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Abstract

Current approaches to single-cell RNA sequencing (RNA-seq) provide only limited information 

about the dynamics of gene expression. Here we present RNA timestamps, a method for inferring 

the age of individual RNAs in RNA-seq data by exploiting RNA editing. To introduce timestamps, 

we tag RNA with a reporter motif consisting of multiple MS2 binding sites that recruit the 

adenosine deaminase ADAR2 fused to an MS2 capsid protein. ADAR2 binding to tagged RNA 

causes A-to-I edits to accumulate over time, allowing the age of the RNA to be inferred with hour-

scale accuracy. By combining observations of multiple timestamped RNAs driven by the same 

promoter, we can determine when the promoter was active. We demonstrate that the system can 

infer the presence and timing of multiple past transcriptional events. Finally, we apply the method 

to cluster single cells according to the timing of past transcriptional activity. RNA timestamps will 

allow the incorporation of temporal information into RNA-seq workflows.

Rapid progress in RNA-seq technologies and, in particular, single-cell RNA-seq has enabled 

detailed molecular characterization of complex tissues. However, because sequencing is a 

destructive measurement, these approaches provide only an instantaneous snapshot of 

cellular state, and comparatively little work has been done to examine how cell states arise 

from complex transcriptional dynamics over timescales of hours. Efforts to add a temporal 

dimension to RNA-seq through metabolic labeling of newly synthesized RNAs1,2,3,4, or 

computational inference from the abundance of unspliced transcripts5, provide only the 

derivative of expression level or information about expression at a single timepoint, so 

transcriptional histories must still be reconstructed by observations of many cells. To 

overcome these challenges, we asked whether it might be possible to estimate the age of 

each individual RNA made by a promoter, eventually allowing us to build up a picture of the 

transcriptional history of a single cell from the ensemble of RNAs present in the cell.

To that end, we designed a recorder RNA motif, referred to as an RNA timestamp, that 

reports its age via the gradual accumulation of A-to-I edits caused by an engineered version 

of the human adenosine deaminase acting on RNA 2 catalytic domain (ADAR2cd; Fig. 1a). 

This catalytic domain has been shown to be targetable to specific RNAs via fusion to 

exogenous RNA-binding domains, with minimal off-target activity to untargeted 

RNAs6,7,8,9,10. We designed the timestamps to be arrays of adenosine-rich sequences that 

are favored substrates of the ADAR enzyme11,12,13 (Fig. 1b). Edits in this region can 

subsequently be identified as A-to-G mutations in high-throughput sequencing of the 

timestamps. ADAR2cd is specifically targeted to MS2 binding sites in the editing region of 

the timestamps through a fusion with the MS2 capsid protein (MCP)14. We screened 
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multiple RNA and ADAR variants and selected a pair with an editing timescale on the order 

of hours, a timescale relevant for endogenous transcriptional activity (Supplementary Fig. 1).

To calibrate our system, we incubated HEK293T cells expressing the ADAR variant and a 

timestamped RNA under the control of the tetracycline response element (TRE) in medium 

containing doxycycline for 1 h. The timestamp was placed in the 3′ untranslated region 

(UTR) of a fluorescent protein-encoding messenger RNA (mRNA)15, which shows minimal 

degradation over the course of 12 h in mammalian cells (Supplementary Fig. 2). We 

subsequently added actinomycin D, an RNA transcription inhibitor16, and then lysed the 

cells after a variable amount of time before sequencing the timestamps (Fig. 1c). Each of 

these experiments provided us with a population of RNAs with a known age (±30 min), and 

we observed that the timestamps became progressively more heavily edited over time (Fig. 

1d). The mean number of edits per timestamp at any given timepoint was highly 

reproducible between biological replicates (Fig. 1e), and the accumulation of edits over time 

could be modeled accurately using a Poisson binomial model (Supplementary Fig. 3). Using 

the empirical distribution of the number of edits per timestamp, we found that it was 

possible to estimate the age of a timestamped mRNA transcript purely from the total number 

of edits on the timestamp with a 95% confidence interval of 2.7 ± 0.4 h (mean ± s.d., n = 26 

confidence intervals each derived for timestamps with a different number of edits; Fig. 1f). 

We, hereafter, refer to the distributions of edits per RNA obtained from these single-hour 

induction experiments as ‘single-hour editing distributions’. Because cells will often contain 

many copies of a given RNA transcript, we reasoned that we might be able to infer the 

underlying transcriptional dynamics of a specific promoter by analyzing the ensemble of 

timestamped RNAs produced by the promoter. To test this, we built an algorithm that infers, 

without any assumptions, the transcriptional program that is most consistent with a 

particular set of timestamps (Methods). By ‘transcriptional program’, we mean the function 

that describes the number of timestamps generated as a function of time. We represent each 

transcriptional program in a discretized and normalized form as a set of 12 positive values 

that sum to 1, with each value representing the fraction of RNAs generated in a different 1-h 

window. The algorithm infers transcriptional programs by using gradient descent to identify 

a convex combination of single-hour editing distributions that minimizes the L2 norm 

between the observed editing distribution and the editing distribution associated with the 

convex combination (Fig. 2a). The weights that describe the optimal convex combination 

are, thus, the inferred transcriptional program. We applied the algorithm to sets of 

timestamped RNAs that were all chosen randomly from the same timepoint and found that it 

could infer both that the sets came from a single timepoint and which timepoint they came 

from, with accuracy that increased monotonically with the number of RNAs in the set (Fig. 

2b). Consistent with our hypothesis that temporal estimates based on multiple RNAs would 

be more accurate than temporal estimates based on a single RNA, the temporal error 

associated with a set of only four RNAs was 1.49 ± 0.42 h (mean ± s.d., n = 12 timepoints; 

Methods) and declined monotonically with increasing numbers of RNAs (Fig. 2c). For sets 

of at least 50 RNAs,17,18, the algorithm reproduced weight distributions that clearly 

resembled the single-hour transcriptional programs from which the RNAs were derived (Fig. 

2d).
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Because each RNA is individually timestamped, we reasoned that the algorithm might be 

able to identify if a given set of timestamped RNA was produced by multiple, temporally 

distinct transcriptional pulses. To test this, we computationally generated mixtures of RNAs 

drawn half from the 1-h timepoint and half from the 5-h timepoint and applied the gradient 

descent algorithm to infer the transcriptional program most likely to have generated the 

mixtures (Fig. 3a). Even with only ten RNAs, we were able to identify the presence of two 

peaks in the transcriptional program 51.3% ± 7.6% of the time, and this increased to 86% ± 

13% with 200 RNAs (mean ± s.d., n = 3 biological samples; Fig. 3b and Methods). To 

validate these predictions experimentally, we transfected cells with barcoded RNAs driven 

by a doxycycline-sensitive promoter and a light-sensitive transcription factor19. 

Timestamped RNAs associated with each promoter could be identified by promoter-specific 

barcodes, allowing for independent reconstruction of light- and doxycycline-induced 

timestamp editing distributions (Supplementary Fig. 4). Independently stimulating the cells 

with each promoter at two different times (at 1 h and 5 h) led to an editing distribution with 

two clear peaks corresponding to the two transcriptional events (Fig. 3c). We then 

subsampled the timestamped RNAs from this experiment (Fig. 3d) and ran the gradient 

descent algorithm to generate putative transcriptional programs (Fig. 3e). Even though this 

was a more challenging task, because the RNAs were not chosen evenly from the two peaks, 

the results we obtained were very similar to the results obtained in our simulations (Fig. 3f). 

With ten RNAs, two peaks could be distinguished 44.5% ± 0.7% of the time, and this 

increased to 90.5% ± 0.7% with 200 RNAs (mean ± s.d., n = 2 biological samples; Fig. 3g). 

We have also shown that timestamps can be used in primary hippocampal neuron culture to 

infer the c-fos response from KCl activation of neural activity (Supplementary Fig. 5). The 

testing context for our technology—that is, a plasmid-based reporter system and a cultured 

neuron system—had high levels of Fos activity in the absence of KCl stimulation but 

demonstrates that this technology might enable temporally resolved, sequencing-based 

readout of neural activity. Given the performance of the timestamp system with relatively 

few RNAs, we asked whether it could be applied to determine the timing of transcriptional 

events in individual cells. We transfected cells with timestamped RNAs under the control of 

TRE, induced with doxycycline, and then induced the cells according to three different 

single-hour induction protocols (Methods). Individual cells were then sorted into wells of a 

96-well plate, and we subsequently performed single-cell timestamp sequencing (Fig. 4a). 

Analysis of the editing histograms yielded a mean induction time associated with each cell 

(Methods). The estimation error in the temporal estimate for the single cells in the single-

hour induction protocols were 0.2 ± 0.8 h (mean ± s.d., n = 27) for one condition and 0.5 ± 

1.0 h (mean ± s.d., n = 19) for the other (Fig. 4b and Methods). Based on these temporal 

estimates, we were able to order the cells according to the timing of transcriptional events, 

obtaining only five transpositions out of 72 cells, an accuracy rate of 86% (Fig. 4c).

Recent advances in droplet-based barcoding technologies have enabled the scalable 

molecular profiling of cells and tissues at the single-cell level20,21. Thus, we asked if we 

could read out timestamps with 10x single-cell 3′ RNA-seq in combination with paired 

transcriptomic information. To do so, we developed a molecular biology workflow that 

enables targeted amplification of timestamps from single-cell barcoded whole-transcriptome 

amplification products (Methods and Fig. 4d). This allows for both the timestamps and the 
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cell barcode to be read out via paired-end Illumina sequencing. We transfected HEK cells 

with the barcoded TRE timestamp systems and induced with doxycycline 1, 2 or 4 h before 

10x droplet-based sequencing. Single-cell timestamp recordings measured via 10x 

sequencing is qualitatively similar to bulk sequencing from the same conditions (Fig. 4e). 

After filtering for high-quality cells, we performed k-means clustering on the timestamps 

and found three distinct clusters (659 cells, ~85% of cells) corresponding to the 1-, 2- and 4-

h inductions (the other 32% corresponded to cells with few edits, potentially without 

ADAR). Examining these 659 cells, we found that 494 of 659 (~75%) of these cells were 

assigned to the correct induction condition (Fig. 4f). These results demonstrate that 

timestamps can be read out in concert with high-throughput single-cell droplet-based 

methods.

Inferring temporal information from RNA-seq has many distinct advantages: unlike in the 

case of fluorescent reporter proteins, temporal information can be inferred without direct 

observation of the cells in situ, and temporal information can be combined with information 

about cell type through RNA-seq. Several new sequencing technologies have recently added 

a temporal dimension to RNA-seq—for example, by metabolically labeling newly 

synthesized RNAs1,2,3,4 or by inferring the instantaneous change in cell state from the 

abundance of unspliced transcripts. However, these existing tools for inferring temporal 

information from RNA-seq provide only one-dimensional data: metabolic labeling identifies 

only RNA made within one specific window, whereas splicing-based techniques identify 

only the instantaneous derivative of the cell state. In both cases, complex cellular dynamics 

must, therefore, be inferred from measurements on many cells, and cellular heterogeneity 

can be lost. On the other hand, several recently published methods have succeeded in 

recording cell-state information into the sequence of DNA in living 

cells22,23,24,25,26,27,28,29,30,31,32, but all such methods operate on timescales of days 

and are, thus, insufficient for recording transcriptional responses to perturbations, which 

typically take place over hours. RNA timestamps are, thus, the first technology that can 

record high-dimensional temporal information from individual cells on timescales relevant 

for understanding complex cellular transcriptional activity.

Here we reported that the continuous enzymatic activity of adenosine deaminases acting on 

RNA can allow for direct inference of the age of individual RNAs and that statistical 

methods taking advantage of this phenomenon can reveal the temporal aspect of 

transcriptional dynamics in individual cells. In general, the inference algorithm that we 

present can reveal the absolute timing of transcriptional events provided a set of single-hour 

editing distributions, which serve as a calibration set. However, important caveats remain. 

For example, simulations suggest that more complex transcriptional programs, such as 

transcription that slowly ramps up over time, might require thousands of RNAs to decode 

(Supplementary Fig. 6). Another important practical question is whether a calibration 

obtained in one system (such as cell culture; see ‘Calibration of editing rate’ in the Methods) 

can be used to decode distributions obtained in other systems (such as in vivo recordings). 

Nonetheless, even in the absence of a suitable calibration, algorithms, such as the decoder 

presented here, can be used to infer the relative timing of transcriptional events, and future 

work might focus on the development of internal calibration measurements for in vivo 

experiments.
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The concept of RNA timestamps presented here might find widespread utility. For example, 

the demonstrated ability to order cells by transcriptional response could have great utility for 

studying the diversity of responses to cellular perturbations33,34. Using the same concept, 

alternative systems could be designed that record other kinds of signals besides 

transcription. For example, by using alternative dimerization systems35,36 to link ADAR to 

constitutively expressed timestamps in a stimulus-specific manner, it might be possible to 

construct timestamp systems that report on the timing of other kinds of cellular events, such 

as calcium or other signaling molecules. Moreover, we suspect that timestamps could readily 

be added to endogenous RNAs or that a similar concept could be used—for example, by 

observing edits in the poly(A) tail or by examining adenosine-rich parts of the transcript. 

Together, these observations suggest that RNA timestamps provide a scalable and extensible 

approach for recording the temporal activity of cells.

Methods

Cloning

All plasmids were constructed using either restriction cloning using restriction enzymes 

from New England Biolabs and the NEB Quick Ligation kit (M2200L) or the In-Fusion HD 

cloning enzyme mix (Clontech, 638911). Plasmids were grown in E. cloni 10G Chemically 

Competent Cells (Lucigen, 60107–1) and were verified by Sanger sequencing (Eton 

Bioscience). All plasmids (Supplementary Table 1) are deposited on Addgene.

Owing to high repetition present in the RNA editing templates, inserts for plasmids 76, 147, 

148, 149 and 187 (Supplementary Table 2) were ordered as sense and antisense ultramer 

oligonucleotides, which were annealed to each other before cloning. Plasmid 76 was cloned 

by inserting RNA templates (A_Short, B_Short, C, D and E) into the 3′ UTR of an iRFP 

transcript expressed under a UbC promoter in a second-generation lentivirus backbone using 

SphI and ClaI. Subsequently, this plasmid was modified by the addition of a flavivirus 

xrRNA in the 5′ UTR. Templates A_Short and B_Short were then extended by inserting 

another pair of annealed ultramers on the 5′ side of A_Short and B_Short using SphI and 

MluI. The resulting templates are designated A and B. To generate plasmids 147, 148, 149 

and 183 (as used in the paper), templates A and B were then moved into different backbones 

and different promoters by restriction cloning or by Gibson assembly with polymerase chain 

reaction (PCR) amplification of the timestamp template region. Template A is used 

throughout the paper; template B is shown in Supplementary Fig. 1 for comparison.

RNA purification, library preparation and sequencing

All cell cultures were lysed with 600 μl of buffer RLT Plus from the Qiagen RNeasy Plus 

Mini Kit (Qiagen, 74136) and were pipetted up and down vigorously to homogenize. RNA 

was then purified using the Qiagen RNeasy Plus Mini Kit, following the instructions from 

the manufacturer. Subsequently, 11 μl of purified RNA was reverse transcribed using 

SuperScript IV (Thermo Fisher Scientific, 18090050) and a barcoded version of SGR-174 

(Supplementary Table 2), following the protocol from the manufacturer. Reverse 

transcription (RT) reactions were then purified using Agencourt Ampure XP beads at a 1:1 

dilution (Beckman Coulter, A63881). Some portion of the eluent, typically 25%, was then 
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analyzed by PCR using P5 and a barcoded version of SGR-176 (Supplementary Table 2) and 

the Q5 Hot Start High Fidelity 2× Master Mix (NEB, M0492L) with the following settings: 

30 s of 98 °C denaturation; then 25–30 cycles of 10-s denaturation at 98 °C; 20 s of 

annealing at 70 °C; and then 25 s of extension at 72 °C. PCR reactions were then pooled and 

run on a gel, and a 400-bp band was extracted using the NucleoSpin PCR Cleanup Kit 

(Macherey-Nagel, 740609.250). The concentration of DNA in the resulting eluent was 

determined via a Qubit 2 fluorometer (Thermo Fisher Scientific) and was then adjusted to 4 

nM for sequencing. The read structure is shown in Supplementary Fig. 7.

Sequencing was performed using NextSeq Mid Output 300 cycle kits (Illumina, FC-404–

2004), MiSeq 300 cycle v2 kits (MS-102–2002) or MiSeq 600 cycle v3 kits (MS-102–

3003), with at least 80-bp read 1 and 185-bp read 2, with 8-bp index 1 and 15-bp index 2.

HEK and 3T3 cell culture

Except in the case of the single-cell experiments, HEK293FT and 3T3 cells were plated in 

24-well plates. Cells were grown in DMEM (Thermo Fisher Scientific, 10566016) and 

supplemented with penicillin–streptomycin (Thermo Fisher Scientific, 15140122) and 10% 

certified Tet system-approved FBS (Clontech, 631101). Transfections were performed using 

the TransIT-X2 system (Mirus, MIR 6000), following the manufacturer’s instructions.

Experiments with the doxycycline promoter

For doxycycline experiments, HEK and 3T3 cells in 24-well plates were transfected with 

300 ng of plasmid 147 or 148, 100 ng of pCMV Tet3G from the Tet-on 3G system 

(Clontech, 631168) and 100 ng of plasmids 116v1, 116v5 or 116v6. In the experiments for 

Fig. 1 and Supplementary Figs. 1 and 3, they were transfected with both 147 and 148 and 

received 150 ng of each plasmid. At least 12 h after transfection, cells were stimulated by 

adding doxycycline to a final concentration of 1 μg ml−1, followed by gentle mixing or 

swirling of the plate. Subsequently, transcription was halted by adding actinomycin D to a 

final concentration of 1 μg ml−1 in the same medium. After waiting for the experimental 

time period, cells were lysed using Buffer RLT Plus, and libraries were prepared as 

described above.

Experiments with the Vivid promoter

For experiments in Fig. 3c–g and Supplementary Fig. 4, 3T3s were transfected with 300 ng 

of plasmid 149, 100 ng of plasmid 133 and 100 ng of plasmid 116v5. For conditions in 

which cells were transfected with both plasmid 147 and plasmid 149, they received 100 ng 

each of plasmids 149, 147, pCMV Tet3G, 133 and 116v5. Cells were stimulated with a blue 

LED (Thorlabs, M455L2) with a total power of 200 μW cm−2. The LED was turned on for 1 

h and was subsequently turned off. After the LED was turned off, the cells were wrapped in 

foil to prevent accidental light exposure. Cells were then lysed after the experimental time 

period.

As shown in Supplementary Fig. 4, cells were stimulated with blue light for 1 h and were 

then placed in darkness for 7 h. While still in darkness, cells were then stimulated with 

doxycycline as described above. After 1 h in doxycycline, cells were lysed.
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As shown in Fig. 3c–g, cells were stimulated with blue light for 1 h and were then placed in 

darkness for 4 h. While still in darkness, cells were then stimulated with doxycycline as 

described above. After 1 h in doxycycline, cells were lysed.

HEK cell doxycycline experiment

For the experiment shown in Fig. 1d–f, cells were stimulated as above and were lysed at the 

following timepoints: 0 h (that is, immediately before adding doxycycline), 0.5 h after 

adding doxycycline, 1 h after adding doxycycline (that is, immediately before adding 

actinomycin D), 2 h after adding doxycycline, 3 h after adding doxycycline, 4 h after adding 

doxycycline, 5 h after adding doxycycline, 6 h after adding doxycycline, 7 h after adding 

doxycycline, 8 h after adding doxycycline, 9 h after adding doxycycline, 10 h after adding 

doxycycline, 11 h after adding doxycycline and 12 h after adding doxycycline. Each 

timepoint consisted of three replicates. On a separate occasion, we collected three replicates 

at 2.5 h after adding doxycycline and 4.5 h after adding doxycycline, and these timepoints 

functioned as our test timepoints in Supplementary Fig. 3. The data from Fig. 1d–f were 

further used in Figs. 2 and 3a,b.

Single-cell experiments

For all experiments involving single cells, HEK cell cultures were prepared; transfected with 

100 ng of pAAV-CAG-GFP (Addgene 37825), 200 ng of plasmid 147, 100 ng of plasmid 

116v5 and 100 ng of pCMV Tet3G; stimulated with doxycycline; and then silenced with 

actinomycin D as described above. The three induction conditions were as follows: cells in 

condition 1 were left in doxycycline for 1 h before lysis; cells in condition 2 were silenced 

with actinomycin D after 1 h and then left for 3 h; and cells in condition 3 were silenced 

with actinomycin D after 1 h and then left for 7 h. Subsequently, cells were treated with 

trypsin (Life Technologies, 25300054). After trypsinization, cells were centrifuged at 850g, 

washed in cold PBS and then resuspended in cold PBS. Then, 96-well plates were prepared, 

with each well containing a solution of 0.2% Triton-X with 2 U μl−1 of RNAse inhibitor. 

Individual cells were sorted into the wells of this well plate using a MoFlo Astrios EQ flow 

cytometer. After sorting, the well plate was sealed, centrifuged and then placed at −80 °C 

overnight.

For the analysis in Fig. 4a–c, cells in condition 2 received plasmid 147B1, whereas cells in 

condition 3 received plasmid 147B3. The two populations of cells were mixed after 

trypsinization and sorted together. By contrast, cells in condition 1 received plasmid 147B1 

and were sorted separately from the others.

Library preparation for the single cells proceeded as follows. Plates containing single cells 

were thawed, and 7 μl of nuclease-free water was added to the single cells to bring the total 

volume up to 11 μl. Subsequently, RT was performed using SuperScript IV and the SGR-174 

RT primers, as in the case of the bulk samples, with the following modifications. RT primers 

were distributed so that each cell at a given timepoint received an RT primer with a different 

barcode. In addition, for each timepoint, we performed two no-template RT reactions. 

Finally, after the 50 °C step in the SuperScript IV protocol, we cooled the samples to 37 °C 

and added 20 U of exonuclease 1 (NEB, M0293S) to the reaction to remove excess primers. 

Rodriques et al. Page 8

Nat Biotechnol. Author manuscript; available in PMC 2021 March 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Samples then remained at 37 °C for 10 min before proceeding to the 80 °C heat inactivation 

step. After RT, the RT reactions for all cells and the two no-template controls at a given 

timepoint were pooled and cleaned with Ampure XP beads at a 1:1 dilution and were then 

analyzed by PCR using the same protocol as for the bulk samples. Cells were pooled before 

PCR as a way of reducing the number of cycles necessary to achieve amplification. We 

excluded cells if they received fewer than 150 reads or if the most common RNA barcode 

represented fewer than 80% of the total de-duplicated reads, which would indicate index 

swapping between cells.

For experiments involving 10x single cells, as in Fig. 4d–f, cells in the 1-h condition were 

induced with doxycycline 1 h before 10x preparation; cells in the 2-h condition were 

induced with doxycycline 2 h before 10x preparation and silenced with actinomycin D 1 h 

later and left for 1 h; and cells in the 4-h condition were induced with doxycycline 4 h before 

10x preparation, silenced with actinomycin D after 1 h and then left for 3 h. Cells were then 

treated with trypsin (Life Technologies, 25300054), spun down at 500g, washed in cold PBS 

and then resuspended in cold PBS with 0.04% wt/vol BSA. Cell concentration was counted, 

and the appropriate volume of cells was added to a 10x reaction for a targeted cell recovery 

of 2,000 cells. The reaction was run through a 10x chip according to the 10x Genomics 

Chromium Single Cell protocol. After the droplet generation step, the reaction was 

transferred to a PCR strip tube and RT, post-RT cleanup and complementary DNA (cDNA) 

amplification were completed after the 10x Genomics Chromium Single Cell protocol. After 

cDNA cleanup, 1–5 μl of the cDNA product was analyzed by PCR with Phusion Hot Start 

Flex DNA Polymerase (New England Biolabs, M0535S), using a barcoded version of 

SGR-176 and a version of the 10x Genomics cDNA primer that included a P5 addition, with 

the following settings: 30 s of 98 °C denaturation; then 15–20 cycles of 10-s denaturation at 

98 °C and 20 s of annealing at 63 °C; and then 25 s of extension at 72 °C. The rest of the 

cDNA product was saved for the remainder of the 10x Genomics Chromium Single Cell 

protocol. The PCR product was then purified with Ampure beads at a 1:1 dilution and then 

adjusted to a concentration of 4 nM for sequencing. The libraries were sequenced on a 

MiSeq with the following read structure: 28 Read 1, 8 Index 1, 8 Index 2 and 200 Read 2. 

The number of editing sites sequenced per timestamp is fewer, as only Sequencing Read 2 is 

used for timestamps.

Alignment and edit counting

The alignment and analysis pipeline for sequencing data is summarized in Supplementary 

Fig. 7. Analysis of sequencing data was performed using custom MATLAB code (MATLAB 

2017a). Briefly, in the case of single-cell data, we first performed de-duplication using a 9-

bp unique molecular identifier on the RT primer (oligo SGR-174). Other data sets were not 

de-duplicated. Reads were then filtered to ensure that they had the minimum necessary read 

length (67 bases on Read 1 and 184 bases on Read 2). Note that Read 1 was on the RT 

primer, so Read 1 reads the reverse complement of the RNA sequence. Thus, the expected 

mutation was A to G on Read 2 and T to C on Read 1. Alignment was performed using all 

bases that were not As on Read 2 or that were not Ts on Read 1. Reads were considered to 

be aligned to the template if 95% of the non-A (for Read 2) or non-T (for Read 1) bases 

matched the template. Furthermore, we required 90% of the bases that were expected to be 
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As on Read 2 or Ts on Read 1 to have Q-scores greater than 27 (Supplementary Fig. 7); 

reads that failed to achieve this threshold were discarded.

Finally, we required that all reads have at least one edit in Read 1 and at least one edit in 

Read 2 for analysis. We implemented this requirement because it appeared to eliminate 

several artifacts that we occasionally observed in our data. For example, each well would 

sometimes have different (large) numbers of RNAs with zero edits or one edit, which would 

confound attempts to infer timing by gradient descent. As a consequence of this 

requirement, all of the histograms of edits per RNA presented in this paper appear to show 

only very few RNAs with fewer than ~12 edits. There are ~12 bases in template A, all of 

which are on Read 2, that are edited much more quickly than any bases on Read 1. These are 

of the form UAG and all form bulges in the RNA secondary structure, which are thought to 

encourage editing by ADAR. Exclusion of RNAs with zero edits on Read 1 or Read 2 

predominantly limits the analysis to RNAs that are already fully edited at all 12 of those As, 

thus causing all RNAs to have at least 12 edits. RNAs with fewer than 12 edits might be 

useful for inferring transcriptional dynamics on the order of minutes, which we observed in 

preliminary experiments not presented here.

Calibration of editing rate

When analyzing RNA editing distributions generated in 3T3s using a gradient descent 

algorithm with basis vectors derived from HEK293 cells (as in Fig. 3), we included a further 

calibration step before analysis, as follows. First, we generated a timestamp library from 3T3 

cells that were transfected with the doxycycline timestamp system, induced with 

doxycycline for 1 h and then lysed. We then calculated the mean number A of edits per RNA 

for cells in the 1-h HEK cell induction data set and the mean number B of edits per RNA in 

the 1-h 3T3 cell induction data set and multiplied the number of edits in subsequent 3T3 

data by the ratio A/B. This procedure was done because we observed that the editing rate 

was uniformly higher in 3T3 data than in the corresponding HEK cell data, for reasons that 

were not determined.

Exponential model

The exponential model in Supplementary Fig. 3 was implemented using custom code in 

Python (Python 3.6) as follows. For each editable position i on the template, we assume that 

the likelihood of base i being edited follows an exponential distribution with parameter λi, to 

be estimated from the data. Assuming an instantaneous pulse of transcriptional activity at 

time t = 0, the fraction of edited bases for position i, yi, can be modelled as the cumulative 

distribution function of the exponential distribution:

Yi(t) = 1 − e−λit

To more accurately capture the experimental setup, we model yi as an underlying process, 

which is exponential, but with start time uniformly distributed in [0, tstop], where t = 0 

represents when doxycycline is added to the cells, and tstop is the time at which actinomycin 

D was added to the cells. Specifically, we fit a function of the form
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yi(t) =
1 − 1 − e−λit

λit
if t ≤ tstop

1 − e−λi t − tstop − e−λit
λitstop

if t > tstop

where tstop was 1 h, and λi was fit to the data using nonlinear least squares. This function 

was fit for times t ≥ 1.5 h, because the editing distributions for earlier timepoints are strongly 

affected by populations of RNA present before doxycycline addition. For the analysis in 

Supplementary Fig. 3, analysis was then performed using only those adenosines for which 

the R2 of the resulting fit was greater than 0.9. We model the total number of edits to the 

RNA with a Poisson binomial distribution with n trials where n is the total number of 

editable positions and success probabilities given by yi(t) for each position i. The probability 

of having n edits at time t is given by

p(n, t) = ∑
A:sum (A) = n

∏
k:Ak = 1

yk(t) ∏
j:Aj = 0

1 − yj(t)

Here, A is a binary vector with each entry corresponding to a specific adenosine in the 

timestamp editing region. Ak = 1 if adenosine k has been edited to inosine, and sum(A) 

counts the total number of edits in A. Time estimates using the exponential model were then 

made by minimizing the Kullback–Leibler divergence between p(n,t) and the empirical 

distribution q(n) over t. p(n,t) was calculated in practice via a dynamic programming 

approach.

For Supplementary Fig. 3, the exponential model was calculated using the data from a single 

replicate of the HEK doxycycline experiment. The distributions in Supplementary Fig. 3c 

show the number of edits per RNA calculated across all bases with R2 greater than 0.9 for 

that replicate, and the Poisson binomial model in Supplementary Fig. 3c likewise included 

the same bases. By contrast, for Supplementary Fig. 3d, bases were retained only if they had 

an R2 greater than 0.9 in all three replicates from the HEK doxycycline experiment. For this 

reason, the apparent numbers of edits per RNA are lower in Supplementary Fig. 3d than in 

Supplementary Fig. 3c.

Gradient descent

A schematic depicting the gradient descent algorithm is shown in Supplementary Fig. 8. The 

gradient descent in Figs. 2 and 3 and Supplementary Figs. 6 and 9 was implemented using 

custom code in MATLAB (MATLAB 2017a). Briefly, the gradient descent algorithm was 

given an RNA editing distribution (a normalized histogram of edits per RNA), which could 

be either an experimentally measured distribution (Figs. 2b–d and 3c–g) or a simulated 

distribution (Fig. 3a,b and Supplementary Figs. 6 and 9). Simulated distributions were 

generated using data from the experiment in Fig. 1e,f, either by randomly sampling RNAs 

from a specified timepoint or timepoints from that experiment (as in Fig. 3a,b and 

Supplementary Fig. 9) or by taking convex combinations of the editing distributions from 

that experiment (as in Supplementary Fig. 6). The gradient descent algorithm was also given 
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a set of ‘basis vector’ histograms, which were obtained by combining the data at each 

timepoint from all three replicates from the HEK doxycycline experiment. The gradient 

descent was then initialized by drawing a set of weights from a Dirichlet distribution with all 

parameters set to unity. The gradient descent minimized the mean squared error (L2 norm) 

between the input distribution and the convex combination of the basis vectors given by the 

weights. For each simulated distribution, we performed the gradient descent 1,000 times and 

took the solution that minimized the L2 norm.

To avoid overfitting, whenever an input to the gradient descent was simulated, the 

distributions used as ‘basis’ functions in the gradient descent were averages of all three 

biological replicates from the experiment in Fig. 1e,f, whereas the simulated distributions 

were always generated from the data associated with a single replicate.

An exception to this policy was made for Supplementary Fig. 6, where RNAs were 

randomly chosen from all three replicates, and then the gradient descent was performed 

using basis functions that were averages of all three replicates. This exception was made to 

be able to simulate ramp distributions with 10,000 or 30,000 RNAs, which would not have 

been possible without combining data from all three replicates. For this reason, there is some 

risk that the accuracy of the decoding in Supplementary Fig. 6 would be lower if different 

basis vectors were used for the decoding.

An analysis of the performance of the gradient descent algorithm on random simulated 

transcriptional programs is presented in Supplementary Fig. 9. In general, the gradient 

descent algorithm succeeded in reproducing the editing histogram with high accuracy 

(Supplementary Fig. 9a). Additionally, the weight vector found by the gradient descent 

algorithm was, on average, much closer to the true weight vector than randomly sampled 

vectors (Supplementary Fig. 9b), although this was not always true (Supplementary Fig. 9c). 

Because the simulated and approximated editing histograms were generated with different 

basis distributions, noise present in those basis distributions meant that the true weight 

vector was not, in general, the optimal solution for the gradient descent (Supplementary Fig. 

9d,e).

Analysis of two peaks experiments

In Fig. 3b,g, a weight distribution generated by the gradient descent algorithm was defined 

to have two peaks if the sum of the weights on the 1- and 2-h timepoints and the sum of the 

weights on the 4- and 5-h timepoints were both greater than the weight on the 3-h timepoint. 

When making Fig. 3b,g, we generated several possible definitions for what would constitute 

‘two peaks’ and obtained qualitatively similar behavior (monotonically increasing 

identification of two peaks) for all of them. This definition was chosen for presentation 

arbitrarily.

Accuracy metrics

In Fig. 2c, temporal estimation error is calculated by multiplying the distance of each 

timepoint away from the expected timepoint by the weight assigned to that timepoint and 

summing. Thus, for the 3-h single-induction pulse, if the decoder assigned weights of 0.5 to 

the 3-h timepoint and 0.5 to the 5-h timepoint, the resulting estimation error would be 0.5*0 
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+ 0.5*2 = 1 h. This metric is not directly comparable to the 95% confidence interval 

presented in reference to Fig. 1f, but if the procedure used to generate Fig. 2c is repeated for 

‘sets’ consisting of a single RNA, the error obtained is 1.9 ± 0.47 h (mean ± s.d., n = 12 

timepoints), which is significantly greater than the 1.49 ± 0.42 h obtained for sets of four 

RNAs (means differ by >3 standard errors), supporting the statement that the error for four 

RNAs is less than that for a single RNA.

For the arbitrary transcriptional program experiments in Supplementary Fig. 9 and the ramp 

in Supplementary Fig. 6, we calculated the accuracy as the sum of the absolute values of the 

differences between the assigned and expected weights, divided by 2 to avoid double 

counting. Thus, if we expected one timepoint to get 100% of the total weight, and that 

timepoint, instead, got 80% of the total weight, then the resulting accuracy would be 80%.

In Fig. 4b, the accuracy is calculated as the mean absolute difference between the single-cell 

estimates and the estimate for the bulk distribution. We calculate the accuracy in this way for 

the single cells because the underlying transcriptional program is not known. The single 

cells stay on ice for up to 1 h during processing, and we have not measured the editing 

kinetics during that time.

Neuron culture preparation and transfection

All procedures involving animals at Massachusetts Institute of Technology were conducted 

in accordance with the National Institutes of Health Guide for the Care and Use of 

Laboratory Animals and approved by the Massachusetts Institute of Technology Committee 

on Animal Care. Primary hippocampal neuron culture was prepared as previously 

described15. Briefly, neurons were transfected at 6–7 days in vitro (DIV) using a 

commercial calcium–phosphate kit (Thermo Fisher Scientific, K278001) with 600 ng of 

pUC19, 200 ng of plasmid 116v5 and 200 ng of plasmid 187. Neurons were then incubated 

with calcium–phosphate precipitates for 30–60 min, followed by washing with MEM buffer 

at pH 6.7–6.8 to remove residual precipitates.

Neuron culture stimulation

Neurons were stimulated at 14–15 DIV. Neurons were placed in 1 ml of plating medium 

(500 ml of MEM, 2.5 g of glucose, 50 mg of transferrin, 1.1 g of HEPES, 5 ml of 200 mM 

L-glutamine, 12.5 mg of insulin, 50 ml of HI FBS and 10 ml of B27 supplement). To 

stimulate the neurons, we added 250 μl of 5× depolarization medium and agitated gently. 

Neurons were then left for 1 h in an incubator. Subsequently, the medium was aspirated, and 

neurons were washed twice in plating medium. They were then left in plating medium for a 

variable amount of time before being lysed in 600 μl of buffer RLT Plus.

Plating medium

1. 500 ml of MEM (Thermo Fisher Scientific, 51200–038)

2. 2.5 g of glucose (Sigma-Aldrich, G7528–1KG)

3. 50 mg of transferrin (Sigma-Aldrich, T1283–500 mg)

4. 1.1 g of HEPES (Sigma-Aldrich, H3375–500G)
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5. 5 ml of 200 mM L-glutamine (Thermo Fisher Scientific, 25030–081)

6. 12.5 mg of insulin (Millipore, 407709)

7. 50 ml of HI FBS (VWR, 45000–736)

8. 10 ml of B27 Supplement (Thermo Fisher Scientific, 17504–044)

5× depolarization medium

1. 170 mM KCl

2. 10 mM HEPES, pH 7.4

3. 1 mM MgCl2

4. 2 mM CaCl2

Neuron inference experiment

Owing to the limited availability of neuron culture at any given time, the data for 

Supplementary Fig. 5 were gathered in two separate experiments with different sample 

replicates per experiment. We collected the following timepoints: before stimulation (that is, 

immediately before adding depolarization medium); 1 h after stimulation (that is, 

immediately before washing the neurons in fresh medium); 2 h after stimulation; 3 h after 

stimulation; 3.5 h after stimulation; 4 h after stimulation; 5 h after stimulation; 5.5 h after 

stimulation; 6 h after stimulation; and 7 h after stimulation.

The breakdown of the data in Supplementary Fig. 5 by experiment is as follows. In the first 

experiment, we collected two samples before stimulation, three samples at 1 h, three samples 

at 2 h, three samples at 3 h, three samples at 4 h and two samples at 5 h. In the second 

experiment, we collected one sample at 2 h, two samples at 3 h, three samples at 3.5 h, two 

samples at 4 h, two samples at 5 h, three samples at 5.5 h, two samples at 6 h and two 

samples at 7 h.

Linear interpolation

In Supplementary Fig. 5, the timepoints associated with the c-fos neural activity were 

determined by linear interpolation as follows. We first calculated the mean number of edits 

per RNA for all replicates and determined the mean across replicates for each timepoint 

(plotted in Supplementary Fig. 5b, designated Mt). Then, to perform the estimate, for each 

replicate R from timepoint t, we identified the two timepoints, t1 and t2, such that t! = t1,t2 

and such that the mean mR of replicate R obeyed Mt1 < mR < Mt2. The time estimate for 

replicate R is then determined as

tR =
mR − Mt1
Mt2 − Mt1

t2 − t1 + t1

Reporting Summary

Further information on research design is available in the Nature Research Reporting 

Summary linked to this article.
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Data availability

Raw data were used in all figures that are not described in the captions as schematics. The 

data sets generated and analyzed during the current study are available on the Zenodo 

Archive, record 3897464. Raw sequencing data are available at the Sequence Read Archive 

under PRJNA658989.

Code availability

The code used to produce analysis and figures for the current study is available on the 

Zenodo Archive, record 3897464.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1: Encoding of temporal information through RNA edits.
a, Schematic of the timestamps approach, consisting of editing arrays of adenosines (blue 

dots) and several MS2 step loops in the 3′ UTR of an mRNA. In the presence of an MCP–

ADAR fusion (MCP, blue ellipses; ADAR, yellow hexagon), timestamps are edited over 

time by catalytic conversion of adenosine to inosine (red dots). b, A schematic structure of a 

portion of one timestamp, showing MS2 stem loops and the repetitive, double-stranded RNA 

motif that serves as the editing substrate. c, Schematic representation of the Tet-responsive 

timestamped mRNA system and experimental timeline. d, Examples of timestamps edited 

for different amounts of time, showing the accumulation of A-to-I edits. e, The mean 

number of edits per timestamp observed after editing for different amounts of time. Data are 

represented as mean ± s.d. (n = 3 biological replicates). f, The number of edits per 

timestamp is shown for different specified ages. Columns are normalized to 1. Each column 

can be interpreted as a probability distribution of when a timestamped RNA with a given 

number of edits is likely to have been made.
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Fig. 2: Timestamped RNAs can reveal temporal transcription programs.
a, Schematic of the gradient descent algorithm. RNAs are generated by an unknown 

underlying transcriptional program (for example, a transcriptional event that occurred 2 h 

before lysis (left)), which corresponds to an underlying distribution of edits per timestamp 

(middle left)). In any individual experiment, one observes a set of timestamped RNAs 

sampled from the underlying distribution (middle right). The gradient descent algorithm 

produces an inferred transcriptional program (right) that best approximates the observed 

RNA distribution under the L2 norm. Transcriptional programs can then be represented as 

columns in a heat map (far right). b, For sets of timestamped RNAs drawn from a single 

timepoint, the fraction assigned by the algorithm to the correct timepoint (blue) or the 

correct 3-h window (orange) as a function of the number of RNAs in the set (n = 12 

timepoints). c, The temporal error associated with the reconstructed transcriptional 

programs, as a function of the number of RNAs in the set (Methods). d, The average weight 

assigned by the gradient descent algorithm to each timepoint (y axis) is shown as a function 

of the timepoint of origin (x axis), for sets of 50 RNAs. Columns sum to 1. Error bars 

represent mean ± s.d. for b and c.
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Fig. 3: Identification of temporally separated transcriptional events.
a, The average weight assigned by the gradient descent algorithm to each timepoint for sets 

of timestamped RNAs that were drawn randomly (in equal proportion) from the 1- and 5-h 

timepoints as a function of number of RNAs drawn. Columns sum to 1. b, The percentage of 

sets of RNA in which two peaks can be identified by the gradient descent algorithm 

(Methods). Error bars show mean ± s.d., n = 3 data sets from biological replicates. c, 

Histograms of the number of edits per timestamp are shown for cells that were induced 

separately with a light-sensitive promoter and a doxycycline-sensitive promoter. Red shows 

the distribution of edits per RNA for RNAs transcribed off the doxycycline promoter, 

whereas yellow shows the light-sensitive promoter. Blue shows the combined distribution. 

Columns show two biological replicates. d, Distributions of edits per timestamp for sets of 

RNAs chosen randomly from the blue distribution in c. e, The weight distribution inferred 

by the gradient descent algorithm for the set of RNAs shown in d. f, Same as a but for sets 

of RNA drawn from the experimental distributions in c. g, Same as b but for sets of RNA 

drawn from the experimental distributions in c. Error bars show mean ± s.d., n = 2 biological 

replicates.
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Fig. 4: Timestamps can reveal transcriptional programs in single cells.
All editing histograms are normalized to sum to 1. a, Editing histograms for bulk conditions 

A through C (top) and randomly chosen single cells (bottom). b, Predicted induction times 

for all single cells in the experiment, calculated as the center of mass of the inferred weight 

distributions (n = 24 for condition A, n = 27 for condition B and n = 19 for condition C). For 

the box plot, the middle line is the median, and the lower and upper hinges correspond to the 

first and third quartiles. Whiskers extend to the largest value no further than 1.5× IQR from 

the hinge. The lower whisker extends from the hinge to the smallest value at most 1.5× IQR 

of the hinge, whereas data beyond the end of the whiskers are outlying points that are plotted 

individually. c, The predicted induction time for each single cell, ranked from least to 

greatest. Green dots correspond to condition A; red dots correspond to condition B; and blue 

dots correspond to condition C. d, Schematic of capture and sequencing of timestamps with 

10x single-cell sequencing in conjunction with transcriptomic profiling. e, Top, editing 

histograms for bulk sequencing of 1-h induction events 1, 2 and 4 h before lysis. Bottom, 

three representative single cells for 1-, 2- and 4-h induction conditions. f, Heat map of 

distribution of edits per cell for 659 cells. Cells are clustered by k-means according to their 

editing distribution into three clusters corresponding to predicted induction. ‘Actual’ column 
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shows grouping of cells by condition, determined using a condition barcode on the 

timestamp reads (red, 1 h; light blue, 2 h; and dark blue, 4 h). IQR, interquartile range.
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