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Abstract

Purpose of review—To discuss recent advances of VIP/PACAP receptors in pharmacology, cell 

biology and intracellular signaling in cancer.

Recent findings—Recent studies provide new insights into the pharmacology, cell biology of 

the VIP/PACAP system and show they play important roles in a number of human cancers, as well 

as in tumor growth/differentiation and are providing an increased understanding of their signaling 

cascade which is suggesting new treatment targets/approaches.

Summary—Recent insights from studies of VIP/PACAP and their receptors in both CNS 

disorders and inflammatory disorders suggest possible new treatment approaches. Elucidation of 

the exact roles of VIP/PACAP in these disorders and development of new therapeutic approaches 

involving these peptides have been limited by lack of specific pharmacological tools, and exact 

signaling mechanisms involved, mediating their effects. Reviewed here are recent insights from 

the elucidation of structural basis for VIP/PACAP receptor activation as well as the signaling 

cascades mediating their cellular effects(using results primarily from the study of their effects in 

cancer) which will likely lead to novel targets and treatment approaches in these diseases.
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I. Introduction

Pituitary adenylate cyclase-activating polypeptide (PACAP) is a 27 or 38 amino acid peptide 

which was isolated based on its ability to elevate cAMP in pituitary cells [1,2]. PACAP is 

structurally related (68% homology) to the 28 amino acid peptide, vasoactive intestinal 
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peptide (VIP) which was isolated based on its ability to cause vasodilation [3]. VIP and 

PACAP, as well as their receptors are widely expressed in both the central nervous system as 

well as in peripheral tissues, particularly in neurons[4–6••]. In the central nervous system 

(CNS) PACAP and VIP are released from brain neurons and in a paracrine manner bind to 

receptors on adjacent neurons, astrocytes, microglia and/or peripheral inflammatory cells 

[5,7]. PACAP/ VIP interact with three different G-protein-coupled receptors: VPAC1, 

VPAC2 and PAC1, with both forms of PACAP having high affinity for all three, whereas 

VIP has high affinity only for VPAC1/VPAC2[4,5].When PACAP or VIP bind to the G 

protein-coupled receptors (GPCRs) VPAC1 or VPAC2, the cAMP is elevated leading to 

activation of protein kinase (PKA) and EPAC proteins [4–6••,8,9]. PACAP-27,−38 bind with 

high affinity to PAC1 resulting in activation of adenylyl cyclase and phospholipase (PLC) 

[4,5,8,10]. The PLC causes phosphatidylinositol (PI) turnover and the diacylglycerol (DAG) 

and inositol-1,4,5-trisphosphate (IP3) activate PKC and elevate cytosolic Ca2+, 

respectively[4,5,8,10].

VIP and PACAP in a number of cells including cancer cells often function in an autocrine 

manner wherein they are synthesized and released from the cell, and then bind to cell surface 

receptors on the same cell, and alter its behavior [11,12].

Both PACAP and VIP have reported to be involved in numerous physiological process as 

well as a large number of pathological processes[6••,7,13•,14•,15,16,17•,18•, 19], and in 

some cases, possible therapeutic roles proposed[18•,19–22,23•,24]. Recent reviews have 

focused on a number of these areas including : the role of VIP in the physiological/

pathological processes in the gastrointestinal system [6••]; in neurodegenerative/

neuroprotective disorders[13•]; in inflammatory/autoimmune disorders[7,24–26,27••,28,29]; 

in cancer[15,22,30,31]; in pulmonary disorders[32];in diabetes[26,33,34] as well as the 

importance of PACAP in various metabolic disorders[21]; in CNS neuroprotective/

neurodegenerative disorders[14•,18•,19,21,35–37];in neuropsychiatric disorders[stress 

response, anxiety disorders, depression, post-traumatic stress disorder, schizophrenia, 

headache][18•,19,23•,38–42,43•,44•,45]; in addictive disorders[drugs, alcohol]

[46•,47,48•,49•,50•]; inflammatory disorders[7,19,24]; protective effects in renal injury/

disease and other peripheral organs[GI tract, Respiratory system, cartilage/bone disorders, 

cardiovascular system][17•,51,52]; cancer[12,15,19,30,53•] and in diabetes[33,54–56].

In the above disorders, as well as most of the other disorders discussed in the accompanying 

paper (VIP/PACAP: PART II) that VIP/PACAP are involved in, the cellular basis of action/

signaling cascades are not well studied or not clear. In this article (VIP/PACAP: Part 1) we 

briefly focus on recent insights into the pharmacology, cell biology, cellular basis of action/

signaling of VIP/PACAP, primarily using cancer as a model system which has been studied 

in detailed.

II. VIP/PACAP receptors: pharmacology and cellular signaling

PACAP-27, PACAP-38 and PACAP-related peptide are derived from an ADCYAP1 

precursor [preproPACAP) which contains 176 amino acids [4,5,57]. PACAP-27 or 

PACAP-38 bind with high affinity (nM range) to VPAC1 (457 amino acids), VPAC2 (438 
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amino acids) and PAC1 (468 amino acids), which are class B, secretin-like G protein 

coupled receptors (GPCRs) and interact with a stimulatory guanine nucleotide binding 

protein (Gs) resulting in activation of adenylyl cyclase elevating the cAMP[4,5,57]. 

PACAP-27 or PACAP-38 binding to PAC1 also results in interaction with Gq causing 

activation of phospholipase (PLC) resulting in the metabolism of PI [4,15,58•]. VIP is 

derived from a different precursor protein[preproVIP] which contains 170 amino acids[4,8]. 

In addition to VIP (28 amino acids), peptide histidine valine (42 amino acids) and peptide 

histidine methionine (27 amino acids) are also derived from this VIP precursor protein[4,8]. 

VIP binds with high affinity (nM range) to VPAC1 and VPAC2 but does not bind or activate 

PAC1, and thus differs from PACAPs which binds with high affinity to VPAC1, VPAC2 and 

PAC1. Because of this overlap, it can be difficult to establish which of the three receptors is 

mediating a given PACAP response(this will be discussed in more detail below).

VPAC1 has a large extracellular N-terminal (130 amino acids), 7 transmembrane (TM) 

domains, 3 extracellular (EC) loops, 3 intracellular (IC) loops and an intracellular C-

terminal. Using photo-affinity labeling and modeling the C-terminal of VIP was found to 

interact with the N-terminal of VPAC1 [59] resulting in activation of VPAC1 and a change 

in the conformation of IC loop 3 activating Gs. In a recent study [60•] using cryo-electron 

microscopy it was found that PACAP-27 adopts an alpha helical conformation and engages 

VPAC1 with its N-terminal inserting into the ligand binding pocket at the transmembrane 

bundle core of the receptor interacting with all TM helices except TM4, and then couples to 

Gs.

In contrast to VPAC1/2, numerous PAC1 splice variants (SVs) frequently occur including 

both N-terminal and intracellular loop 3 variants that can differ in their signaling cascades 

[4,5,8,61–63]. Addition of a 28 amino acid segment to PAC1 null IC loop 3 results in the 

PAC1 hop SV[61]. Addition of a different 28 amino acid segment results in the formation of 

PAC1 hip SV[61]. Addition of both SV3 results in the formation of the PAC1 hip-hop 

SV[61]. The PAC1 SVs have altered ability to interact with Gq and cause PI turnover[61]. 

The PAC1 gene has 18 exons and deletion of exons 5, 6 or 4,5,6 reduces the size of the N-

terminal by 7, 21 or 57 amino acids [64] and alternative slicing generates the different splice 

variants[4,5,8,61–63]. The PAC1 deletions have impaired ability to bind PACAP [65]. It 

remains to be determined if PAC1 alternative splicing can fine tune brain activity [63], 

however a number of studies in mammals and Zebrafish have implicated some of these spice 

variants in control of both body and cellular homeostasis[63].

Recent advances have been made in PAC1 structure and signal transduction. PAC1 has a 135 

amino acid N-terminal, which contains antiparallel β-sheets that bind to the C-terminal of 

PACAP [66]. The N-terminal of PACAP interacts with TM5, TM6, TM7 which have an α-

helix [66]. PAC1 has an open state (G4) and 3 closed transition states (G1–G3) and these 

structures can change on a time scale of milliseconds [67•]. During PAC1 movement, parts 

of TM6 and TM7 associate with ECL3, whereas parts of TM5 and TM6 associate with 

ICL3, which interacts with G proteins. H-bonds and electrostatic interactions are altered for 

Asn240, Arg199, Gln392 and Tyr241 of PAC1 during the conformation changes [21,67•]. The 

results indicate that major conformational changes occur during agonist binding to PAC1. 

Recently the cryo-EM structure of the human PAC1 receptor coupled to a heterotrimeric G 
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protein was reported[58•]. The structure [58•] revealed that the TM1 helical domain plays a 

major role in PACAP recognition with aromatic residues of PACAP interacting with 

Y150,Y157 and Y161 in TM1; and that the PAC1R extracellular domains (ECD) function as 

an affinity trap and are not required for receptor activation.

PAC1 binds PACAP-27 (IC50 = 5 nM) or PACAP-38 (IC50 = 3 nM) but not VIP (IC50 = 500 

nM) with high affinity [68]. The 61 amino acid peptide maxadilan binds with high affinity to 

PAC1, but not VPAC1 or VPAC2 but has little sequence homology to PACAP [69]. Also, 

(Iac1, Ala16,17, DLys28)(IAAD)PACAP-38 binds PAC1R with higher affinity and was more 

potent at elevating cAMP in cells containing PAC1 (EC50 = 0.05 nM) than cells containing 

VPAC1 (EC50 =1.5 nM) or VPAC2 (EC50 = 2.5 nM) [70] The results indicate that 

(IADD)PACAP-38 is 30–50 fold more potent at PAC1 than VPAC1 or VPAC2. There are no 

potent nonpeptide antagonists for PAC1 and the most widely used peptide antagonist 

PACAP (6–38) has low affinity[4,8,15,70].

The investigation of the exact role of VIP and PACAP in different pathological as well as 

physiological conditions has been hampered by the lack of high affinity, selective agonists 

and antagonists for the three receptor subtypes[VPAC 1/2, PAC1][15,16,21,58•,71–74]. At 

least two recent developments suggest this may change. First, is the detailed structural 

insights into the molecular basis for high affinity binding and activation of each of these 

receptors, briefly discussed above, will provide a firm basis for the development of selective 

ligands, as has been the case recently with a number of other G-protein coupled 

receptors[21,58•,60•,72,75]. In fact, recently, a number of investigators report various small 

molecule nonpeptide antagonists (hydrazides, PA compounds)[58•,76•], as well as 

identifying some lead compounds that may yield PAC1R or VPAC positive allosteric 

modulators or orthosteric/allosteric agonist/antagonists[21,77–79]. Secondly, recently there 

is increased use of monoclonal antibodies to specifically inactivate various targets in many 

diseases which have proven safe and effective[80–83]. For example, the peptide, CGRP has 

been shown to be important in the pathogenesis of migraine headaches[41,84,85,86•, 87]. 

Recently, the use of monoclonal antibodies to CGRP or its receptor have shown sustained 

efficacy in the prevention of migraine headaches and are well tolerated[41,88]. These have 

been so successfully thatcurrently four CGRP monoclonal antibodies have received FDA 

approval for the prevention of migraine: erenumab, fremanezumab, galcanezumab, and 

eptinezumab[89]. Recently, ALD1910[90••] a potent humanized neutralizing monoclonal 

antibody with a 4000-fold greater affinity for PACAP27/38 than VIP was described, which 

completely antagonized PACAPs activation of PAC1,VPAC1 and VPAC2, by binding to an 

epitope on PACAP and blocking its binding. ALD1910 should prove very useful for 

exploring the role of PACAP in various diseases and is being evaluated currently in a 

placebo-controlled trial for treatment of migraine, which will be discussed in more detail 

below.

III. VIP/PACAP receptors: Cancer

The important roles the VIP/PACAP system play in the growth, differentiation, and 

progression of a number of different neoplasms was reviewed in studies up to 2015 in the 

past[15,16,91,92]. In those reviews it was pointed out that many different 
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neoplasms(particularly breast, lung, prostate, pancreas, central nervous system tumors, 

colon, gastric, urinary bladder) over-express either the VPAC1, VPAC2 or PAC1 receptors; 

that activation of these receptors affected tumor growth/differentiation; that there were 

increased insights into the cellular signaling cascades activated by these receptors that 

altered the neoplasms behavior and that these new insights were suggesting novel tumor 

treatments. In the following section more recent advances will be concentrated on with 

particular attention to novel insights from lung cancer studies which have provided a number 

of new insights into the cellular mechanisms by which VIP/PACAP receptor activation alters 

these neoplasm’s behavior, which may lead to novel treatments.

Lung cancer is a serious public health problem with over 150,000 deaths annually in the 

United States and 80–85% of cases are included in the nonsmall cell lung cancer(NSCLC) 

category. NSCLC is traditionally treated with combination chemotherapy; however, the 5-

year survival rate is only 16% [93]. High densities of PACAP, VIP, VPAC1 and PAC1 but 

not VPAC2 mRNA are present in lung cancer cell lines [94]. With ligand binding 

studies,VPAC1 is found in 60% of lung cancers, while VAPC2 and PAC1R are uncommonly 

expressed at sufficient levels to be detected[95]. PACAP immunoreactivity is present in 

many lung cancer biopsy specimens [96]. In contrast to NSCLC, PAC1 has been detected in 

endometrial, breast, colon, liver, neuroblastoma, pancreatic and prostate cancers 

[20,31,95,97]. Similar to NSCLC, VPAC1 are frequently present in breast, colon, lung, liver, 

pancreas prostate, stomach and urinary bladder cancer biopsy specimens [95], whereas 

VPAC2 is less frequently found in neoplasms, however some tumors such as leiomyomas 

express predominantly VPAC2[95].

The addition of VIP or PACAP stimulates the clonal growth of NSCLC cells [98]. In 

contrast, VIP hybrid (VPAC1/ VPAC2 antagonist) or PACAP (6–38) (PAC1 antagonist) 

inhibit the growth of NSCLC cells [99] In addition to elevating second messengers (VIPR-

cAMP,PAC1-cAMP,Phospholipase C [PLC]-Ca/phosphoinositides/PKC), VIP or PACAP 

cause phosphorylation of a number of proteins that have important growth effects. PACAP 

addition to NSCLC cells stimulates tyrosine phosphorylation of focal adhesion kinase (FAK) 

and proline-rich tyrosine kinase (PYK) which interact with the actin cytoskeleton and Rho 

family GTPases, respectively [99,100]. The ability of PACAP to increase FAK and PYK 

phosphorylation was impaired by PP2 (Src inhibitor), U73122 (PLC inhibitor) and 

PACAP(6–38). FAK and PYK play a role in cancer metastasis. Also, PACAP addition to 

NSCLC cells increased the tyrosine phosphorylation of the epidermal growth factor receptor 

(EGFR), a receptor tyrosine kinase (RTK) [98,101].

The mechanism by which PAC1 regulates EGFR transactivation is fairly complex 

[53•,98,102,103]. PLCγ is tyrosine phosphorylated after PAC1 binds agonist resulting in 

metabolism of PIP2 to IP3 (increases Ca2+) and DAG (activates PKC) leading to the 

phosphorylation of Src. Pro-transforming growth factorα (TGFα) is metabolized by matrix 

metalloproteinases (MMP) resulting in the secretion of TGFα, which binds to the EGFR. 

The EGFR forms homodimers resulting in the activation of the ERK pathway. RAS 

phosphorylates Raf, which phosphorylates MEK, which phosphorylates ERK which 

activates the serum response factor leading to increased cellular proliferation. Also, reactive 

oxygen species (ROS) are required for the EGFR to increase tyrosine phosphorylation of 
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protein substrates. The ability of PACAP to increase EGFR transactivation is impaired by 

PACAP(6–38), PP2 (Src inhibitor), GM6001 (MMP inhibitor), N-acetyl cysteine 

(antioxidant), TGFα mAb (neutralizes TGFα) and gefitinib (Tyrosine kinase 

inhibitor[TKI]). In addition to tyrosine phosphorylation of protein substrates, the EGFR can 

be auto-phosphorylated at Y974, Y992, Y1045, Y1068, Y1086, Y1114, Y1148 and Y1173. The 

transactivation process is very rapid taking 1 min and it takes 2 min for ERK to be 

phosphorylated. PACAP can increase cAMP, however, addition of the PKA inhibitor H89, 

has little effect on transactivation, supporting the conclusion that it is mediated by activation 

of PLC. In summary, PACAP addition to NSCLC cells causes EGFR transactivation in a 

PLC-dependent manner that requires ligands such as TGFα.

In addition to EGFR forming homodimers with another EGFR, activated EGFR can from 

heterodimers with HER2 [53•,103,104]. PACAP addition to NSCLC cells results in the 

phosphorylation of HER2 at Y1005, Y1023, Y1139, Y1196, Y1222 and Y1248. and ERK is 

phosphorylated leading to an increase in nuclear oncogene expression and proliferation. The 

phosphorylation of HER2 can be blocked by trastuzumab (mAb) or lapatinib (EGFR and 

HER2 TKI) and diphenylene iodonium (DPI). DPI is an inhibitor of NADPH (Nox) and 

Duox enzymes. Surprisingly, many of the 10 NSCLC cells examined had mRNA for Nox1, 

Nox2, Nox3, Nox4, Nox5, Duox1 and Duox2. DPI is a universal inhibitor for all of these 

enzymes. Addition of PACAP to NSCLC increased ROS and this increase was inhibited by 

DPI. Also, DPI inhibited the growth of NSCLC cells.

Recent studies show that in lung cancer cells activation of PAC1 and other G-protein 

coupled receptors can stimulate EGFR and HER2 can also form heterodimers with HER3 

[103,105]. PACAP addition to NSCLC cells can result in the phosphorylation of HER3 at 

Y1054, Y1197, Y1199, Y1222, Y1260, Y1262, Y1276, Y1289 and Y1328. The phosphorylation of 

HER3 caused by addition of PACAP to NSCLC cells was impaired by PACAP(6–38), and 

mAb 3481 (HER3 blocker). PI3K is activated leading to the phosphorylation of AKT 

increasing the proliferation and survival of NSCLC cells. The proliferation of NSCLC cells 

was increased by NRG-1, a growth factor for HER3, and PACAP but inhibited by 

PACAP(6–38), gefitinib, trastuzumab and mAb 3481. The NSCLC growth was strongly 

inhibited by addition of both PACAP(6–38) and gefitinib. These results demonstrate the 

most complete inhibition of transactivation of the EGFR/HER family in NSCLC cells is to 

use a GPCR antagonist and a tyrosine kinase inhibitor.

In lung cancer cells, despite the presence of VPAC1, VIP has little effect on transactivation 

of the EGFR, HER2 and HER3. This is in contrast to breast cancer cells, in which VIP 

increased the transactivation of the EGFR and HER2 [104,106]. In these cells, the increase 

in EGFR and HER2 transactivation was impaired by growth hormone-releasing hormone 

analog (JV-1–53) and siRNA against VPAC1 [104,106].The transactivation of the EGFR by 

VIP was blocked also by H-89, a PKA inhibitor [107]. In the colonic adenocarcinoma cell 

line, T84 cells, the transactivation of the EGFR and HER2 caused by VPAC1 was impaired 

by Src and MMP inhibitors [108] the transactivation is ligand dependent. A recent study 

[109] demonstrates a new novel cascade of EGFR transactivation by VIP in colonic 

adenocarcinoma cells[CACO cells]. Activation of VPAC1 increases PKA activity which 

stimulated the phosphorylation of naked cuticle homolog 2 (NDK2) which in turn stimulated 
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the cell-surface delivery of TGF-α for EGFR transactivation [109]. NDK2 is phosphorylated 

by PKA utilizing scaffold A-kinase anchoring protein 12 (AKAP12). These results indicate 

that there are differences in the way in which PAC1 and VPAC1 regulate the ligand-

dependent transactivation of the EGFR and HER2 in different cancer cells.

PACAP addition to the pheochromocytoma cell line, PC12 cells increases TrkA tyrosine 

phosphorylation in a ligand (NGF) independent manner which induces trophic effects on the 

cell which can result in a neuroprotective effect. VIP-stimulated transactivation of TrkA 

occurred hours after the addition of PACAP to PC12 cells [110]. The increased cAMP and 

the increase in TrkA phosphorylation caused by PACAP addition was impaired H89, a PKA 

inhibitor. The increase in TrkA and AKT phosphorylation caused by PACAP was impaired 

by K252a, a TKI, and PP1, a Src inhibitor. PACAP activated cAMP/exchange protein (Epac) 

in a cAMP dependent manner [111]. The PAC1 mediated TrkA phosphorylation is essential 

for EPAC to activate Rit GTPase leading to PC12 cellular differentiation.

The elucidation of these novel signaling cascades activated by VIP/PACAP in both normal 

cells and cancer cells may lead to novel therapeutic approaches. As discussed in the other 

sections of this review, VIP/PACAP are involved in numerous both physiological and 

pathological processes such as having potent anti-inflammatory activity, neuroprotective 

effects, etc., however the cellular signaling mechanism in most of these processes remains 

unknown, whereas the detailed studies in especially cancer cells are providing important 

insights into the cellular signaling cascades activated by the peptides. The elucidation of this 

cascades will likely identify important therapeutic targets for disorders in which VIP/PACP 

system play an important role.

IV. Conclusions

The recent insights into the pharmacology, cell signaling and molecular basis for activation/

binding affinity interaction for VPAC and PAC1 receptors has identified new possible 

cellular targets, have provided insights raising the likelihood of the development of selective 

nonpeptide ligands, and this coupled with the development of neutralizing monoclonal 

antibodies for PACAP and VIP are increasing the likelihood of VIP/PACAP based 

therapeutic approaches in various disorders becoming a distinct possibility.
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KEY POINTS

• VIP/PACAP and their receptors are involved in numerous physiological/

pathological processes

• They have important roles in a number of cancers

• Their exact role in various physiological/pathological processes has been 

impeded by the lack of potent, specific receptor agonists/antagonists

• Recent studies show increasing insights into their molecular basis of receptor 

activation which will likely facilitate the increased identification of small 

molecule receptor ligands(agonists/antagonists)

• Recent insights into the signaling cascades mediated by VPAC1/2 and PAC1 

activation in such diseases as cancer, and the development of neutralizing 

monoclonal antibodies for VIP/PACAP are increasing the likelihood of the 

development of novel therapeutic approaches in numerous disorders.
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