Table 1.
Scoring metrics of the 5 ML models in predicting detonation and stability properties (D, pC-J, Qmax, Td, and LE) of HEDMs, provided individually for the training set and test set
Properties | Models | Training dataset |
Test dataset |
|||||
---|---|---|---|---|---|---|---|---|
RMSE | r | R2 | RMSE | R | R2 | |||
Detonation performance | Qmax | XGBoost | 49.694 | 0.984 | 0.958 | 99.988 | 0.914 | 0.825 |
AdaBoost | 60.579 | 0.970 | 0.938 | 108.252 | 0.898 | 0.794 | ||
RF | 55.731 | 0.983 | 0.948 | 103.574 | 0.926 | 0.812 | ||
MLP | 78.539 | 0.947 | 0.896 | 101.070 | 0.909 | 0.821 | ||
KRR | 96.939 | 0.918 | 0.841 | 101.291 | 0.916 | 0.820 | ||
D | XGBoost | 0.101 | 0.993 | 0.985 | 0.235 | 0.956 | 0.912 | |
AdaBoost | 0.114 | 0.991 | 0.981 | 0.274 | 0.942 | 0.879 | ||
RF | 0.143 | 0.986 | 0.970 | 0.276 | 0.943 | 0.878 | ||
MLP | 0.185 | 0.976 | 0.949 | 0.244 | 0.959 | 0.905 | ||
KRR | 0.256 | 0.950 | 0.903 | 0.291 | 0.941 | 0.864 | ||
pC-J | XGBoost | 0.817 | 0.992 | 0.984 | 1.788 | 0.954 | 0.910 | |
AdaBoost | 1.084 | 0.987 | 0.972 | 2.426 | 0.920 | 0.835 | ||
RF | 1.097 | 0.987 | 0.971 | 2.360 | 0.924 | 0.843 | ||
MLP | 0.898 | 0.990 | 0.981 | 2.256 | 0.954 | 0.857 | ||
KRR | 1.983 | 0.951 | 0.905 | 2.812 | 0.902 | 0.778 | ||
Molecular stability | Td | XGBoost | 29.919 | 0.933 | 0.803 | 52.069 | 0.781 | 0.557 |
AdaBoost | 26.932 | 0.947 | 0.840 | 54.347 | 0.741 | 0.518 | ||
RF | 21.229 | 0.970 | 0.901 | 54.153 | 0.728 | 0.521 | ||
MLP | 32.256 | 0.878 | 0.770 | 60.670 | 0.635 | 0.399 | ||
KRR | 51.152 | 0.653 | 0.423 | 61.573 | 0.627 | 0.381 | ||
Crystal stability | LE | XGBoost | 1.033 | 0.999 | 0.998 | 3.494 | 0.976 | 0.948 |
AdaBoost | 3.187 | 0.990 | 0.977 | 6.724 | 0.898 | 0.806 | ||
RF | 4.281 | 0.980 | 0.958 | 5.497 | 0.933 | 0.870 | ||
MLP | 3.124 | 0.989 | 0.978 | 6.416 | 0.917 | 0.823 | ||
KRR | 4.558 | 0.976 | 0.952 | 4.367 | 0.959 | 0.918 |
The best performing results are marked in bold.