on antivirals, it will be important to rule out 

non-specific effects of the drugs by identifying specific viruses that serve these functions. 

Astroviruses require consideration. In a recent study, immunocompromised mice were found 

to be surprisingly resistant to MNV and rotavirus infections, which was attributed to 

presence of a murine astrovirus strain that provides cross-protection against other viruses 

through production of IFNL in the gut87 (Figure 3). Murine astrovirus can also protect 

neonates from enteropathogenic E. coli colonization43. The oral polio vaccine (an attenuated 

strain of poliovirus) reduces the incidence of diarrhea caused by rotavirus and other 

agents88, indicating that similar interactions between viruses occur in human gut. So, much 

like the gut bacterial microbiota increases resistance to colonization by bacterial pathogens, 

the gut virome promotes resistance against exogenous viral infections.

Virus-induced production of IL22 by ILCs might be important for intestinal barrier function 

in the presence of pathogenic bacteria. Persistent and non-persistent strains of MNV protect 

mice given antibiotics from induction of diarrhea by Citrobacter rodentium and vancomycin-

resistant Enterococcus24,85 (Figure 3). MNV-induced IL22 led to the survival of newly 

weaned mice, which otherwise died during C rodentium infection. Young children have 

multiple viral infections, which might help them from infections with pathogenic bacteria 

27. MNV also increases resistance to lung infection by Pseudomonas aeruginosa, although it 

is not clear how an enteric virus affects other organs89.

Anti-fungal agents promote expansion of filamentous fungi such as Wallemia mellicola, 

Aspergillus amstelodami, and Epicoccum nigrum, which aggravate intestinal inflammation 

and allergic airway disease61,67,90,91. The systemic effects of intestinal fungi are not known. 

Depletion of CX3CR1+ MNPs from the gut but not the lung revealed that these cells detect 

fungal dysbiosis and increase numbers of Th2 cells and eosinophils to promote lung allergic 

inflammation67. Furthermore, mono-colonization with C albicans or S cerevisiae, which are 

recognized by CX3CR1+ MNPs66, supports the establishment of intestinal homeostasis and 

protects against virus-induced lung inflammation and DSS-induced gut barrier damage92. 

However, administration of a single antibiotic did not protect mice with intestinal C 
albicans70. Similarly S cerevisiae was not protective (and even detrimental) in SPF mice93, 

indicating the pre-existing gut microbiota composition influences intestinal inflammation or 

protective immunity by intestinal fungi.

Gut-adapted C albicans protected mice from systemic challenge with fungal and bacterial 

pathogens, including C albicans itself94. This innate immune memory response95,96 was of 

short duration, required IL6, and was observed in lymphocyte-deficient mice94. However, in 
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the same mice, a C albicans isolate that had not been adapted to the gut protected against 

subsequent infections with C albicans or Staphylococcus aureus, by inducing a Th17 cell-

mediated responses70. These findings indicate that C albicans can induce innate and adaptive 

immune memory responses, possibly to specific strains of fungi. Altogether, these studies 

have shown that a balanced gut mycobiota contributes to immune homeostasis, and that 

intestinal colonization with specific fungi can induce immune memory for specific enteric 

viruses and bacteria.

Laboratory mice are raised in artificial housing conditions that limit the diversity of 

microbes they encounter. Releasing laboratory mice into a confined outdoor enclosure that 

aims to replicate their natural environment increases the diversity and load of intestinal 

fungi, especially Aspergillus species97,98. This expansion of fungi was associated with 

increases in peripheral granulocytes, activated T cells, and other signs of immune 

maturation. Similar observations concerning the gut mycobiota were made in wild mice, 

which are also infected with viruses that are excluded from institutional vivaria99,100. 

Deficiencies in gut fungi or microbes, along with other variables relating to exposure to 

infectious agents100, might account for the inability of the immune system of laboratory 

mice to fully recapitulate that of adult humans. Mouse colonies with natural mycobiomes or 

viromes can be maintained in a laboratory environment, allowing researchers to overcome 

some of these shortcomings99. Findings from studies in which intestinal fungi and viruses 

have been altered, or specific fungi and viruses have been introduced (such as C albicans and 

MNV), have revealed unexpected benefits to mice, such as improved resistance to barrier 

disruption by chemicals and pathogens as mentioned earlier.

IBD

IBD, colorectal cancer, and other gastrointestinal and hepatologic disorders have been 

associated with altered communities of fungi and viruses6–11,16,17,101–105 . Most sequencing 

and experimental studies have focused on IBD, for which data from multiple cohorts and 

experimental models are available. IBD, including Crohn’s disease (CD) and ulcerative 

colitis (UC), are associated with altered richness and diversity in the gut 

mycobiota102,103,106,107. Candida (mainly C albicans) are the predominant genera 

reproducibly identified in fecal or mucosal samples from IBD cohorts18,101–105 (Table 1). 

Candida species can be intestinal symbionts or pathobionts, but the effects of other fungi are 

under investigation. These studies are complicated by their abundance in food sources, on 

skin, or in the surrounding environment18,22,94,108. There have been numerous studies of 

mycobiota in fecal or mucosal samples from patients with CD or mixed populations of 

patients with CD and UC, but only few of studies from patients with UC (Table 1).

Despite confounding factors related to methodology and technology, which have hindered 

direct comparisons among studies, C albicans and C parapsilosis appear to be consistently 

increased in fecal or mucosal samples from patients with CD, whereas changes in 

proportions of C tropicalis, Saccharomyces, and Malassezia spp. vary among 

cohorts16,18,101−10549 (Figure 4A, B). C albicans is also expanded in fecal samples from 

patients with C difficile infection (CDI), compared to patients without CDI138 (Figure 4C). 

Based on limited information, S cerevisiae appears to be reduced in feces of patients with 
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IBD—particularly those with active inflammation102,109. Oral administration of S cerevisiae 
to mice produced effects ranging from detrimental to neutral to protective during DSS-

induced colitis92,93,110.

Malassezia sequences were increased in intestinal washings from patients with CD; the 

presence of M restricta was associated with S12N mutation in CARD9, which increases risk 

for CD and UC104. Phagocytes from these patients had increased production of 

inflammatory cytokines upon fungal stimulation111. Alternatively, the S12NΔ11 truncation 

mutation in CARD9 disrupts its interaction with the ubiquitin ligase TRIM62; this prevents 

production of inflammatory cytokines by DCs exposed to ligands from fungi112 (Figure 4A).

Most mechanistic studies have been performed with a limited set of model fungi strains. In 

contrast, researchers have made progress elucidating strain-specific properties of disease-

associated bacterial species113,114. Strain-specific features of IBD-associated fungi might 

affect development of inflammation. Altogether these studies indicate that patients with IBD 

have changes in the intestinal mycobiota, and that Candida are consistently associated with 

an inflamed gut. The roles of specific strains of Candida, other fungal species, and their 

metabolites contribution to development of bowel inflammation requires further 

investigation.

Consistent with findings from studies of fecal mycobiota from patients with CD, blood 

samples from these patients have higher frequencies of C albicans-reactive T cells compared 

with healthy controls71. So intestinal C albicans might promote inflammation by inducing 

development of fungal antigen-reactive Th17 cells (Figure 4A). However, patients with CD 

given the IL17A antibody secukinumab have a higher rate of fungal infections than patients 

with CD who do not take this drug115. This adverse outcome correlated with pathology 

features, indicating that IL17 affects fungal communities, possibly in the gut.

Antibodies against S cerevisiae mannan (ASCA) are increased in blood samples from 

patients with CD or other diseases with a gastrointestinal component, such as autoimmune 

liver diseases, primary biliary cirrhosis, alcoholic liver disease, and primary sclerosing 

cholangitis16,116. Although the role of ASCAs in pathogenesis is unclear, their detection 

identifies individuals who will develop CD within 5 years with high accuracy117. A loss of 

function mutation (T280M) in CX3CR1 is associated with impaired production of ASCA in 

patients with CD, and decreased titers of serum IgG against C albicans, C parapsilosis, S 
cerevisiae, and P kudriavzevii, but not Wallemia or Malassezia spp., which have low 

presence in the gut66, indicating a link between CX3CR1+ MNPs and ASCA (Figure 4A).

Fecal microbiota transplantation (FMT) was reported to be effective in a subset of patients 

with UC118. A high abundance of C albicans in feces before FMT was associated with a 

clinical response (Table 1). Stable titers of IgG against C albicans and decreased Candida 
abundance in fecal samples after FMT was associated with reduced severity of UC. This 

observation indicates that FMT acts in part by reducing Candida abundance and containing 

proinflammatory immune responses by fungi during intestinal inflammation119 (Figure 5A, 

B).

Iliev and Cadwell Page 9

Gastroenterology. Author manuscript; available in PMC 2022 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Although we have focused on viruses that infect eukaryotic cells, fecal samples from 

patients with IBD have alterations in phage communities, including increases in the 

Caudovirales family in samples from CD or UC patients compared to healthy 

controls7,11,120,121 (Table 1). Siphoviridae of the order Caudovirales were more likely to be 

transferred to patients with UC during FMT compared with other phages122. Fecal samples 

from patients with CDI have a high abundance and low diversity of Caudovirales. FMT 

treatment of CDI alters the phage composition of fecal samples, and response to treatment is 

associated with increased abundance of donor-derived Caudovirales taxa in recipients123 

(Figure 5C). Fecal filtrates from healthy donors were effective in treatment of CDI in 5 

patients, suggesting that phage or other components of feces contribute towards the effects 

of FMT124. It is not clear whether phage infection of bacteria occurs before or after 

dysbiosis, but nucleic acids from phages induce production of type I IFNs by phagocytes2. 

Oral inoculation of germ-free mice with phages induced a Th1 cell-mediated immune 

response, via activation of TLR9 on antigen-presenting cells that internalized viral DNA. 

This response did not involve type I IFNs, and exacerbated DSS-induced colitis3. Expansion 

of phages in microbiomes of patients with IBD therefore may contribute to intestinal 

inflammation.

Viruses that infect eukaryotic cells, such as anelloviruses, are more prevalent in fecal 

samples from patients with IBD than individuals without IBD7,125. Intestinal mucosal 

samples from patients with UC have an increased abundance of Hepadnaviridae, whereas 

samples from patients with CD have an increased abundance of Hepeviridae. Intestinal 

mucosal samples from patients with UC also have lower levels of Polydnaviridae and 

Tymoviridae than controls, whereas samples from patients with CD have reduced 

Virgaviridae abundance126. Some of these viruses are better known for infecting plants and 

insects, and may have originated from the diet, similar to fungi identified in sequencing 

experiments. Antecedent norovirus infection is associated with CD in the Swedish National 

Register, and a separate study demonstrated association between norovirus infection and 

flares of CD127,128 (Table 1). These finding raise important questions about whether patients 

with IBD are more susceptible to viral infections or to adverse consequences of infections, 

such as flares.

Eukaryotic viruses contribute to disease in animal models of IBD. Mice with variants of 

Atg16l1 associated with increased risk of CD have structural abnormalities in Paneth cells 

upon persistent infection by MNV129,130. This defect, in which Paneth cells lack their 

characteristic antimicrobial granules, was observed in patients with CD homozygous for the 

ATG16L1 variant encoding the T300A substitution129. ATG16L1 is required for autophagy, 

in which cytosolic material such as damaged mitochondria are sequestered in double-

membrane vesicles and targeted to the lysosome for degradation131. MNV-infected mice 

with this variant of Atg16l1 develop more severe intestinal inflammation and have increased 

mortality following chemical injury with DSS than wild-type mice130,132.

In the intestinal epithelium, ATG16L1 is required for organelle homeostasis and prevents 

necroptosis in response to virus-induced tumor necrosis factor (TNF)132. Intestinal 

organoids generated from individuals homozygous for the ATG16L1 T300A variant are also 

susceptible to necroptosis in the presence of TNF or cytokines produced by allogeneic Th1 
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cells133. MNV also exacerbates Th1-associated colitis in Mdr1a−/−, Stat1−/−, and Il10−/− 

mice134–136. MNV infection therefore induces production of cytokines that normally protect 

the intestine from bacterial pathogens, but cause damage in tissues that are genetically 

susceptible. The observation that MNV triggers or exacerbates disease in animal models of 

IBD lends support to the concept that animal viruses are a relevant component of the gut 

microbiota.

The induction of IFN and Th1 cell-mediated responses could be a common mechanism by 

which intestinal viruses contribute to inflammatory diseases. Reovirus infection of mice 

induces production of IL12B by CD103+CD11B–CD8A+ DCs, which promotes Th1 

polarization in the mesenteric lymph nodes (MLNs) and increases reactivity towards dietary 

antigens, together with a type I IFN response that interferes with differentiation of T-

regulatory cells137. A non-persistent strain of MNV induces a similar break in tolerance, and 

with both viruses, the Th1 cell-mediated response requires IRF1137,138. The observation that 

the titer of antibodies against reovirus correlates with expression of IRF1 in small intestinal 

biopsies from patients with celiac disease is consistent with findings from mice137. Frequent 

rotavirus infections have also been associated with development of celiac disease139.

In mouse models of CD and celiac disease, viral infections induce features associated with 

human disease (such as Paneth cell defects and gluten-reactive lymphocytes). However, viral 

infections are insufficient to induce overt disease. A requirement for additional 

environmental triggers could explain how common viruses are associated with diseases in 

1% or less of the population. Also, effects of viruses are strain-specific in mouse models of 

CD and of celiac disease130,137,138. If these observations provide any indication of what 

happens in humans, it would be a challenge for epidemiology studies to identify viral causes 

of these diseases. Few studies are equipped to distinguish the presence of a virus at the level 

of point mutations.

Perhaps the strongest evidence that intestinal viruses promote chronic immune diseases in 

humans comes from studies of patients with type 1 diabetes. Group B coxsackieviruses and 

other viruses with fecal to oral transmission have been suspected to contribute to this 

autoimmune disease, in which T cells attack insulin-producing pancreatic β cells140. In one 

of the few prospective, longitudinal virome studies, chronic enterovirus B infection and 

lower incidence of mastadenovirus C infection were associated with development of 

autoantibodies against insulin141. Episodic enteroviral infection was not associated with 

disease, indicating that prolonged infections might contribute to development of chronic 

disorders. Other prospective studies have also associated an altered enteric virome with 

development of type 1 diabetes, such as lack of early-life infection with small, single-

stranded DNA viruses belonging to the Circoviridae family and development of serum 

antibodies associated with type 1 diabetes44,142. Experiments with the non-obese diabetic 

(NOD) mouse model of type 1 diabetes found that infection with group B coxsackievirus 

reduced disease in younger mice, but accelerated disease if introduced into older mice, at a 

time at which insulitis had already initiated, indicating that infection affects ongoing 

autoimmune reactions143,144.
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Rotaviruses and reoviruses are not considered pancreatropic, but have a similar time-

dependent effect on diabetes145–147. In NOD mice, rotavirus accelerates type 1 diabetes by 

spreading from the gut to the lymph nodes that drain the pancreas, where type I IFNs are 

produced by pDCs to activate autoreactive lymphocytes147. MNV infection also protects 

against development of diabetes in NOD mice, which is associated with increases in T-

regulatory cells and an altered bacterial microbiota148. Thus, studies of patients with type 1 

diabetes and NOD mice have shown that gut viruses can affect extra-intestinal immune 

responses. Intestinal fungi also have extra-intestinal effects, modulating systemic immune 

responses as well as immunity in the lung and liver16,61,67,70,71,105,149.

Many patients with COVID-19 have gastrointestinal symptoms. An increasing number of 

published and unpublished findings are reporting the presence of SARSCoV-2 in stool or 

intestinal tissue, consistent with the observation that the virus readily replicates in intestinal 

organoids150–152. The aforementioned experiments in mice predict the presence of the virus, 

or viral RNA, in the gut would induce an immune response with a broad range of 

consequences for the host. Additionally, prospective studies are necessary to understand the 

long-term consequences of SARS-CoV-2 infection for individuals with IBD or other 

immune-mediated disorders. As our understanding of SARS-CoV-2 pathogenesis improves, 

we are confident that the relationship between this virus and the gastrointestinal tract will be 

clarified.

Conclusions

Decades of infectious disease research have shown that fungi and viruses activate innate and 

adaptive immunity at barrier surfaces. Fungi and viruses are indispensable parts of the 

human gut microbiota fully integrated within the bacterial community and affect the immune 

response, health, and development of inflammatory diseases. Despite advances, our 

understanding on the interactions between these components of the gut microbiota and the 

mucosal immune system is limited. Deep sequencing-based analysis of gut viruses and fungi 

indicate the composition of the mycobiome and virome vary considerably among cohorts, 

but that specific viruses and fungal species are associated with multiple cohorts—these 

warrant further investigation.

Intestinal viruses and fungi modulate the immune response and can contribute to intestinal 

inflammation, making them targets of microbiome-based therapies. Broad spectrum 

antifungal or antiviral drugs have been consistently reported to have detrimental effects on 

patients. Diets and FMT alter the fungal and viral components of the gut16,123,153, but have 

other broad effects, making it a challenge to identify any virus-mediated effects on health or 

disease. Identifying specific fungi or viruses in the intestinal microbiota that contribute to or 

prevent disease, and any strain-specific targets, would be required to develop therapeutic 

agents that modify these microbes. Testing pharmacologic agents that alter immune 

responses to fungi or viruses might also help identify their targets. Nevertheless, 

considerably more basic research is needed to inform therapeutic approaches in this new 

area of microbiome science.
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Another emerging area of research not covered by this review is interactions among different 

microbes in the gut. Studies of the oral, vaginal, and lung mucosa provide evidence for 

viruses-bacteria and fungi-bacteria interactions at these sites. Several studies have begun to 

explore such interactions in the gut. Many enteric viruses that infect eukaryotic cells require 

the bacterial microbiota for infection and transmission. Mechanisms include direct effects in 

which bacteria bind virions to enhance stability and attachment to target animal cells, or 

indirect effects of bacteria on the mucosal immune system154–158. In contrast to these 

mechanisms in which bacteria promote viral infection, in mice that are spontaneously 

resistant to rotavirus infection, segmented filamentous bacteria were found to promote 

epithelial cell proliferation and expulsion to block virus infectivity159. This shows that the 

presence of an individual bacterial species can affect the course of an enteric viral infection.

Most studies of interactions between fungi and bacteria in the gut have focused on the 

detrimental effects of bacteria on fungi, although positive or nutritional relationships have 

been documented17,22. Lactobacilli in the intestine promote restructuring of the C albicans 
cell wall and mask β-glucan by producing lactic acid160. Serratia marcescens releases 

unique anti-fungal effector proteins with activity against Candida species and S 
cerevisiae161. However, entirely new approaches must be developed to assess trans-kingdom 

and intra-kingdom interactions among microbes in the intestinal community.

Although intestinal fungi and viruses might be the dark matter of the microbiota, they are a 

highly immunoreactive component with unrecognized potential. It will be important to learn 

how these microbes affect each other, and the immune response, to promote health and 

development of disease.
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Figure 1. Fungi and viruses in the intestinal microbiota.
The intestine contains microbes that include bacteria, archaea, fungi, protozoans, and 

viruses. Most of these microbes are bacteria, which interact with the mucosal immune 

system. Fungi account for less than 1% of the total genetic material in fecal samples, but 

they are larger organisms that might occupy different niches along the gastrointestinal tract. 

Certain genera, such as Candida, are ubiquitous and establish long-term colonization. 

Viruses include phages, which infect bacteria, and viruses that infect eukaryotic cells. 

Phages can affect immune and other cell types via effects in bacteria they infect. Although 

viruses account for a small proportion of the mammalian gut microbiota, and the degree to 

which they establish long-term colonization is unclear, they could have large effects in that 

they directly invade and replicate in host cells. There is evidence fungal and viral members 

of the intestinal microbiota affect differentiation and function of the immune system. In this 

way, intestinal fungi and viruses might increase or decrease risks of diseases ranging from 

nosocomial infections to autoimmune diseases or IBD.
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Figure 2. Innate and adaptive immune responses to fungi in the gut.
At the mucosal surface of the intestines, CLRs (such as dectin 1, dectin 2, and mincle) 

interact with fungal cell wall components, resulting in activation of SYK. SYK activates 

protein kinase C delta (PKCD) to signal via CARD9 and activate nuclear factor (NF)-kB, 

phospholipase C gamma 2 (PLCG2) to activate NFAT, production of reactive oxygen species 

(ROS), or MTOR to activate hypoxia inducible factor 1 subunit alpha (HIF1A). These 

signaling pathways activate production of IL23, IL6, IL10, IL2, IL1 by phagocytes 

(macrophages, monocytes, DCs, and neutrophils) and CSF1 and IL6 by monocytes (“trained 

immunity”). The interaction with fungi-charged phagocytes results in the development of 

Th17 cells and recruitment of neutrophils to the intestinal lamina propria. Receptor-

independent functions of phagocytes supports eradication of specific fungal products and 
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cells. TLRs, NLRs, inflammasome components, and galectin 3 also recognize fungal 

components. These combined effects result in killing of fungi or tolerance to them and a 

balanced gut fungal community or disease development.
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Figure 3. Recognition of viruses by immune cells fortifies the intestinal barrier.
MNV, cytomegalovirus (MCMV), astrovirus (MuAstV) infect myeloid, lymphoid, or 

epithelial cells, depending on strain. These viruses, heat-killed rotavirus, or synthetic viral 

RNAs (vRNAs) activate RIG-I or MDA5 in cytosol or TLRs on endosomes of epithelial 

cells and antigen-presenting cells, which signal through MAVS and TRIF, respectively. 

These signaling pathways trigger production of type I IFN (IFNA and IFNB), which mediate 

bi-directional communication between myeloid cells with the epithelium; IFNL, which 

inhibits neutrophils; IL15, which promotes IEL function; and IL23, which induces ILC3s to 

produce IL22, increasing resistance to injury and bacteria such as vancomycin resistant 

Enterococci (VRE). IFNA and IFNB also activate macrophages to produce APOL9, which 

promotes epithelial cell proliferation and protection from injury.
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Figure 4. Gut fungi in patients with IBD
A) Gut fungal dysbiosis, characterized by the overgrowth of opportunistic fungal species, in 

patients with CD. CD is associated with Candida spp. overgrowth, expansion of less 

abundant fungal genera such as Malassezia spp., and decrease of Saccharomyces spp. in 

fecal samples. The T280M mutation in CX3CR1 is associated with decreased ASCA and 

other antifungal antibodies’ production; the S12N mutation in CARD9 increases production 

of inflammatory cytokines (TNF, IL8,); the delta 11 deletion in CARD block production of 

TNF and IL6 to prevent development of CD. Expansion of C albicans-specific and 

Aspergillus cross-reactive Th17 cells and increase of ASCA antibodies is associated with 

Crohn’s Disease. Candida albicans overgrowth has been observed in patients with UC (B) 

and CDI (C).
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Figure 5. Gut fungi and viruses in FMT.
A) In patients with UC, increased C albicans abundance before FMT is associated with a 

clinical response (top), whereas stable titers of IgG against C albicans in blood samples, and 

decreased Candida abundance in fecal samples, associate with reduced disease severity. B) 

In patients with CDI, a high relative abundance of Saccharomyces and Aspergillus in fecal 

samples after FMT is associated with response to the treatment (top), whereas 

overrepresentation of C albicans and decreased fungal diversity after FMT associate with 

non-responsiveness (bottom). C) In patients with CDI, FMT modulates gut phage 

composition; response to FMT is associated with an increased abundance of Caudovirales 
taxa. Little is known about the effects of viruses that infect eukaryotic cells. It will be 

important to determine which viruses are included in donor sample and how FMT affects the 

viruses already present in the recipient.
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Table 1.

Viral and Fungal Microbes in the Intestine

Microbe
Disease or 
potential 
therapy

Alterations in fungi or viruses Immune Responses References

Fungi

CD

Candida expansion and decreased S cerevisiae in several 
cohorts

Increased abundance of M restricta in 1 cohort
Malassezia and Aspergillus presence linked to CARD9 S12N in 

1 cohort
Fungal dysbiosis characterized by decreased Ascomycota and 

increased Basidiomycota diversity in several cohorts

Increased C albicans-
reactive T cells.
Increased ASCA

Decreased ASCA in 
persons with T280M 

in CX3CR1

65,100–
102,104,107,162

UC Candida expansion in several cohorts None reported 100,105,163

FMT for 
patients with 

UC

High gut Candida before FMT associated with clinical response 
in 1 cohort

Decreased Candida abundance after FMT associated with 
reduced severity in 1 cohort

Increased anti-
Candida antibodies in 
placebo controls are 
abrogated in FMT 

recipients

119

FMT for 
patients with 

CDI

Gut fungal dysbiosis and expansion of C albicans in patients 
with CDI. Decreased Candida abundance after FMT, increased 

Candida abundance after FMT non-responders
Increased Saccharomyces and Aspergillus in responders in 1 

cohort

None reported 153

Viruses

CD

Expansion of Caudovirales phages in several cohorts
Increased frequency of anellovirus in a combined cohort

Exclusive presence of enteroviruses in 1 cohort
Norovirus increases odds of disease in the Swedish National 

Registry and flares

None reported 7,11 6,126–128

UC

Other eukaryotic viruses display altered presence but potentially 
cohort-specific or associated with diet

Expansion of Caudovirales phages in several cohorts. Increased 
frequency of anellovirus in several cohorts. Other eukaryotic 

viruses display altered presence but potentially cohort-specific 
or associated with diet

None reported 7,11,121,125,126

FMT for 
pediatric 

patients with 
UC

Siphoviridae phages belonging to Caudovirales displayed 
enhanced engraftment. None reported 122

FMT for 
patients with 

CDI

FMT responsiveness associated with engraftment of donor-
derived Caudovirales phages, consistent with observation that 

filtered feces contains therapeutic benefit
None reported 123,124

Celiac disease
Patients more likely to have high titers of anti-reovirus antibody

Frequent rotavirus infection associated with disease 
development in a longitudinal study

IRF1 expression in 
intestinal mucosa of 
patients with high 
anti-reovirus titer

137,139

ASCA, Anti-saccharomyces cerevisiae antibodies; FMT, Fecal microbiota transplantation; CDI, Clostridium difficile infection; IBD, inflammatory 
bowel disease; CD, Crohn’s disease; UC, ulcerative colitis
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