Skip to main content
. Author manuscript; available in PMC: 2021 Mar 14.
Published in final edited form as: Proc SIAM Int Conf Data Min. 2020;2020:316–324. doi: 10.1137/1.9781611976236.36

Algorithm A.3.

function Align (G(X),G(Y),t,)=Φt(X,Y)

Compute and apply an alignment matrix to two diffusion maps.

Input: Laplacian eigensystems and degrees G(X),G(Y):G(Z)={Ψ(Z),Λ(Z),D(Z)}
Alignment diffusion t
Alignment band count
Output: Aligned diffusion map Φt(X,Y)
  1: for Z=X,Y do
  2: Ψ(Z)Ψ(Z)\ψ1(Z);Λ(Z)Λ(Z)\λ1(Z)
  3: Φ0(Z)D(Z)1/2Ψ(Z) Graph Fourier transform
  4: Z^Ψ(Z)TZ
  5: end for
  6: w(X,Y)Bandlimiting Weights(Λ(X),Λ(Y),) Alg. A.4
  7: for i = 2, N1 do
  8: for j = 2,N2 do
  9:   C(i1,j1)wij(X,Y)X^(i1,:),Y^(j1,:) Bandlimited correlatios
10: end for
11: end for
12: U, S, V ← SVD(C)
13: TUVT Orthogonalization Sec. 4.2
14: Φt(X,Y)[Φ0(X)Φ0(X)TΦ0(Y)TTΦ0(Y)][Λ(X)00Λ(Y)]t
15: return Φt(X¯,Y)