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Abstract

We propose a novel framework for combining datasets via alignment of their intrinsic geometry. 

This alignment can be used to fuse data originating from disparate modalities, or to correct batch 

effects while preserving intrinsic data structure. Importantly, we do not assume any pointwise 

correspondence between datasets, but instead rely on correspondence between a (possibly 

unknown) subset of data features. We leverage this assumption to construct an isometric alignment 

between the data. This alignment is obtained by relating the expansion of data features in 

harmonics derived from diffusion operators defined over each dataset. These expansions encode 

each feature as a function of the data geometry. We use this to relate the diffusion coordinates of 

each dataset through our assumption of partial feature correspondence. Then, a unified diffusion 

geometry is constructed over the aligned data, which can also be used to correct the original data 

measurements. We demonstrate our method on several datasets, showing in particular its 

effectiveness in biological applications including fusion of single-cell RNA sequencing (scRNA-

seq) and single-cell ATAC sequencing (scATAC-seq) data measured on the same population of 

cells, and removal of batch effect between biological samples.

1 Introduction

High dimensional data have become increasingly common in many fields of science and 

technology, and with them the need for robust representations of intrinsic structure and 

geometry in data, typically inferred via manifold learning methods. Furthermore, modern 

data collection technologies often produce multisample data, which contain multiple datasets 

(or data batches) that aim to capture the same phenomena but originate from different 

equipment, different calibration, or different experimental environments. These introduce 

new challenges in manifold learning, as naïve treatment in such cases produces data 

geometry that largely separates different data batches into separate manifolds. Therefore, 

special processing is required to align and integrate the data manifolds in such cases in order 

to allow for the study and exploration of relations between and across multiple datasets.
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As a particular application field, we focus here on single cell data analysis, which has gained 

importance with the advent of new sequencing technologies, such as scRNA-seq and 

scATAC-seq. While numerous works have shown that manifold learning approaches are 

particularly effective on such data [1], a common challenge in their analysis is a set of 

technical artifacts termed batch effects (caused by data collection from separate 

experimental runs) that tend to dominate downstream analysis, unless explicitly corrected. 

For instance, it is often the case that naïve data manifold construction groups such data into 

clusters that correspond to measurement time or equipment used, rather than by meaningful 

biological variations. Under such circumstances, it is necessary that batch artifacts be 

eliminated while actual biological differences between the samples be retained. Further, it 

can also be the case that different variables of data are measured on the same biological 

system. For example, cells from the same tissue can be measured with transcriptomic and 

proteomic technologies. However, the cells themselves are destroyed in each measurement, 

even though they are sampled from the same underlying cellular manifold. Therefore, there 

is no correspondence that can be established between the two sets of measurements directly.

Recent manifold learning methods focusing on multisample data often treat each dataset as a 

different “view” of the same system or latent manifold, and construct a multiview geometry 

(e.g., based on the popular diffusion maps framework [2]) to represent them (e.g., [3–8]). 

Importantly, these methods often require at least partial, if not full, bijection between views 

(e.g., both sets of measurements conducted on the same cells), which is often impossible to 

obtain in experimental scenarios where data is collected asynchronously or independently. In 

particular, as mentioned above, genomic and proteomic data (especially at the single-cell 

resolution) often originate on destructive collection technologies, and thus data point (i.e., 

cell) correspondence becomes an impractical (if not impossible) assumption to impose on 

their analysis. Other works attempt to directly match data points, either in the ambient space 

[9,10] or by local data geometry [11]. These approaches can be very sensitive to differences 

in sampling density rather than data geometry, as discussed in §2-3. Furthermore, a complete 

matching is often not feasible as certain datasets may contain distinct local phenomena (e.g., 

rare subpopulation only captured in one dataset but not present in the other).

In this paper, we formulate the processing of multisample data with no data point 

correspondence in terms of manifold alignment, and present an approach towards such 

alignment by bridging the geometricharmonic framework provided by diffusion geometry 

[2] (§3.1) together with data feature filtering enabled by graph signal processing [12] (§3.2). 

Our alignment approach relies on correspondence between underlying features quantified by 

data collection or measurement systems, phrased here as feature correspondence, which is 

often more realistic that data point correspondence. Indeed, related systems often observe 

similar “entities” (e.g., cells, patients) and aim to capture related properties in them. As 

explained in §2 and §3.2, we treat measured data features as manifold signals (i.e., over the 

data manifold) and relate them to intrinsic coordinates of a diffusion geometry [2] of each 

dataset, which also serve as intrinsic data harmonics. Then, as explained in §4, we leverage 

feature correspondence to capture pairwise relations between the intrinsic diffusion 

coordinates of the separate data manifolds (i.e., of each dataset). Finally, we use these 

relations to compute an isometric transformation that aligns the data manifolds on top of 

each other without distorting their internal structure.
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We demonstrate the results of our method in §5 on artificial manifolds and single-cell 

biological data for both batch effect removal and multimodal data fusion. In each case, our 

method successfully aligns data manifolds such that they have appropriate neighbors both 

within and across the two datasets. Further, we show an application of our approach in 

transfer learning by applying a k-NN classifier to one unlabeled dataset based on labels 

provided by another dataset (with batch effects between them), and compare the 

classification accuracy before and after alignment. Finally, comparisons with recently 

developed methods such as the MNNbased method from [9] show significant improvements 

in performance and denoising by our harmonic alignment methods.

2 Problem setup

Let X = {x1,...xM} and Y = {y1,...yN} be two finite datasets that aim to measure the same 

phenomena. For simplicity, we assume that both datasets have the same number of features, 

i.e., X, Y ⊆ ℝn for some sufficiently high dimension n. We consider here a setting where 

these datasets are collected via different instruments or environment, but are expected to 

capture some equivalent information which can be used to align the two datasets. To 

leverage a manifold learning approach in such settings, we consider the common latent 

geometry of the data as an unknown manifold ℳ, which is mapped to the two feature spaces 

via functions f, g:ℳ ℝn that represent the two data spaces. Namely, each data point x ∈ X 

is considered as a result x = f(z) = (f1(z), …, fn(z)) ∈ ℝn for some z ∈ ℳ and similarly each y 

∈ Y as a result of y = g(z) = g1(z), …, gn(z) ∈ ℝn . Therefore, we aim to provide a common 

data representation of both datasets, which captures the geometry of ℳ while allowing data 

fusion of X, Y and integrated processing or analysis of their data features.

We note that while we clearly do not have access to the points z ∈ ℳ on the underlying 

manifold, we do have access to a finite sampling of the feature functions 

fs, gs : ℳ ℝ, s = 1, …, n, by considering X, Y as points-by-features matrices (i.e., 

rewriting them, by slight abuse of notation, as X ∈ ℝM × n and Y ∈ ℝN × n, rather than finite 

subsets of ℝn) and taking their corresponding columns. Further, previous multiview 

manifold learning methods typically consider aligned datasets, i.e., assuming that all feature 

functions are sampled over the same manifold points. Instead, here we remove this 

assumption, thus allowing independently sampled datasets, and replace it with a feature 

correspondence assumption. Namely, we assume the feature functions fs, gs (for given 1 ≤ s 
≤ n) aim to capture similar structures in the data and should therefore share some common 

information, although each may also contain sensor-specific or dataset-specific bias. While 

this is an informal notion, it fits well with many experimental data collection settings.

3 Preliminaries and background

3.1 Diffusion maps

To learn a manifold geometry from collected data we use the diffusion maps (DM) 

construction [2], which we briefly describe here for one of the data spaces X, but is 
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equivalently constructed on Y. This construction starts by considering local similarities, 

which we quantify via an anisotropic kernel

K(xi, xj) = G(xi, xj)
‖G(xi, ⋅ )‖1‖G(xj, ⋅ )‖1

, (3.1)

where G xi, xj = exp −‖xi − xj‖2/σ  is the Gaussian kernel with neighborhood radius σ > 0. 

As shown in [2], this kernel provides neighborhood construction that is robust to sampling 

density variations and enables separation of data geometry from its distribution. Next, the 

kernel K is normalized to define transition probabilities p xi, yj = K xi, xj /‖K xi, ⋅ ‖1 that 

define a Markovian diffusion process over the data. Finally, a DM is defined by organizing 

these probabilities in a row stochastic matrix P (typically referred to as the diffusion 

operator) as Pij = p(xi, xj), and using its eigenvalues 1 = λ1 ≥ λ2 ≥ ··· ≥ λN and 

(corresponding) eigenvectors ϕj j = 1
N  to map each xi ∈ X to diffusion coordinates 

Φt xi = λ1
t ϕ1 xi , …, λN

t ϕN xi
T . The parameter t in this construction represents a diffusion 

time or the number of transitions considered in the diffusion process. To simplify notations, 

we also use Φt = Φt xi :xi ∈ X  to denote the DM of the entire dataset X. We note that in 

general, as t increases, most of the eigenvalue weights λj
t, j = 1, …, N, become numerically 

negligible, and thus truncated DM coordinates (i.e., using only non-negligible weights) can 

be used for dimensionality reduction purposes, as discussed in [2].

3.2 Graph Fourier transform

A classic result in spectral graph theory (see, e.g., [13]) shows that the discrete Fourier basis 

(i.e., pure harmonics, such as sines and cosines, organized by their frequencies) can be 

derived as Laplacian eigenvectors of the ring graphs. This result was recently used in graph 

signal processing [12] to define a graph Fourier transform (GFT) by treating eigenvectors of 

the graph Laplacian as generalized Fourier harmonics (i.e., intrinsic sines and cosines over a 

graph). Further, as discussed in [2,14], diffusion coordinates are closely related to these 

Laplacian eigenvectors, and can essentially serve as geometric harmonics over data 

manifolds.

In our case, we regard the kernel K from §3.1 as a weighted adjacency matrix of a graph 

whose vertices are the data point in X. Then, the resulting normalized graph Laplacian is 

given by ℒ = I − D1/2PD−1/2, where D is a diagonal matrix with Dii = ‖K xi, ⋅ ‖1 .

Therefore, the eigenvectors of ℒ can be written as ψj = D1/2ϕj with corresponding 

eigenvalues ωj = 1 − λj. The resulting GFT of a signal (or function) f over X can thus be 

written as f[j] = f, ψj = f, D1/2ϕj . We note that here we treat either ωj or λj as providing 

a “frequency” organization of their corresponding eigenvectors ψj or ϕj (treated as intrinsic 

harmonics). In the latter case, eigenvectors with higher eigenvalues correspond to lower 

frequencies on the data manifold, and vice versa. As noted before, the same construction of 

GFT here and DM in §3.1 can be equivalently constructed for Y as well. This frequency-

based organization of diffusion coordinates derived from X and Y, and their treatment as 

geometric harmonics, will be leveraged in §4 to provide an isometric alignment between the 
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intrinsic data manifolds represented by the DMs of the two datasets by also leveraging the 

(partial) feature correspondence assumption from §2.

3.3 Related work on manifold alignment

Algorithms for semi-supervised and unsupervised manifold alignment exist in classical 

statistics [15,16], deep learning [10,17,18] and manifold learning [4,9,11]. As mentioned in 

§1, much work has been done on finding common manifolds between data based on known 

(partial) bijection between data points [5–8]. In a sense, these methods can be regarded as 

nonlinear successors of the classic canonical correlation analysis (CCA) [16], in the same 

way as many manifold learning methods can be regarded as generalizing PCA. Indeed, 

similar to PCA, the CCA method finds a common linear projection, but on directions that 

maximize covariance or correlation (typically estimated empirically via known pointwise 

correspondence) between datasets rather than just variance within one of them. However, in 

this work we mainly focus on settings where no data point correspondence is available, and 

therefore we focus our discussion in this section on related work that operate in such 

settings.

One of the earliest attempts at manifold alignment (in particular, with no point 

correspondence), was presented in [11], which proposes a linear method based on 

embedding a joint graph built over both datasets to preserve local structure in both 

manifolds. This method provides a mapping from both original features spaces to a new 

feature space defined by the joint graph, which is shared by both datasets with no 

assumption of feature correspondence. More recently, in biomedical data analysis, mutual 

nearest neighbors (MNN) batch correction [9] focuses on families of manifold deformations 

that are often encountered in biomedical data. There, locally linear manifold alignment is 

provided by calculating a correction vector for each point in the data, as defined by the 

distances from the point to all points for which it is a mutual k-nearest neighbor. This 

correction vector is then smoothed by taking a weighted average over a Gaussian kernel.

Beyond manifold learning settings, deep learning methods have been proposed to provide 

alignment and transfer learning between datasets. For example, cycle GANs [17] are a class 

of deep neural network in which a generative adversarial network (GAN) is used to learn a 

nonlinear mapping from one domain to another, and then a second GAN is used to map back 

to the original domain. These networks are then optimized to (approximately) satisfy cycle 

consistency constraints such that the result of applying the full cycle to a data point 

reproduces the original point. MAGAN [10] is a particular cycle GAN that adds a supervised 

partial feature correspondence to enforce alignment of two data manifolds over the mapping 

provided by the trained network. However, this correspondence can be disturbed by noise or 

sparsity in the data.

Additionally, a similar problem exists in isometric shape matching, albeit limited to low 

dimensional data (i.e., shapes in at most three dimensions). For example, the method in [19] 

takes shapes with a known Laplace-Beltrami operator and aligns them using a representation 

of the corresponding eigenfunctions. This work was extended further in [20] to settings 

where ambient functions are defined intrinsically by the shape in order to learn region-region 

correspondences from an unknown bijection. Recent work [21] has relaxed the requirement 
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for shapes to be isometric and the need for prior knowledge of the Laplace-Beltrami 

operator, instead estimating the manifold with a kernel density estimate over the shape 

boundary. However, the application of these methods is limited to shapes, rather than a 

regime of point clouds as seen in high-dimensional data analysis.

In contrast, in this work we consider more general settings of aligning intrinsic data 

manifolds in arbitrary dimensions, while being robust to noise, data collection artifacts, and 

density variations. We provide a nonlinear method for aligning two datasets using their 

diffusion maps [2] (§3.1) under the assumption of a partial feature correspondence. Unlike 

MAGAN, we do not need to know in advance which features should correspond, and our 

results show that even with correspondence as low as 15% we achieve good alignment 

between data. Further, unlike shape matching methods, we are not limited to datasets 

describing the boundary of a shape or dominated by density distribution. Our formulation 

allows us to obtain more information from datasets with partial feature correspondence than 

methods that assume no correspondence, but without the burden of determining in advance 

which or how many features correspond. To evaluate our method, in §5 we focus on 

comparison with MAGAN, as a leading representative of deep learning approaches, and 

MNN, as a leading representative of manifold learning approaches. We note that to the best 

of our knowledge, the method in [11] is not provided with standard implementation, and our 

attempts at implementing the algorithm have significantly under performed other methods. 

For completeness, partial comparison to this method is demonstrated in Appendix C.

4 Harmonic alignment

Given datasets X, Y, as described in §2, we aim to construct a unified DM over both of 

them, which represents the global intrinsic structure of their common manifold ℳ while still 

retaining local differences between the datasets (e.g., due to distributional differences or 

local patterns only available in one of the dataset). As mentioned before, global shifts and 

batch effects often make direct construction of such DM (or even the construction of local 

neighborhood kernels) over the union of both datasets unreliable and impractical. Instead, 

we propose here to first construct two separate DMs Φ(X), Φ(Y) (based on eigenpairs 

λi
(X), ϕi

(X) , i = 1, …, M, and λj
(Y ), ϕj

(Y ) , j = 1, …, N, correspondingly), which capture the 

intrinsic geometry of each dataset. We then align their coordinates via an orthogonal 

transformation that preserves the rigid structure of the data in each DM, which is computed 

by orthogonalizing a correlation matrix computed between the diffusion coordinates of the 

two DMs.

However, since the diffusion coordinates are associated with intrinsic notions of frequency 

on data manifolds (as explained in §3.2, there is no need to compute the correlation between 

every pair ϕi
(X), ϕj

(Y ), i = 1, …, M, j = 1, …, N . Indeed, leveraging the interpretation of such 

coordinate functions as intrinsic diffusion harmonics, we can determine that they should not 

be aligned between the geometry of X and Y if their corresponding frequencies (i.e., 

captured via the eigenvalues λi
(X), λj

(Y )) are sufficiently far from each other. Therefore, in 

§4.1 we describe the construction of a bandlimited correlation matrix, and then use it in §4.2 
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to align the two DMs. Since our alignment method is based on the treatment of DM 

coordinates as manifold harmonics, we call this method harmonic alignment.

4.1 Bandlimited correlation

In order to partition the diffusion harmonics into local frequency bands, we consider the 

following window functions, which are inspired by the itersine filter bank construction [22]:

wξ(λ) = sin(π
2 cos2(π

2 (ℓλ − ξ))) ξ − 1
ℓ ≤ λ ≤ ξ + 1

ℓ
0 otherwise,

where ξ = 0, …, ℓ and ℓ considered as a meta-parameter of the construction. We note that 

experimental evidence indicate that fine tuning ℓ does not significantly affect alignment 

quality. Each window wξ(·) is supported on an interval of length 2ℓ around ξ/ℓ, while 

decaying smoothly from wξ(ξ/ℓ) = 1 to zero. Two consecutive windows (i.e., wξ(·), wξ+1(·)) 

share an overlap of half their support; otherwise (i.e., wξ(·), wξ′(·) with |ξ − ξ′| ≥ 2) they have 

disjoint supports. Finally, we recall the spectra (i.e., eigenvalues) of P(X), P(Y) are contained 

in the interval [0, 1], which is entirely covered by ℓ + 1 window functions wξ( ⋅ ), ξ = 0, …, ℓ,
as illustrated in Fig. 1(c). Notice that only half the support of w0(·) and wℓ( ⋅ ) are shown in 

there, since half of their support is below zero or above one, correspondingly.

Using the soft partition defined by wξ( ⋅ ), ξ = 0, …, ℓ,, we now define bandlimiting weights

wij
(X, Y ) = ∑

ξ = 1

ℓ
wξ λi

(X) wξ λj
(Y ) , (4.2)

for i = 1,...,M and j = 1,...,M, between diffusion harmonics of X and Y. As shown in the 

following lemma, whose proof appears in Appendix B, these weights enable us to 

quantitatively identify diffusion harmonics that correspond similar frequencies and ignore 

relations between ones that have significantly different ones.

LEMMA 4.1.—The bandlimiting weights from Eqn. 4.2 satisfy the following properties: 

wij
(X, Y ) is continuous and differentiable 

λi
(X) and λj

(Y ); if λi
(X) = λj

(Y ) tℎen wij = 1; if |λi
(X) − λj

(Y )| > 2
ℓ tℎen wij = 0; and the rate of 

change of wij
(X, Y ) w . r . t . |λi

(X) − λj
(Y )| is bounded by O(ℓ) .

Next, we use the weights from Eqn. 4.2 to construct a M × N bandlimited correlation matrix 

C defined as

[C]ij = wij
(X, Y )corr ϕi

(X), ϕj
(Y )

(4.3)

for i = 1,...,M and j = 1,...,N, which only considers correlations between diffusion harmonics 

within similar frequency bands.
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Finally, for each i, j with nonzero weight wij
(X, Y ), we now need to compute a correlation 

between the diffusion harmonics ϕi
(X), ϕj

(Y ) . If we had partial data point correspondence, as 

is assumed in many previous work (e.g., [5,7]), we could estimate such correlation directly 

from matching parts of the two datasets. However, in our case we do not assume any a priori 

matching between data points. Instead, we rely on the assumed feature correspondence and 

leverage the GFT from §3.2 to express the harmonics ϕi
(X), ϕj

(Y ) in terms of the data features 

via their Fourier coefficients. Namely, we take the GFT of the data features fs, gs, s = 1,...,n 
(i.e., the “columns” of the points-by-features representation of X, Y as M × n, N × n data 

matrices, correspondingly), and use them to represent ϕi
(X), ϕj

(Y ) by the n dimensional 

vectors xi = f1[i], …, fn[i] T and yj = g1[j], …, gn[j] T , correspondingly. Then, we compute 

a correlation between the harmonics ϕi
(X), ϕi

(Y ) indirectly via a correlation between xi, yj . For 

simplicity, and by slight abuse of terminology, we use an inner product in lieu of the latter, to 

define

corr ϕi
(X), ϕj

(Y ) = xi, yj .

Therefore, together with Eqn. 4.3, our bandlimited correlation matrix is given by 

[C]ij = wij
(X, Y ) xi, yj = ∑ξ = 1

ℓ wξ λi
(X) xi, wξ λj

(Y ) yj .

4.2 Rigid alignment

Given the bandlimited correlation matrix C, we use its SVD given by C = UΣVT to obtain its 

nearest orthogonal approximation T = UVT (e.g., as shown in [23]) that defines an isometric 

transformation between the diffusion maps of the two samples, which we refer to as 

harmonic alignment. Finally, we can now compute a unified diffusion map, which can be 

written in (block) matrix form as

Φt
(X, Y ) =

Φ0
(X) Φ0

(X)T

Φ0
(Y )TT Φ0

(Y )
Λ(X) 0

0 Λ(X)

t
, (4.4)

where Λ(X),Λ(Y) are diagonal matrices with the diffusion eigenvalues λi
(X)

i = 1
N , λj

(Y )
j = 1
M

(correspondingly) as their main diagonal, and t is an integer diffusion time parameter as in 

§3.1. A summary of the described steps is presented in Appendix A. While this construction 

is presented here in terms of two datasets for simplicity, it can naturally be generalized to 

multiple datasets by considering multiple blocks (rather than the two-by-two block structure 

in Eqn. 4.4), based on orthogonalizing pairwise bandlimited correlations between datasets. 

This generalization is discussed in detail in Appendix A.2.

Finally, given aligned DMs in Φt
(X, Y ), we can construct a new neighborhood kernel over 

their coordinates (i.e., in terms of a combined diffusion distance) and build a robust unified 

diffusion geometry over the entire entire data in X ∪ Y that is invariant to batch effects and 
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also enables denoising of data collection artifacts that depend on environment or technology 

rather than the underlying measured phenomena. This diffusion geometry can naturally be 

incorporated in diffusion-based methods for several data processing tasks, such as 

dimensionality reduction & visualization [24], denoising & imputation [25], latent variable 

inference [7], and data generation [26]. In particular, in §5.3 we demonstrate the application 

of harmonic alignment to batch effect removal and multimodal data fusion with various 

single-cell genomic technologies.

5 Numerical results

5.1 Artificial feature corruption

To demonstrate the accuracy of harmonic alignment, we assess its ability to recover k-

nearest neighborhoods after random feature corruption, and compare it to MNN [9] and 

MAGAN [10], which are leading manifold- and deep-learning methods respectively, as 

discussed in §3.3. To this end, we drew two random samples X and Y of 1000 MNIST digit 

images, each of which is a 784-dimensional vector. For each trial, we generate a random 

orthogonal 784×784 corruption matrix O0. To vary the amount of feature corruption, we 

produce partial corruption matrices Op by randomly substituting p% of the columns in O0 

with columns of the identity matrix. Right multiplication of Y by these matrices yields 

corrupted images with only p% preserved pixels (Fig. 2(b), ‘Corrupted’).

To assess the alignment of the corrupted images Y Op to the uncorrupted images X, we 

perform lazy classification on digits (i.e., rows) in Y Op by using the labels of each aligned 

image’s k nearest neighbors in X. The results of this experiment, performed for p = {0, 5, 

10,...95, 100}, are reported in Fig. 2(a). For robustness, at each p we sampled three different 

non-overlapping pairs X,Y, and for each pair we sampled three random Op matrices. It 

should be noted that while we report results in terms of mean classification accuracy, we do 

not aim to provide an optimal classifier here. Our evaluation merely aims to provide a 

quantitative assessment of neighborhood quality before and after alignment. We regard a 

lazy learner as ideal for such evaluation since it directly exposes the quality of data 

neighborhoods, rather than obfuscate it via a trained model. For comparison, results for 

harmonic alignment with a SVM classifier are shown in §5.2 and Fig. 2(d).

In general, none of the methods recovers k-nearest neighborhoods under total corruption, 

showing 10% accuracy for very small p, essentially giving random chance accuracy. Note 

that this case clearly violates our (partial) feature correspondence assumption. However, 

when using sufficiently many band-limited filters, harmonic alignment quickly recovers over 

80% accuracy and consistently outperforms both MNN and MAGAN, except under under 

very high correspondence (i.e., when Op ≈ I). The method proposed by [11] was excluded 

since it did not show improvement over unaligned classification, but is discussed in 

supplemental materials for completeness. We note that the performance of harmonic 

alignment is relatively invariant to the choice of ℓ, with the exclusion of extremely high 

values. For the remainder of the experiments, we fix ℓ = 8. All experiments use the default 

parameter t = 1.
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Next, we examined the ability of harmonic alignment to reconstruct the corrupted data (Fig. 

2(b)). We performed the same corruption procedure with p = 25% and selected one example 

of each MNIST digit. Ground truth from Y and corrupted result Y O25 are shown in Fig. 

2(b). Then, reconstruction was performed by setting each pixel in a new image to the 

dominant class average of the 10 nearest neighbors from X. In the unaligned case, we see 

that most examples give smeared fives or ones; this is likely a random intersection formed 

by X and Y O25. On the other hand, reconstructions produced by harmonic alignment 

resemble the original input examples.

Finally, in Fig. 2(c), we consider the effect of data size on obtained alignment. To this end, 

we fix p = 35% and vary the size of the two aligned datasets. We compare harmonic 

alignment, MNN, and MAGAN on input sizes ranging from 200 to 1600 MNIST digits, 

while again using lazy classification accuracy to measure neighborhood preservation and 

quantify alignment quality. The results in Fig. 2(d) show that both MNN and MAGAN are 

not significantly affected by dataset size, and in particular do not improve with additional 

data. Harmonic alignment, on the other hand, not only outperforms them significantly – its 

alignment quality increases monotonically with input size.

5.2 Transfer learning

An interesting use of manifold alignment algorithms is transfer learning. In this setting, an 

algorithm is trained to perform well on a small (e.g., pilot) dataset, and the goal is to extend 

the algorithm to a new larger dataset (e.g., as more data is being collected) after alignment. 

In this experiment, we first randomly selected 1,000 uncorrupted examples of MNIST digits, 

and constructed their DM to use as our training set. Next, we took 65%-corrupted unlabeled 

points (§5.1) in batches of 1,000, 2,000, 4,000, and 8,000, as a test set for classification 

using the labels from the uncorrupted examples. As shown in 2(d), with a 5-nearest neighbor 

lazy classifier, harmonic alignment consistently improves as the dataset gets larger, even 

with up to eight test samples for every one training sample. When the same experiment is 

performed with a linear SVM, harmonic alignment consistently outperforms other methods 

with performance being independent of test set size (or train-to-test ratio). This is due to the 

increased robustness and generalization capabilities of trained SVM. Further discussion of 

transfer learning is given in the supplementary materials. In addition to showing the use of 

manifold alignment in transfer learning, this example also demonstrates the robustness of 

our algorithm to imbalance between samples.

5.3 Biological data

5.3.1 Batch effect correction—To illustrate the need for robust manifold alignment in 

computational biology, we turn to a simple real-world example from [27] (Fig. 3). This 

dataset was collected by mass cytometry (CyTOF) of peripheral blood mononuclear cells 

from patients who contracted dengue fever [27].

The canonical response to dengue infection is upregulation of interferon gamma (IFNγ). 

[28] During early immune response, IFNγ works in tandem with acute phase cytokines such 

as tumor necrosis factor alpha (TNFα) to induce febrile response and inhibit viral replication 

[29]. We thus expect to see upregulation of these two cytokines together.
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In Fig. 3(a), we show the relationship between IFNγ and TNFα without denoising. Note that 

there is a substantial difference between the IFNγ distributions of the two samples (Earth 

Mover’s Distance [EMD] = 2.699). In order to identify meaningful relationships in CyTOF 

data, it is common to denoise it first [1]. We used a graph low-pass filter proposed in [25] to 

denoise the cytokine data. The results of this denoising are shown in Fig. 3(b). This 

procedure introduced more technical artifacts by enhancing differences between batches, as 

seen by the increased EMD (3.127) between IFNγ distributions of both patients. This is 

likely due to substantial connectivity differences between the two batch submanifold in 

combined data manifold.

Next, we performed harmonic alignment of the two patient profiles (Fig. 3(c)). Harmonic 

alignment corrected the difference between IFNγ distributions and restored the canonical 

correlation of IFNγ and TNFα (EMD=0.135). This example illustrates the utility of 

harmonic alignment for biological data, where it can be used for integrated analysis of data 

collected across different experiments, patients, and time points.

5.3.2 Multimodal Data Fusion—Since cells contain numerous types of components 

that are informative of their state (genes, proteins, epigenetics), modern experimental 

technologies are starting to measure of each of these components separately at the single cell 

level. Since most single-cell assays are destructive, it is challenging or impossible to obtain 

all desired measurements in the same cells. It is therefore desirable to perform each assay on 

a subset of cells from a single sample, and align these datasets in silico to obtain a pseudo-

joint profile of the multiple data types.

To demonstrate the utility of harmonic alignment in this setting, we use a dataset obtained 

from [30] of 11,296 cells from adult mouse kidney collected by a joint measurement 

technique named sci-CAR, which measures both gene expression (scRNA-seq) and 

chromatin accessibility (scATAC-seq) in the same cells simultaneously. The datasets are 

normalized separately as in [25], using a square root transformation for the scRNA-seq and a 

log transformation with a pseudocount of 1 for the scATAC-seq data, and finally the 

dimensionality of each dataset is reduced to 100 using truncated SVD. After randomly 

permuting the datasets to scramble the correspondence between them, we align the two 

manifolds in order to recover the known bijection between data modalities. Let f(i) ∈ F be 

the scRNA-seq measurement of cell i, and g(i) ∈ G be the scATAC-seq measurement of cell 

i. Fig. 3(d) shows the average percentage overlap of neighborhoods of f(i) in F with 

neighborhoods of g(i) in G, before and after alignment with: MAGAN, MNN and Harmonic 

Alignment. Harmonic Alignment most accurately recovers cell neighborhoods, thereby 

allowing the generation of in silico joint profiles across data types and obviating the need for 

expensive or infeasible in vitro joint profiling.

6 Conclusion

We presented a novel method for processing multisample data, which contains multiple 

sampled datasets that differ by global shifts or batch effects. To perform data fusion and 

provide a single stable representation of the entire data, we proposed to learn an intrinsic 

diffusion geometry of each individual datasets and then align them together using the duality 
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between diffusion coordinates used in manifold learning and manifold harmonics used in 

graph signal processing. While previous methods for data manifold alignment relied on 

known bijective correspondence between data points, our method replaces such strict 

requirement by considering feature correspondence in the sense that corresponding features 

across samples or datasets should have similar intrinsic regularity (or “frequency” 

composition) on the diffusion geometry of each sampled dataset in the data. Our harmonic 
alignment leverages this understanding to compute cross-dataset similarity between 

manifold harmonics, which is then used to construct an isometric transformation that aligns 

the data manifolds. Results show that our method is effective in resolving both artificial 

misalignment and biological batch effects, thus allowing data fusion and transfer learning. 

We expect future applications of harmonic alignment to include, for example, the use of 

multimodal data fusion to understand complex molecular processes through three or more 

different data modalities.
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A: Algorithm

A.1 Standard implementation

Consider the standard setting of harmonic alignment as described in Section 4. We provide 

here a detailed description of the Harmonic Alignment algorithm in pseudocode.

Let X and Y be collections of data points x ∈ ℝd . Let the diffusion time t and band count ℓ
be positive integers. Let σ(X), σ(Y) be bandwidth functions (generally either positive 

constants or a function of the distance from a point to its kth nearest neighbor) and the 

anisotropy q(X), q(Y) ∈ [0, 1]. Let the kernel parameters K(i) = σ(i), q(i) .

Then the aligned data is given by Φt
(X, Y ) = HarmonicAlignment X, Y , K(X), K(Y ) , t, ℓ ,

where the first #|X| points in Φt(X, Y ) are the aligned coordinates of X and the last #|Y| points 

in Φt(X, Y ) are the aligned coordinates of Y.

Algorithm A.1

function HarmonicAlignment (X, Y , K, t, ℓ) = Φt
(X, Y )

Input: Data sets (X,Y)

Kernel parameters K = K(X), K(Y )

Alignment diffusion time t

Alignment band count ℓ
Output: Aligned diffusion map Φt

(X, Y)

  1: for Z=X,Y do
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  2: G(Z) W (Z), ℒ(Z), D(Z) GaussKernelGraph Z, K(Z) ▷ Alg. A.2

  3: Ψ(Z), Λ(Z) SVD I − ℒ(Z) ▷ Graph Fourier basis

  4: end for

  5: Φt
(X, Y ) Align Ψ(X), Λ(X), D(X) , Ψ(Y ), Λ(Y ), D(Y ) , t, ℓ ▷ Alg. A.3

  6: return Φt
(X, Y )

Algorithm A.2

function GaussKernelGraph (X, ϵ) = W , D, ℒ
Apply a Gaussian kernel to a dataset and compute the corresponding graph matrices.

Input: Dataset X = x 1, …, x N :x ∈ χ ⊆ ℝd

Bandwidth function σ:X ℝ
Output: Kernel matrix W

Degree matrix D

Normalized Laplacian ℒ
  1: for i = 1, N do

  2:  D(i, j) ← 0

  3:  for j = 1, N do

  4:

  W (i, j) 1
2 exp

−‖x i − x j‖2
2

2ϵ xi
+ exp

−‖x i − x j‖2
2

2ϵ xj

▷ Symmetric kernel

  5:   D(i, i) ← D(i, i) + W(i, j) ▷ Degrees

  6:  end for

  7: end for

  8: ℒ I − D−1/2W D−1/2 ▷ Normalized graph Laplacian

  9: return W , D, ℒ

A.2 Multiple dataset alignment

While the previous construction was presented in terms of two datasets for simplicity, we 

can naturally generalize harmonic alignment to n datasets by considering multiple blocks 

(rather than the two-by-two block structure in 4.4), based on orthogonalizing pairwise 

bandlimited correlations between datasets. We briefly elaborate this approach.

Consider X = X(i) ⊂ ℝd: # |X(i)| = Ni i
n . As in the case with n = 2 datasets, we apply a 

Gaussian kernel to each X(i) ∈ X, which yields a Laplacian ℒ(i) and degree matrix D(i). 

Diagonalization of I − ℒ(i) produces a Fourier basis {Ψ(i), Λ(i)}. As before, we consider the 

eigenspace Ψ(i) = Ψ(i)\ψ1
(i), Λ(i) = Λ(i)\λ1

(i), from which
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Algorithm A.3

function Align G(X), G(Y ), t, ℓ = Φt(X, Y )

Compute and apply an alignment matrix to two diffusion maps.

Input: Laplacian eigensystems 
and degrees G(X), G(Y ):G(Z) = Ψ(Z), Λ(Z), D(Z)

Alignment diffusion t

Alignment band count ℓ
Output: Aligned diffusion map Φt(X, Y )

  1: for Z=X,Y do

  2:
 Ψ(Z) Ψ(Z)\ψ1

(Z); Λ(Z) Λ(Z)\λ1
(Z)

  3:
 Φ0(Z) D(Z)1/2

Ψ(Z)
▷ Graph Fourier transform

  4:
 Z Ψ(Z)TZ

  5: end for

  6: w(X, Y ) Bandlimiting Weights Λ(X), Λ(Y ), ℓ ▷ Alg. A.4

  7: for i = 2, N1 do

  8:  for j = 2,N2 do

  9:   C(i − 1, j − 1) wij(X, Y ) X(i − 1, : ), Y (j − 1, : ) ▷ Bandlimited correlatios

10:  end for

11: end for

12: U, S, V ← SVD(C)

13: T ← UVT ▷ Orthogonalization Sec. 
4.2

14:

Φt
(X, Y ) Φ0(X)

Φ0(X)
T

Φ0(Y )
TT Φ0(Y )

Λ(X) 0
0 Λ(Y )

t

15: return Φt(X, Y )

Algorithm A.4

function BandlimitingWeights (Λ(X), Λ(Y), ℓ) = w(X, Y)

Compute the joint bandlimiting weights for two graphs.

Input: Normalized Laplacian 
eigenvalues Λ = Λ(X), Λ(Y ):Λ(Z) = λj

(Z)
j = 2
#|Z|

Alignment band count ℓ
Output: Pairwise frequency weights w(X, Y ):Λ(X) × Λ(Y ) [0, 1]
  1: f f :λ, ℓ, ξ I(ξ − 1 ≤ λℓ ≤ ξ + 1)sin π

2 cos2 π
Y (ℓλ − ξ) ▷ Itersine wavele 

4.1

  2: for i = 2, N2 do

  3:  for j = 2, N2 do
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  4:   wij(X, Y ) 0
  5:   for ξ = 1, ℓ do

  6:    wij(X, Y ) wij(X, Y ) + f λi(X), ℓ, ξ f λj(Y ), ℓ, ξ
  7:   end for

  8:  end for

  9: end for

10: return w(X, Y)

we compute a graph Fourier transform X(i) = Ψ(i)TX(i) and diffusion map Φ(i)
0 = D(i)1/2

Ψ(i)

for each dataset. This is the same initialization that one performs for the case when n = 2 as 

in Algs. A.1, A.3.

Next,for every pair i ≠ j ∈ {1,...,n} × {1,...,n} we generate bandlimiting weights w(i,j) = 

BandlimitingWeights (Λ(X), Λ(Y), ℓ) (Alg. A.4). Then the correlation between each 

diffusion map pair is

C(i, j)(ℎ − 1, k − 1) = w(i, j) λℎ(i), λk(j) X(i)(ℎ − 1, : ), X(j)(k − 1, : )
ℎ = 2, …, Ni
k = 2, …, Nj

.

Factoring C(i, j) = U(i, j)S(i, j)V(i, j)T, we have the rigid alignment operator

T (i j) = U(i, j)V (i, j)T

and its adjoint T (j i) = T (i j)T .

Next, let B(1,2,...,n)(i, j) be an Ni − 1 × Nj − 1 matrix such that

B(1, 2, …, n)(i, j) =

Φ0(i) i = j

Φ0(i)T (i j) j > i

Φ0(i)T (j i) j < i .

Then the i, j block Φt
(1,2,...,n)(i, j) is the Ni − 1 × Nj − 1 submatrix of the diffusion 

coordinates of X(i) aligned into the diffusion space of X(i),

Φt(1, 2, …, n)(i, j) = B(1, 2, …, n)(i, j)Λ(j)t .

This matrix is
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Φt
(1, 2, …, n) =

Φ0(1) Φ0(1)T (1 2) … Φ0(i)T (1 n)

Φ0(2)T (2 1) Φ0(2) … Φ0(2)T (2 n)
⋮ ⋮ ⋱ ⋮

Φ0(2)T (n 1) Φ0(2)T (n 2) … Φ(n)0

Λ(X)

Λ(2)

⋱

Λ(n)

t

.

Alg. A.5 summarizes this process. When n = 2, it simplifies to Alg. A.1.

A.3 Runtime analysis and implementation

Here we provide an informal analysis of algorithmic runtime and suggest a collection of 

possible improvements that could be made in order to increase the efficiency of our 

algorithm. We show that the algorithm with cubic sample complexity and linear feature 

complexity in its naïve implementation, and can be reduced to quadratic sample complexity 

with relatively straightforward modifications. Breaking the problem down via a divide-and-

conquer approach could yield further improvements to give an algorithm with linear sample 

complexity. We note that in all experiments in this paper, the naïve approach was used.

The runtime complexity of a naïve implementation of Alg. A.1 is

O N1
3 + N2

3

(a) embedding
+ N1

2 + N2
2 d

(b) GFT

+ N1N2 d + N1
(c) correlation & SVD

+ N1N2 N1 + N2
(d) alignment

⊂ O N2
3 + N1N2d ,

where N1 < N2 are the size of two data sets to align and d is the number of dimensions. The 

major costs of the proposed algorithm are partitioned according to their step in the algorithm 

(see underbraces).

Some simple observations about the rank of each system will pave the way to reducing 

alignment runtime. Our primary tool will be randomized truncated SVD, e.g. [31,32], which 

computes the first k singular vectors of an m × n system in O(mn log k).

First we reduce the size of the input data. Assuming that the features of X(i) are independent, 

the simplest setting for dimensionality and rank reduction occurs when N1 < d (recalling that 

N1 < N2). It is clear by construction that the rank of the correlation matrix is at most

rmax = min{d, N1} .

Algorithm A.5

function MultiAlignment (X, K, t, ℓ) = Φt
(1, …, n)

Align the diffusion maps of multiple datasets.

Input: Data sets X = X(1), …, X(n)
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Kernel parameters K = K(X), …, K(n)

Alignment diffusion time t

Alignment band count ℓ
Output: Unified diffusion map Φt

(1,...,n)

  1: for i=1,n do

  2:  G(i) W (i), ℒ(i), D(i) GaussKernelGraph X(i), K(i) ▷ Alg. A.2

  3:  Ψ(i), Λ(i) SVD I − ℒ(i) ▷ Graph Fourier 
basis

  4:
 Ψ(i) Ψ(i)\ψ1

(i); Λ(i) Λ(i)\λ1
(i)

  5:
 X(i) Ψ(i)TX(i) ▷ Graph Fourier 

transform

  6:
 Φ0

(i) D(i)1/2
Ψ(i)

  7: end for

  8: for i = 1, n do

  9:
 Φt(i, i)(1, …, n) Φ0

(i)Λt(i)

10:  for j = i + 1, n do

11:   w(i, j) ← BandlimitingWeights(Λ(i), Λ(j), ℓ) ▷ Alg. A.4

12:   for ℓ = 2, Ni do

13:    for k = 2, Nj do.

14:

C(i, j)(ℓ − 1, k − 1) w(i, j) λℓ
(i), λk

(j) X(i)(ℓ − 1, : ), X(j)(k − 1, : )
▷ Bandlimited 
correlation

15:    end for

16:   end for

17:   U(i,j),S(i,j),V(i,j) ← C(i,j)

18:
  T (i j) U(i, j)V (i, j)T :T (j i) V (i, j)U(i, j)T

19:
  Φt(i, j)(1, …, n) Φ0

(i)T (i j)Λ(j)t

20:
  Φt(j, i)(1, …, n) Φ0

(j)T (j i)Λ(i)t

21:  end for

22: end for

23: return Φt
(1,...,n)

Thus, if the input data X(i) ⊂ ℝd for d > rmax, then the most efficient algorithm will use 

truncated SVD to only consider the first rmax principal components of each X(i) as alignment 

features.

Applying rank reduction to only the input data introduces an additional logrmax term to the 

embedding (a) through a truncated SVD
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O N1
3 + N2

3 + N1
2 + N2

2 logrmax .

However, the GFT (b) now runs in

O N1
2 + N2

2 rmax .

Subsequently, correlation and orthogonalization (c) runs in

O N1N2 rmax + N1 .

where the rmax term is due to the product of a N1 × rmax matrix with a rmax × N2 matrix and 

the second is the full SVD of the N1 × N2 correlation matrix.

The same argument can be applied to reduce the number of diffusion coordinates such that 

rmax components are taken. The correlation (c) then collapses to two rmax3  operations: one is 

the matrix product of two square rmax × rmax matrices and the other is the full SVD of this 

product. This reduces the total complexity of harmonic alignment to

O N1
2 + N2

2 3logrmax
(a) embedding

+ N1 + N2 rmax2
(b) GFT

+ 2rmax3
(c) correlation & SVD

+ N1N2 2rmax
(d) alignment

⊂ O N2
2logrmax + N1N2rmax ,

It is often the case that one is only interested in k ≪ rmax PCA components or diffusion 

components. For example, [33] proves an optimal singular value cutoff for denoising of m × 

n data matrices. One could select a different rank for each PCA and diffusion maps 

operation; we will denote these as kPCA
(1) , kPCA

(2) and kDM
(1) , kDM

(2) , simplifying to 

kPCA = max kPCA
(1) , kPCA

(2) , kDM = max kDM
(1) , kDM

(2)  and k = max{kPCA, kDM}.

The total complexity of harmonic alignment is now

O N1
2 + N2

2 3logkPCA
(a) embedding

+ N1 + N2 kPCA
2

(b) GFT

+ 2kDM
3

(c) corr. &SVD
+ 2N1N2kDM

(d) alignment
⊂ O N2

2logk + N1N2k ,

Finally, we can use the multiple alignment algorithm presented in Alg. A.5 to ‘chunk’ very 

large datasets to reduce runtime. The general scheme would be to break the input into many 

smaller datasets of Nc points. The result is a set of ∑i Ni/Nc ≈
N1 + N2

Nc
 smaller problems 

that run in
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O
N1 + N2

Nc
6NclogkPCA
(a) embedding

+ 2NckPCA
2

(b) GFT
+ 2kDM

3

(c) corr SVD.
+ 2Nc2kDM

(d) alignment
⊂ O N2Nck ,

Further analysis must be done to examine the effect on the accuracy of the output when one 

divides-andconquers in this way. It is clear that in practice it is important to accordingly 

adjust k as the rank structure will vary depending on the sizes of the submatrices chosen to 

align.

B: Proof of Lemma 4.1

The bandlimiting weights from (4.2) satisfy the following properties:

CLAIM B.1.

wξ(λ) is continuous in λ.

Proof. As a piecewise function of continuous functions, it suffices to check that wξ(λ) is 

continuous at λ = ϵ − 1
ℓ and λ = ξ + 1

ℓ .

lim
ℎ 0+

wξ
ξ ± 1

ℓ ∓ ℎ = lim
ℎ 0+

sin π
Y cos2 π

Y ℓ ξ ± 1
ℓ ∓ ℎ − ξ

= sin π
Y cos2 π

Y ℓ ξ ± 1
ℓ − ξ

= sin π
Y cos2 ± π

Y = 0 = lim
ℎ 0−

wξ
ξ ± 1

ℓ ∓ ℎ .

COROLLARY B.1.

As a sum of continuous functions in λi
(X) and λj

(Y ), wij
(X, Y ) is continuous in λi

(X) and λj
(Y ) .

CLAIM B.2.

wξ(λ) is differentiable in λ.

Proof. Note first that

dwξ
dλ =

− π2ℓ
Y cos π

Y (ℓλ − ξ) cos π
Y cos2 π

Y (ℓλ − ξ) sin π
Y (ℓλ − ξ) ξ − 1

ℓ ≤ λ ≤ ξ + 1
ℓ

0 otherwise
;

(B.1)

Stanley et al. Page 19

Proc SIAM Int Conf Data Min. Author manuscript; available in PMC 2021 March 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



= − π2ℓ
4 sin(π(ℓλ − ξ))cos π

Y cos2 π
Y (ℓλ − ξ) ξ − 1

ℓ ≤ λ ≤ ξ + 1
ℓ

0 otherwise
; (B.2)

Then, as a piecewise function of continuous functions, it suffices to check that 
dwξ
dλ  is 

continuous at λ = ϵ − 1
ℓ and λ = ξ + 1

ℓ .

lim
ℎ 0+

dwξ
dλ

ξ ± 1
ℓ ∓ ℎ = − π2ℓ

4 sin( ± π)cos π
Y cos2 π

Y

= 0 = lim
ℎ 0−

dwξ
dλ

ξ ± 1
ℓ ∓ ℎ .

□

COROLLARY B.2.

As a sum of differentiable functions in λi
(X) and λj

(Y ), wij
(X, Y ) is differentiable in 

λi
(X) and λj

(Y ) .

CLAIM B.3.

If k ∈ ℤ such that 0 ≤ k ≤ ℓ and k
ℓ ≤ λ ≤ k + 1

ℓ  then wξ(λ) = 0 for all ξ ∉ k, k + 1 .

Proof. Assume k ∈ ℤ such that 

0 ≤ k ≤ ℓ and k
ℓ ≤ λ ≤ k + 1

ℓ . Let ξ ∈ ℤ such that ξ ∉ k, k + 1 .

For the case where ξ > k + 1, then ξ ≥ k + 2 and so λ ≤ ξ − 1
ℓ .

For the case where ξ < k, then ξ ≤ k − 1 and so λ ≥ ξ + 1
ℓ .

In each case, this implies that wξ(λ) = 0. □

CLAIM B.4.

If λi
(X) = λj

(Y ) then wij = 1.

Proof. Assume λi
(X) = λj

(Y ) = λ and let k ∈ ℤ such that k
ℓ ≤ λ ≤ k + 1

ℓ .

Then
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wij
(X, Y ) = ∑

ξ = 1

ℓ
wξ(λ)wξ(λ)

= wk(λ)wk(λ) + wk + 1(λ)wk + 1(λ) [by Claim [B.3]
= sin2 π

Y cos2 π
Y (ℓλ − k) + sin2 π

Y cos2 π
Y (ℓλ − k − 1)

= sin2 π
Y cos2 π

Y (ℓλ − k) + sin2 π
Y sin2 π

Y (ℓλ − k) since cos x − π
Y = sin(x)

= sin2 π
Y cos2 π

Y (ℓλ − k) + sin2 π
Y 1 − cos2 π

Y (ℓλ − k) since sin2(x) + cos2(x) = 1

= sin2 π
Y cos2 π

Y (ℓλ − k) + cos2 π
Y cos2 π

Y (ℓλ − k) since sin π
Y − x = cos(x)

= 1 .

□

CLAIM B.5.

If |λi
(X) − λj

(Y )| ≥ 2
ℓ tℎen wij

(X, Y ) = 0.

Proof. Assume |λi
(X) − λj

(Y )| ≥ 2
ℓ  and let ki

(X), kj
(Y ) ∈ ℤ such that 

ki
(X)

ℓ ≤ λi
(X) ≤

ki
(X) + 1

ℓ and
kj

(Y )

ℓ ≤ λj
(Y ) ≤

kj
(Y ) + 1

ℓ .

Assume without loss of generality that λi
(X) < λj

(Y ) . Then by Claim B.3,

λi
(X) ≤ λj

(Y ) − 2
ℓ ≤

kj
(Y ) + 1

ℓ − 2
ℓ =

kj
(Y ) − 1

ℓ wξ λi
(X) = 0 for all ξ ≥ kj

(Y )

and since wξ λj
(Y ) = 0 for all ξ ∉ kj

(Y ), kj
(Y ) + 1 , then

wξ λi
(X) wξ λj

(Y ) = 0 for all ξ .

□

CLAIM B.6.

The rate of change of wij
(X, Y ) w.r.t. both λi

(X) and λj
(Y ) is bounded by O(ℓ) .

Proof. From Equation B.2,

|
dwξ
dλ | ≤ π2ℓ

4 for all λ .

Without loss of generality we consider only 
dwij

(X, Y )

dλi
(X) . Let k ∈ ℤ such that k

ℓ ≤ λi
(X) ≤ k + 1

ℓ .
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dwij
(X, Y )

dλi
(X) = ∑

ξ = 1

ℓ dwξ
dλi

(X)wξ λj
(Y )

=
dwk

dλ(X)wk λj
(Y ) +

dwk + 1
dλ(X) wk + 1 λj

(Y )

≤
dwk

dλi
(X) +

dwk + 1
dλi

(X) .

So

|
dwij

(X, Y )

dλi
(X) | ≤ |

dwk
dλi

(X) +
dwk + 1
dλi

(X) | ≤ |
dwk

dλi
(X) | + |

dwk + 1
dλi

(X) | ≤ π2ℓ
Y .

□

COROLLARY B.3.

The rate of change of wij
(X, Y ) w.r.t. |λi

(X) − λj
(Y )| is bounded by O(ℓ) .

C: Comparison to Wang and Mahadevan

Despite being a natural candidate for comparison to our method, unfortunately no standard 

implementation of the method proposed by [11] is available. Our implementation of their 

method performed extremely poorly (worse than random) on the comparisons and is 

extremely computationally intensive. The method is therefore not shown in the main 

comparisons; however, for completeness, the results are shown in Figure 4.
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Figure 4: 
Recovery of k-neighborhoods under feature corruption. Mean over 3 iterations is reported 

for each method. (a) Lazy classification accuracy relative to input size with unlabeled 

randomly corrupted digits with 35% preserved pixels. (b) Transfer learning performance. 

For each ratio, 1K uncorrupted, labeled digits were sampled from MNIST, and then 1K, 2K, 

4K, and 8K (x-axis) unlabeled points were sampled and corrupted with 35% column 

identity.
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Figure 1: 
Schematic representation of the harmonic alignment method.
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Figure 2: 
Recovery of k-nearest neighborhoods under feature corruption. Mean over 3 iterations is 

reported for each method. (a) At each iteration, two sets X and Y of 1000 points were 

sampled from MNIST. Y was then distorted by a 784 × 784 corruption matrix Op for various 

identity percentages p (§5.1). Subsequently, a lazy classification scheme was used to classify 

points in Y Op using a 5-nearest neighbor vote from X. Results for harmonic alignment with 

ℓ ∈ 2, 4, 8, 64  (§4.1), mutual nearest neighbors (MNN), and classification without 

alignment are shown. (b) Reconstruction of digits with only 25% uncorrupted features. Left: 
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Input digits. Left middle: 75% of the pixels in the input are corrupted. Right middle: 

Reconstruction without harmonic alignment. Right: Reconstruction after harmonic 

alignment. (c) Lazy classification accuracy relative to input size with unlabeled randomly 

corrupted digits with 35% preserved pixels. (d) Transfer learning performance. For each 

ratio, 1K uncorrupted, labeled digits were sampled from MNIST, and then 1K, 2K, 4K, and 

8K (x-axis) unlabeled points were sampled and corrupted with 35% column identity.
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Figure 3: 
(a)-(c) Batch effect removal. 4K cells were subsampled from two single-cell mass cytometry 

immune profiles on blood samples of two patients infected with Dengue fever. Top: Both 

patients exhibit heightened IFNγ (x-axis), a pro-inflammatory cytokine associated with 

TNFα (y-axis) Bottom: IFNγ histograms for each batch. (a) Data before denoising. (b) 

Denoising of unaligned data enhances a technical effect between samples in IFNγ. (c) 

Harmonic alignment corrects the IFNγ shift. (d) Multimodal data fusion. Overlap of cell 

neighborhoods from joint gene expression and chromatin profiling of single cells. Harmonic 

alignment most accurately recovers the pointwise relationship between the manifolds.
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