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The circadian oscillator analysed at the
single-transcript level
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Abstract

The circadian clock is an endogenous and self-sustained oscillator
that anticipates daily environmental cycles. While rhythmic gene
expression of circadian genes is well-described in populations of
cells, the single-cell mRNA dynamics of multiple core clock genes
remain largely unknown. Here we use single-molecule fluorescence
in situ hybridisation (smFISH) at multiple time points to measure
pairs of core clock transcripts, Rev-erbα (Nr1d1), Cry1 and Bmal1, in
mouse fibroblasts. The mean mRNA level oscillates over 24 h for all
three genes, but mRNA numbers show considerable spread between
cells. We develop a probabilistic model for multivariate mRNA
counts using mixtures of negative binomials, which accounts for
transcriptional bursting, circadian time and cell-to-cell heterogene-
ity, notably in cell size. Decomposing the mRNA variability into
distinct noise sources shows that clock time contributes a small frac-
tion of the total variability in mRNA number between cells. Thus, our
results highlight the intrinsic biological challenges in estimating
circadian phase from single-cell mRNA counts and suggest that
circadian phase in single cells is encoded post-transcriptionally.
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Introduction

In animals, the circadian clock is a 24-h period oscillator that

dynamically regulates central aspects of physiology across all scales

of biological organisation, from metabolism and locomotor activity

down to cellular gene expression and cell signalling (Mohawk et al,

2012; Yeung & Naef, 2018; Reinke & Asher, 2019). Circadian

rhythms are entrained by external signals (Zeitgebers) but are

present even in single cells; in fact, live-cell imaging of transcrip-

tional reporters (Nagoshi et al, 2004) and endogenous fusion

proteins (Welsh et al, 2004; Leise et al, 2012; Li et al, 2020) have

revealed that circadian oscillations are cell-autonomous and self-

sustained, with a period that fluctuates from cycle to cycle by typi-

cally 10%. Molecularly, it is thought that the oscillations involve

interactions between core circadian clock proteins including

BMAL1, CRY1 and REV-ERBα (encoded by Arntl, Cry1, and Nr1d1

genes, respectively), establishing negative feedback loops (Taka-

hashi, 2017). Live-cell studies of circadian oscillators in individual

cells have thus far remained limited to one gene product at a time,

and hence the properties of circadian oscillators in single cells

across multiple genes remain largely uncharacterised (Nagoshi et al,

2004; Welsh et al, 2004).

We thus aimed at characterising circadian oscillators at the tran-

script level by using multichannel mRNA smFISH, which is a sensi-

tive measure of single-cell transcript counts for multiple genes

simultaneously (Raj et al, 2008; Itzkovitz & van Oudenaarden,

2011). While such smFISH measurements provide transcript counts

at a single snapshot, the resulting mRNA distributions contain rich

information about the underlying dynamical processes. Specifically,

the mRNA distributions can be analysed using the telegraph model

of transcription (Peccoud & Ycart, 1995; Munsky et al, 2012) to esti-

mate the transcriptional bursting kinetics of individual genes using

either smFISH (Raj et al, 2006; G�omez-Schiavon et al, 2017; Nicolas

et al, 2018; Zoller et al, 2018; Mermet et al, 2018) or even scRNA-

seq count data (Kim & Marioni, 2013; Bahar Halpern et al, 2015;

Larsson et al, 2019), though the latter is less sensitive. At steady

state, the distribution predicted by the model, a Beta-Poisson

mixture (Kim & Marioni, 2013; Dattani & Barahona, 2016), can be

approximated with a negative binomial (NB) distribution, which is

valid when the mRNA half-life is long in relation to the time spent

in the active promoter state (Raj et al, 2006) and which is typical for

mammalian genes (Suter et al, 2011; Zoller et al, 2015). The NB

distribution, which is over-dispersed (having larger variance than

expected from a Poisson distribution), uses two informative parame-

ters specifying its shape: the burst size and the burst frequency (nor-

malised by mRNA half-life). Using the telegraph model, the

transcriptional parameters for the core clock gene Bmal1 have been

analysed both by smFISH (Nicolas et al, 2018) and live imaging of

destabilised Bmal1-Luc transcriptional reporters (Suter et al, 2011;
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Zoller et al, 2015). These studies showed that the transcriptional

burst frequencies of Bmal1 and the clock-output gene Dbp oscillate

over the circadian clock (Nicolas et al, 2018), while the burst size

stays constant.

In addition to gene expression variability caused by biomolecular

birth–death processes and transcriptional bursting, both of which

contribute intrinsic noise, significant differences in mRNA number

may also be caused by extrinsic sources of cell-to-cell variability

(Elowitz et al, 2002; Zechner et al, 2014), such as cell size or cell

cycle stage (Battich et al, 2015; Bruggeman & Teusink, 2018; Fore-

man & Wollman, 2020). The scaling of mRNA number with cell size

has been attributed to differences in transcriptional activity,

although not all genes are subjected to cell-size control (Schmidt &

Schibler, 1995). Notably, transcriptional burst size has been found

to correlate with cell volume in both mammalian cells (Padovan-

Merhar et al, 2015) and yeast (Sun et al, 2020), i.e. transcriptional

burst sizes are larger in larger cells. The molecular mechanism that

underpins this scaling has been proposed to integrate both cellular

volume and DNA content in order to produce the appropriate

amount of RNA for a cell of a given size, which is consistent with a

model whereby a factor limiting for transcription is sequestered to

the DNA (Padovan-Merhar et al, 2015). For oscillatory transcripts of

the circadian clock and also transcripts driven by it, variability in

the single-cell state of the circadian oscillator (partial synchronisa-

tion of the circadian phases) would also further increase transcript

count variability in cell populations (Pulivarthy et al, 2007). The

extent to which each of these sources of noise contributes to cell-to-

cell heterogeneity in mRNA expression remains an open question

for circadian clock genes.

Here, we aimed to quantitatively study how the mRNA distribu-

tions of core circadian genes evolve over the circadian cycle while

considering multiple sources of intrinsic and extrinsic variability.

We used smFISH to simultaneously target pairs of core clock tran-

scripts (Cry1 and Nr1d1, or Cry1 and Bmal1) in confluent NIH3T3

mouse fibroblasts every 4 h over the circadian clock. We mathemat-

ically modelled the mRNA counts using mixtures of distributions to

account for intrinsic transcriptional fluctuations (bursting), cell-to-

cell variability and time-varying (periodic) parameters. We investi-

gated several models of increasing complexity and, using a Bayesian

model selection approach, we found that the preferred model

favours inclusion of measured cellular area as an explanatory vari-

able, with gene-specific scaling of mRNA counts with cell size. From

the preferred model, we could decompose the sources of measured

variation in core clock transcript number, showing that only a small

percentage is caused through circadian time. Due to the strong

contribution of transcriptional bursting in individual genes, our

results suggest that circadian phase in individual cells may be speci-

fied by mRNA numbers of many genes together or by other molecu-

lar states such as protein abundance or protein activity levels.

Results

Time-resolved mRNA count distributions of core clock genes in
single cells

To characterise the circadian oscillator at the single-transcript level,

we performed smFISH in synchronised, confluent (non-dividing)

NIH3T3 mouse fibroblasts and measured transcript numbers every

4 h for 24 h (7 time points) (Fig 1A). The cells were synchronised

using dexamethasone (Dex), and sampling started 17 h after the

treatment to avoid the initial transient response. We performed

multichannel imaging with fluorescent probes targeting exons of

Bmal1 and Cry1 or Nr1d1 and Cry1 in the same cells. We measured

the number of transcripts per cell for each gene in approximately

450 single cells per time point from three replicates (Materials and

Methods). After cell segmentation (Appendix Fig S1), the mRNA

distributions for each replicate are shown in Appendix Figs S2–S5.
The mean number of Bmal1, Cry1 and Nr1d1 transcripts per cell

oscillated along the circadian cycle and ranged from 10 to 35 mole-

cules (Fig 1B). Bmal1 mRNA counts were in the same range as

previous measurements in the same cell line (Nicolas et al, 2018).

To estimate the population phase and amplitude of each gene, we

fitted a two-harmonic cosinor model (Materials and Methods). The

oscillations of Cry1 and Bmal1 are approximately in antiphase with

Nr1d1 positioned in-between, which is consistent with known phase

relationships of core clock transcripts in 3T3 cells in bulk measure-

ments (Hughes et al, 2009; Ukai-Tadenuma et al, 2011) (Fig 1C).

The fold change, defined as the ratio of the peak to the trough, was

1.5 for Cry1, 1.6 for Bmal1 and 2.1 for Nr1d1 (Fig 1C). Even though

the cells were synchronised with Dex, we still expect cell-to-cell dif-

ferences in the phase resulting from incomplete synchronisation

(Pulivarthy et al, 2007). As a comparison, we entrained cells with

temperatures cycles, known to be an efficient method of synchroni-

sation, and obtained a fold change of 2.1 for Bmal1, which was

slightly higher than with Dex synchronisation and similar to

▸Figure 1. Single-molecule RNA fluorescence in situ hybridisation (smRNA FISH) captures transcript distributions of core clock genes in mouse fibroblasts at
multiple time points.

A smFISH targeting Bmal1, Cry1 and Nr1d1 in wild-type NIH 3T3 cells at 17, 29 and 25 h after synchronisation with Dex, respectively. Nuclei are stained with DAPI
(blue). Each fluorescent dot (white) corresponds to a single transcript. Segmented cell boundaries are delineated in grey. The blue and white channels represent
maximum z-projections. Scale bar: 20 μm.

B Number of Bmal1, Cry1, and Nr1d1 transcripts per cell as a function of time after treatment with Dex. These data combine all smFISH hybridisations from the 4 h
sampled Nr1d1/Cry1 and Bmal1/Cry1 experiment. Each dot shows the average over one replicate from an independent slide (Materials and Methods). The solid lines
represent fits using a two-harmonic cosinor model (Equation (1), Materials and Methods) for each gene individually.

C The inferred peak phase (angular component of the graph) and max-to-min fold change (radial component) from the fit of Equation (1).
D Distributions of Nr1d1, Cry1 and Bmal1 transcripts at 21, 29 and 37 h after synchronisation with Dex. μ represents the mean of the distribution, CV represent the

coefficient of variation (standard deviation / mean), and N is the number of cells at the given time point. Total number of cells analysed for the Nr1d1/Cry1 pair: 21 h
—449; 25 h—414; 29 h—521; 33 h—463; 37 h—477; 41 h—429. Total number of cells analysed for the Bmal1/Cry1 pair: 17 h—465; 21 h—490; 25 h—504; 29 h—
436; 33 h—407; 37 h—454; 41 h—404.

Source data are available online for this figure.
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previous reports (Saini et al, 2012) (Appendix Fig S6). To demon-

strate the reproducibility of the temporal mRNA patterns, we addi-

tionally performed an independent experiment on four time points

for Nr1d1 and Cry1. This experiment showed that the oscillatory

patterns are reproducible (Appendix Fig S7).

While the mean mRNA level changed over time for all genes,

there was substantial variability in mRNA numbers between cells,

leading to significant overlap of the transcript distribution between

different time points (Fig 1D). The measured coefficients of varia-

tion (CV = standard deviation/mean) ranged from 0.5 to 1. For

comparison, the expected CVs would be 0.17–0.32 if a gene had an

average mRNA level between 10–35 molecules and if mRNA dynam-

ics followed a Poisson process (i.e. assuming constant mRNA

production and degradation rates and that cells share the same
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kinetic parameters). Thus, the observed variability implies addi-

tional sources of variability, possibly from transcriptional bursting

or extrinsic sources (Battich et al, 2015). The mathematical model-

ling introduced below serves to identify these contributions.

Core clock transcript numbers scale with cell size

Given that previous studies identified cell size as a source of extrin-

sic variability in transcript counts (Battich et al, 2015; Kempe et al,

2015; Padovan-Merhar et al, 2015; Foreman & Wollman, 2020), we

quantified cell sizes and found a positive correlation with mRNA

number for all genes (Appendix Fig S8). In fact, we found a linear

relationship between the log area and the log mean mRNA number,

indicating a power-law scaling (Fig 2A). The relationship was sub-

linear, with exponents ranging from 0.42 for Nr1d1 to 0.70 for

Bmal1. If mRNA counts were proportional to volume and if the cell

had a geometry such as a sphere or cube, we would expect a super-

linear scaling between mRNA counts and area. The observed sub-

linear scaling thus likely reflects the “fried egg” morphology of

adherent cells, where increases to the area of a relatively flat cyto-

plasm have a proportionally small effect on the total volume due to

the nucleus.

Two-gene mRNA count distributions reveal gene-pair
specific correlations

We next exploited the ability of smFISH to measure multiple tran-

scripts simultaneously to explore the joint relationship between

transcript numbers of different clock genes. Our dual-channel imag-

ing allows either Bmal1/Cry1 or Nr1d1/Cry1 to be measured in the

same cells (Fig 2B). The bivariate relationships between the gene

pairs show that Bmal1/Cry1 are positively correlated at each time

point (R from 0.12 to 0.53), whereas Nr1d1/Cry1 show negative

correlations (R from 0.0 to −0.19) (Fig 2C). To also estimate the

correlation between genes while accounting for cell area, we

regressed out the area for each gene and recalculated the correlation

coefficients (Padovan-Merhar et al, 2015; Hansen et al, 2018). Since

all genes are positively correlated with area (Fig 2A), this processing

shifted the correlations for both pairs of genes. Specifically, the

correlation coefficients for the area-filtered mRNA counts decreased

but remained positive for Bmal1/Cry1 and became more negative

for Nr1d1/Cry1 (Appendix Fig S9). These residual correlations could

be caused by a spread in the circadian phases between cells (Wu

et al, 2018) or regulatory interactions (e.g. NR1D1 protein represses

Cry1 transcription), which can cause different steady-state correla-

tions depending on whether feedback is negative or positive (Mun-

sky et al, 2012). Below, we formulate these hypotheses as

simplified, effective mathematical models to quantify the compati-

bility of our data with both scenarios.

Modelling periodic mRNA count distributions in heterogeneous
cell populations as mixtures of negative binomials

We next developed a model with the aim of finding a compact math-

ematical representation of the circadian clock in the space of multi-

dimensional transcript counts. In other words, we sought to

describe how the multivariate probability distribution of mRNA

counts varies as a function of circadian time. As the above

exploratory analysis shows, there are systematic effects (e.g. cell

features) coupled with time-varying parameters (the circadian oscil-

lator), and the variance of the mRNA distributions is larger than

expected with a Poisson process. To keep the model both manage-

able and interpretable, we made a number of simplifying assump-

tions. First, since time scales associated with transcriptional

bursting as well as mRNA half-lives of clock genes are short

compared to the 24-h period, we modelled the system in a quasi-

steady state, which means that at each point the mRNA count distri-

bution in the population is approximated with a slowly time-varying

stationary distribution. Second, based on reports that transcriptional

bursts are typically short relative to the mRNA half-life (Suter et al,

2011; Zoller et al, 2015), we used a common approximation of the

full telegraph model which takes the form of an NB distribution,

with burst size and burst frequency as the two effective parameters

(Raj et al, 2006). We also proposed additional model features in four

different but related models of increasing complexity (Table 1 and

Fig 3A). As detailed below, we then selected the optimal model from

the candidates using Bayesian model selection.

The first and simplest model (M1) assumes that the transcrip-

tional bursting parameters controlling the shape of the NB distribu-

tion are modulated in a deterministic way by the clock, with no

further sources of cell-to-cell heterogeneity. Moreover, we incorpo-

rate previous findings regarding transcriptional bursting kinetics of

clock genes to further reduce the complexity of the model. Namely,

previous results from the same cell line have shown that burst

frequency of clock genes is modulated by the circadian clock while

the burst size remains constant (Nicolas et al, 2018). In M1, we

therefore used a NB distribution with an oscillatory burst frequency

but otherwise constant parameters (features F1 and F2, Table 1 and

Fig 3A).

The second model explicitly incorporates cell size as a source of

extrinsic variability. Previous work in mammalian cells showed that

transcriptional burst sizes scales with cell volume (Padovan-Merhar

et al, 2015). In model M2, we allowed the burst size to scale with

cell size, and the full mRNA distribution across the population at

each time point consequently becomes a mixture of NB distributions

(feature F3, Fig 3A). Since we measured cellular area instead of

volume, we set the dependence between burst size and cell area

using an additional, gene-specific exponent β, which is also

supported by the linear relationship observed between log area and

the log mean mRNA (Fig 2A).

For both models M1 and M2, the likelihood of observing the data

given the parameters of the model is evaluated using the model-

specific NB distribution and the mRNA counts for both genes in each

cell. This is performed for both Bmal1/Cry1 and Nr1d1/Cry1 pairs

across all time points, and this likelihood is combined with model

priors to define the posterior parameter distribution for each model

(Materials and Methods). We applied Hamiltonian Monte Carlo

sampling within the STAN probabilistic programming language to

sample the posterior distribution and infer model parameters (Car-

penter et al, 2017) (parameter estimates for each model shown in

Appendix Tables S2–S5). We then quantified the performance of

each model by estimating the out-of-sample predictive accuracy,

which rewards good fits to the data while penalising model complex-

ity in order to control for overfitting. Specifically, we used approxi-

mate leave-one-out cross-validation with Pareto-smoothed

importance sampling (PSIS-LOO) to estimate the pointwise out-of-
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Figure 2. Core circadian clock transcript distributions show area dependence and distinct gene-to-gene correlation structures.

A Log conditional mean mRNA count for a given area as a function of the log area. Each cell is sorted by area by placing it in one of 20 bins that range from the 5th to
the 95th percentile. The conditional mean given the area E[m|A] is then the mean mRNA count of each bin. The area is normalised such that the average area is equal
to one. Solid lines represent a least-squares linear fit to the data.

B Top image: Dual-channel smFISH targeting Bmal1 and Cry1 simultaneously, taken at 17 h after Dex synchronisation. Blue, nuclei stained with DAPI; green dots, Bmal1
transcripts; red, Cry1 transcripts. Bottom image: Dual-channel smFISH targeting Nr1d1 and Cry1 simultaneously, taken at 25 h after Dex synchronisation. Blue, nuclei
stained with DAPI; green dots, Nr1d1 transcripts; red, Cry1 transcripts. Scale bar: 20 μm.

C Bivariate distributions of mRNA counts per cell for dual-channel smFISH targeting either Bmal1 and Cry1 or Nr1d1 and Cry1. Each dot corresponds to a single cell, and
the contours represent KDE estimates of the density. Time represents the number of hours after Dex synchronisation, and R represents the Pearson correlation
coefficient.
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sample prediction accuracy (as described in Vehtari et al (2017)),

where models with the highest PSIS-LOO score have the best predic-

tive accuracy. The PSIS-LOO calculated for models M1 and M2

showed a clear preference for M2 compared to M1 (Fig 3B), and we

hence built subsequent models using cell size-dependent burst sizes.

The dependence on size differed between the three genes (parameter

β, Fig 3C), with Nr1d1 having the weakest and Bmal1 the strongest

dependency, suggesting that the scaling between mRNA number and

cell size for the measured clock transcripts can be gene-specific.

To capture additional features observed in the data, notably the

positive and negative correlations in Fig 2C and Appendix Fig S9,

we also allowed cells to be imperfectly synchronised (model M3). A

spread of circadian phases in a cell population could distort the

correlation in mRNA counts between genes, as two genes that are

on average in-phase/antiphase but where phases vary between cells

could generate positive/negative correlations. To model potentially

imperfect synchronisation of the cells at each time point, we intro-

duced cell-specific phases that are distributed around a population

average (feature F4, Fig 3A). To ensure these cell phases do not

become too spread, we used a von Mises prior with k = 2, which

approximately matches the phase spread observed in live micro-

scopy for mammalian fibroblasts (Pulivarthy et al, 2007). To

simplify the analysis, we fixed parameters previously contained in

model M2 to their posterior mean values, and in M3, we keep the

waveform shape and phase for the bursting frequency fixed (from

M2) but allow the burst frequency amplitude to vary. Fitting Model

M3 is practically more difficult as it involves many local minima.

We therefore performed inference multiple (eight) times and chose

the posterior chain with the highest average likelihood. Compared

to model M1, the amplitude of oscillations in burst frequency

increases by approximately 5%, indicating that the underlying

amplitude in single cells is greater than observed at the mean level

due to partial synchronisation (Appendix Fig S10); however, the

improvement was minor and the increased complexity of M3 over

M2 was not supported according to the PSIS-LOO criterion. Thus, it

was apparently difficult to use model M3 to correct the individual

phase for each cell, likely due to the fact that the two mRNA counts

measured in each cell do not contain sufficient phase information

and that the global optimisation problem contains many local

minima. This could potentially be improved by measuring more

genes simultaneously.

Finally, we considered a further refinement (model M4) that

introduces variable burst size from cell to cell as an alternative

mechanism to explain correlations between gene pairs. While in

model M2 the burst size was assumed to be directly proportional to

the cell area, in model M4 we included an additional cell-specific

random variable ϵi,g to modify the burst size in each cell i for each

gene g (feature F5, Fig 3A). Model M4 is a hierarchical model

whereby the distribution of cell-specific parameters is also learnt

during inference, and we assumed that the ϵi,g is bivariate log-

normally distributed between pairs of genes. This log-normal distri-

bution is parameterised with µg, σg and ρ, which represent the mean,

variance and correlation of ϵi,g between genes (in log space). Practi-

cally, this means that when bursts are large for one gene, they can

be large (correlated) or small (anticorrelated) for another gene, and

while the precise mechanism is left unspecified, it can be interpreted

as a signature of regulatory interaction (see below). When all

parameters are free, we noticed that the burst frequency can become

unrealistically high due to a tendency to overfit to individual cells,

and we therefore locked the burst frequency to the posterior mean

values from model M2. The PSIS-LOO scores overall favoured model

M4 (Fig 3B), and the predicted joint probability density shows good

similarity to the observed data (Fig 3D) (all time points shown in

Appendix Fig S11). To further validate the predictive performance

of each model, we performed a “leave-replicate-out” cross-valida-

tion, with the aim of testing how well the predictions of each model

generalise to cells that are not in the training set. We trained each

model while omitting the data from one gene in a test slide. We then

calculated the likelihood score of the test slide using the parameters

from the training set, and we repeated this for all slides. Similarly to

the PSIS-LOO, the results of the leave-replicate-out cross-validation

showed that model M4 has the best predictive performance

(Appendix Fig S12).

The inferred average burst frequency was highest for Bmal1 and

lowest for Nr1d1, while Nr1d1 showed the highest and Cry1 the

Table 1. The features (F1-F5) included in each of the four models
(M1-M4) considered.

M1 M2 M3 M4

F1: Time-dependent burst frequency ✓ ✓ ✓ ✓

F2: Constant burst size ✓

F3: Cell size-dependent burst size ✓ ✓ ✓

F4: Cell-specific circadian phase ✓

F5: Cell-specific burst size ✓

▸Figure 3. A mathematical model that includes area dependence and gene-specific correlation in burst size captures the observed time-dependent bivariate
mRNA distributions.

A Schematic of the five different model features (F1-F5) used in the four models considered (see Table 1). F1: assumes the burst frequency oscillates over 24 h; F2:
assumes a fixed burst size for each gene. The burst frequency (f) and burst size (b) determine the shape of the NB distribution used to model the mRNA counts (see
Materials and Methods), where the mean u = bf and the variance σ2 = µ + µ2/f. F3: the burst size in each cell scales with measured cell area using a gene-specific
exponent βg. F4: to model incomplete synchronisation, each cell has a cell-specific phase offset compared to the average phase. F5: the burst size in each cell is
proportional to the cell area multiplied by a cell-specific burst parameter ϵi,g. These cell-specific ϵi,g are further modelled using a bivariate log-normal distribution.

B PSIS-LOO calculated for each of the four models using the whole dataset of both gene pairs across all time points.
C Posterior parameter estimates. Burst frequency is plotted as a function of time, where the solid line represents the posterior mean and the shaded area represents

the 90% confidence interval. Posterior probability densities are shown for the average burst size, β (which controls the dependence between burst size and cell area)
and ρ (representing the correlation in burst size between genes (in log space)), where β is inferred from model M2 and the average burst size and ρ are calculated
from model M4.

D Comparison of the probability density of the data (kernel density estimates) with the model (using model M4). To estimate the probability from the model, the
dataset was simulated 15 times using the posterior mean parameter values combined with the measured cell areas.
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lowest average burst size (Fig 3C). The burst frequencies (nor-

malised by mRNA half-life) were in the upper range when

compared to the transcriptome-wide estimates using single-cell

RNA-seq, while the burst sizes spanned the observed range

(Larsson et al, 2019). The correlation parameter ρ of the random

variable ϵi,g was positive for Cry1/Bmal1 and negative for Cry1/

Nr1d1 (Fig 3C), consistent with the observed correlations in the

data (Fig 2C and Appendix Fig S9). Overall, we identified a
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preferred model (M4) that incorporated transcriptional bursting, cell

size and circadian time variation and which was able to capture the

measured bivariate smFISH densities.

Generating gene–gene-specific correlations from the core clock
network topology

The preferred model (M4) contains cell-specific burst parameters

(ϵi,g) and a correlation parameter (ρ) without explicitly describ-

ing their biological origins. Thus, we next investigated whether a

dynamic model with gene–gene interactions could provide an

interpretation. Creating a detailed model of the circadian oscilla-

tor to interpret data is challenging since certain variables (such

as protein levels), parameters (such as mRNA/protein half-lives,

repression strengths) and additional genes (such as Clock) are

not directly measured in the experiments. Consequently, we

created a simplified representation to explore the connection

between the core clock network topology and the preferred

model M4. We used the telegraph model of stochastic gene tran-

scription as the basis for the model, where the promoter

switches randomly between an active and inactive state (Peccoud

& Ycart, 1995) (Appendix Fig S13). The gene state, mRNA and

protein levels are modelled for each gene, and to keep the

model close to model M4, we used oscillatory functions for the

burst frequency while the transcription rate (and hence the burst

size) for each gene is a function of the protein levels of the

other genes in the network. We used the circadian clock gene

network topology for Nr1d1, Cry1 and Bmal1 as modelled in

Rel�ogio et al (2011) (the model is fully detailed in Materials and

Methods). When the feedbacks are such that the negative repres-

sion of Nr1d1 by CRY1 is high, the network can generate posi-

tive mRNA correlation between Bmal1/Cry1 and negative

correlation between Nr1d1/Cry1 (Appendix Fig S13), as observed

in our data (Fig 2C and Appendix Fig S9). Furthermore, using

the same inference framework as for our data on the simulated

mRNA distributions, the obtained ρ parameter is positive for

Bmal1/Cry1 and negative for Nr1d1/Cry1, which was also found

for our data (Fig 3C). This analysis therefore supports the

hypothesis that gene–gene interactions represent a plausible

mechanism for generating correlated burst parameters between

genes, which are a feature of the preferred model M4.

The underlying stochasticity of the biochemical reactions implies

differences in phase between cells, which M3 should be able to

capture, though in practice performing the inference proved diffi-

cult. While phase differences undoubtably exist between cells,

analysing the consequences on the correlation structure shows that

it is not sufficient to explain the observed bivariate mRNA distribu-

tions. Indeed, if two genes oscillate with a similar phase, the expres-

sion of the two genes will be positively correlated (Appendix Fig

S14). Similarly, when the oscillations are in antiphase, negative

correlations are found. Given that Nr1d1 and Cry1 are closer in

phase than Bmal1 and Cry1, one would expect that the correlation

between Nr1d1 and Cry1 (once accounting for area) would be higher

than for Bmal1 and Cry1, which was not found in the data (area-

corrected correlations in Appendix Fig S9). It is therefore unlikely

that phase noise alone induces the observed correlations, and the

simulations of the gene network show that gene–gene interactions

also contribute.

Circadian oscillations at the transcript level are blurred by other
sources of single-cell heterogeneity

Having selected a preferred model to describe the data, we next

analysed the model to decompose the variance into distinct sources.

In model M4, there are four sources of transcript count variability

across populations of individual cells: temporal control by the circa-

dian clock, intrinsic noise due to the mRNA production-decay

process, extrinsic noise from variable cell size and fluctuations in

burst size (ϵi,g, termed “other extrinsic”). Intrinsic noise can be

further partitioned into a Poisson component that arises due to the

discreteness of mRNA counts (and would be present with constant,

constitutive expression) and a second component caused by tran-

scriptional bursting. To decompose the variance, we use the law of

total variance (Materials and Methods).

For all three genes, we found that the variance was dominated

by intrinsic noise (Fig 4A), with bursting having a significantly

larger contribution than the Poisson component. The extrinsic

sources of noise in our model, which include area and variable burst

size, contributed less for all three clock genes, and the fraction of

variance due to cell area ranged from 4.2% for Nr1d1 to 17.6% for

Bmal1. Previous studies have shown that the relative proportions of

intrinsic versus extrinsic noise are both condition- (cell types, cell

states) and gene-specific, and regression models that use cellular

features as explanatory variables can account for between 10 and

80% of the variance, depending on the gene (Battich et al, 2015;

Foreman & Wollman, 2020). One explanation for the low intrinsic

variance in these studies is that transcriptional fluctuations are fil-

tered by nuclear retention, though other reports suggest that Fano

factors (variance/mean, a measure of overdispersion compared to

the Poisson distribution) can be even larger in the cytoplasm than in

the nucleus (Hansen et al, 2018). In the cells used here, the strong

signature of transcriptional bursting and high intrinsic noise is

consistent with live imaging of a Bmal1 transcriptional reporter in

the same cell line under similar growth conditions, where intrinsic

noise was estimated to be 4 times larger than extrinsic noise (Zoller

et al, 2015). As we are only able to quantify the role of extrinsic

sources that are included in the model, it is nevertheless possible

that inclusion of additional sources such as the cell cycle, pheno-

typic heterogeneity and microenvironment would increase the

proportion of extrinsic noise. Nonetheless, as shown previously

(Nicolas et al, 2018), cells were maintained in conditions that mini-

mise cell cycle progression and NIH3T3 fibroblasts are phenotypi-

cally homogenous, which controls at least for those major sources

of extrinsic noise (Gut et al, 2015; Foreman & Wollman, 2020).

Somewhat surprisingly, the contribution of the 24-h cycle to

mRNA variance was low across all genes, consistent with the large

overlap in mRNA distributions at different time points (Fig 1D).

This may be unexpected given that robust oscillations in mRNA

levels are found in both bulk RNA sequencing in tissues (Zhang

et al, 2014) as well as cell culture (Hughes et al, 2009; Aguilar-Arnal

et al, 2013). To understand whether our results are compatible with

circadian rhythms found in bulk cell line RNA sequencing, we calcu-

lated the percentage of variance due to time when increasingly large

pools of simulated cells are considered (Fig 4B). Starting from a

small percentage with one cell (as previously shown in Fig 4A), the

percentage of variance explained by time increases to almost 100%

with 1,000 cells, which is caused by progressive averaging-out of
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other sources of single-cell noise as cell numbers become larger.

Our results on single cells are therefore compatible with RNA

sequencing of bulk populations of cells.

While our experiments and inference were performed on pairs of

genes, the model allows us to simulate the count distributions for

all three genes simultaneously. As the correlation of ϵi,g between

Nr1d1 and Bmal1 is not inferred directly in our model, we use the

Cry1/Bmal1 and Cry1/Nr1d1 correlations together with the minimal

assumption of conditional independence of Bmal1 and Nr1d1 given

Cry1 (Materials and Methods). The three-dimensional simulations

help visualise the differences between the average and the single-

cell measurement of circadian clock mRNA expression. The mean

mRNA level shows a clear periodic structure (Fig 4C), where each

circadian time represents a different point on the cycle. In a popula-

tion of unsynchronised single cells, one might expect noise to blur

this structure. It transpires that due to the large contribution of

transcriptional burst noise and the weak contribution of time to

mRNA variance, the single-cell joint three-dimensional probability

distribution is significantly blurred with a diffuse and amorphous

structure (Fig 4D). In summary, probabilistic modelling of the 3-

dimensional core clock system shows a 24-h cycle in the mean level,

but this well-defined periodic shape is blurry when the full probabil-

ity density of mRNA counts is considered.

Discussion

Single-cell measurement of gene expression with smFISH goes

beyond bulk mRNA measurement as it allows for the full characteri-

sation of transcript distributions in populations of cells. Until now,

the temporal evolution of circadian mRNA distributions through the

clock remained uncharacterised. Here we performed a bivariate
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measurement of mRNA number across two pairs of genes every 4 h

over the circadian clock. There were several notable features of our

data including: an average mRNA expression level that oscillated

over the circadian clock, a coefficient of variation for each gene that

largely exceeded that from a Poisson process, a transcript number

that correlated with cell area and a correlation between genes that

depended on the pair considered. To capture these phenomena in a

unified quantitative framework, we proposed several probabilistic,

generative models of our data and used model selection to balance

goodness of fit and model complexity to identify the optimal model.

While we have developed this approach for the circadian clock,

i.e. a temporal system with a periodic structure, we anticipate that

the modelling of smFISH developed here, in particular the ability to

include and distinguish intrinsic and extrinsic noise sources, will be

relevant to other biological systems. Our starting point was to model

the number of mRNA molecules in each cell with a time-varying

negative binomial distribution and by subsequently incorporating

cell area the resulting distribution of mRNA counts across the entire

population of cells became a mixture of NBs. While previous works

have modelled extrinsic noise using cell-specific parameters (Llam-

osi et al, 2016; Phillips et al, 2019; Thompson et al, 2020), we here

specifically used mixtures of NB distributions to model smFISH

data. While cell area affected both genes in the same cell (and hence

always induces positive correlation), we also introduced cell-specific

latent variables (either cell phase or burst size) that can alter the

bivariate probability distributions more flexibly. Given the ease with

which these types of models can now be implemented in probabilis-

tic programming languages such as STAN, we anticipate that the

use of such latent variable models will be instrumental in describing

and quantifying the underlying (but unobserved) biology that influ-

ences gene–gene relationships in multivariate single-cell measure-

ments of gene expression.

The considered models for the circadian smFISH data (Table 1)

consisted of different mixtures of negative binomial distributions

with a burst frequency that changes over time. The final preferred

model had a hierarchical structure and included cell-specific burst

sizes that were connected at the population level using a bivariate

log-normal distribution, which permitted covariance between dif-

ferent genes. The exact mechanistic interpretation is not specified

but could possibly arise from regulatory interactions, given that

these three clock genes are intertwined in a web of feedback loops

(Appendix Fig S13). For example, BMAL1 activates Nr1d1 transcrip-

tion, CRY1 is known to repress Nr1d1 transcription by inhibiting

BMAL1 activity, while NR1D1 directly represses Cry1 transcription,

and hence, the observed pair-dependent correlations may be an

outcome of this network (Takahashi, 2017). While computational

methods have recently been developed to exploit cell-to-cell hetero-

geneity to infer gene regulatory topologies (Lipinski-Kruszka et al,

2015; Hilfinger et al, 2016; Chan et al, 2017), building explicit mech-

anistic models of transcription factor networks remains challenging

without additional information on protein levels and activities.

Using the preferred model, we decomposed the variance of the

mRNA distributions into distinct components and found transcrip-

tional bursting to be the largest contributor. With further measure-

ments of cellular parameters (e.g. cell volume, mitochondria, cell

microenvironment, cell cycle stage), one would expect the estimated

contribution of extrinsic noise to grow. However, for the cell type

used in our study, cell proliferation was minimised, reducing at least

one major source of extrinsic noise (Nicolas et al, 2018), and live-

cell imaging of Bmal1 transcriptional reporter indicated that intrinsic

noise was dominant (Zoller et al, 2015). Temporal changes contrib-

uted only a small fraction to the total variability in mRNA counts,

which is also reflected in the relatively low oscillatory amplitudes

we found (Fig 1B). Though cells that were subjected to temperature

entrainment did not yield significantly larger amplitudes

(Appendix Fig S6), one potential cause we have explored in our

modelling (M3) is partial synchrony of our cells. The outcome was

that partial synchrony was not the preferred explanation of the low

amplitudes, though it could be that we have not found the true

minimum of M3 due to too many local minima. Nevertheless, with

CVs between 0.5 and 1, which is typical for mammalian genes

expressed on the order of 10 molecules (Battich et al, 2015; Zoller

et al, 2015), even an increased amplitude of 4-fold would represent

only ~38% (CV = 0.5) or ~12% (CV = 1) of the total variance. In

other terms, unless the amplitude fold change is radically increased

or the CV decreased, time is unlikely to yield a dominant contribu-

tion to the total variance.

In principle, the possibility of using transcript counts to estimate

single-cell circadian phase is attractive and would have important

applications in single-cell genomics; however, the fact that time

variability is dominated by other sources of variation highlights

significant challenges. A possible solution is to leverage mRNA

numbers for a large number of genes, for example using single-cell

RNA-seq, as successfully done to estimate cell cycle phase (Liu et al,

2017; Ahmed et al, 2019; Campbell & Yau, 2019). In comparison,

analogous methods to estimate circadian phase in single cells

currently remain unexplored, although we note though that cell

cycle regulated transcripts are expressed at higher levels compared

to core clock transcription factors.

The fact that circadian time captures only a low contribution to

total mRNA variability may be surprising given that clear circadian

oscillations of a single-cell reporter (Rev-Erbα-YFP) are observed in

the same NIH 3T3 cells (Nagoshi et al, 2004; Bieler et al, 2014) and

in human U2OS cells (Droin et al, 2019). It should be noted that the

reporter used in these cells is probably present in many copies, since

the cells are typically selected for high signals. The multiple promot-

ers could thus resultantly cause an averaging effect, similar to

shown in Fig 4B. Nonetheless, 24-h rhythms are seen in primary

fibroblasts dissociated from mPer2-luciferase protein fusion knock-

in mice, which shows that robust oscillations are possible at the

protein level even when transcribed from diploid alleles. One possi-

ble explanation is that there is noise reduction at the protein level.

Indeed, using a Bmal1 transcriptional reporter it was shown that the

relative amplitude of oscillations at the luminescent reporter protein

level was greater than that observed at the mRNA level (Nicolas

et al, 2018), which could be caused by regulation of translation or

protein degradation over the circadian clock (as known for core

clock genes) (Suter et al, 2011; Yoo et al, 2013). Mass spectrometry

has demonstrated that many mRNAs with flat mRNA profiles over

the circadian clock exhibit oscillatory protein expression (Robles

et al, 2014; Mauvoisin et al, 2014; Wang et al, 2017), which could

be due to the clock regulated translation (Jouffe et al, 2013) or

degradation. Protein degradation via autophagy can be circadian in

mouse liver (Ma et al, 2011), and rhythmically regulated protein

half-lives have been shown to be responsible for phase differences

observed between mRNA and protein levels (Reddy et al, 2006;
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L€uck et al, 2014). In addition to controlling the amplitude of oscilla-

tions, the protein stability will also affect the cell-to-cell variability

at the protein level, as a more stable protein acts to buffer against

temporal fluctuations in mRNA (Raj et al, 2006).

Another important aspect of this question is how circadian

phase is encoded at the single-cell level, or, in other words, what

are the state variables of the clock. For instance, most of the core

clock protein functions seem to converge on regulating the rhyth-

mic activity of the CLOCK-BMAL1 transcription factor complex,

thus integrating multiple layers of regulation such as protein

stability and dimerisation, nuclear import, binding of co-factors

and repressors and phosphorylation of DNA binding domains

(Partch et al, 2014). The process of molecular complex assembly

could theoretically alter the noise properties of the circadian state

variable, and simple mathematical models have shown that the

magnitude of fluctuations of molecular complexes can be lower

than their constituent species (Konkoli, 2010). Our data suggest

that endogenous gene readouts at the transcript count level are

too noisy to faithfully encode single-cell phase, which is however

likely defined as a systems property involving activities of protein

complexes that are subject to regulation at the post-transcriptional

and post-translational levels (Cheong & Virshup, 2011; Partch

et al, 2014; Aryal et al, 2017). In such a complex system, the

noise is a function of the network topology (Raj et al, 2010), and

interactions between components means that noise at the mRNA

level is not guaranteed to propagate downstream. In the c-fos/c-

jun gene-regulatory pathway, for example, joint measurement of

mRNA and protein variability has revealed a noise bottleneck

whereby the heterodimers of c-fos and c-jun proteins are less

variable than the encoding mRNAs (Shah & Tyagi, 2013). In that

system, the response of downstream genes is also affected by a

chromatin context that protects against fluctuations in the hetero-

dimer, and it is possible that clock-dependent genes also perform

noise filtering in a circadian context.

In sum, our results show that mRNA count distributions of the

core clock genes Bmal1, Nr1d1 and Cry1 are subjected to significant

variability such that the circadian limit cycle attractor is blurred at

the transcript count level, and future studies may ascertain how

single cells are successfully able to generate robust oscillations that

have been observed in live-cell imaging.

Materials and Methods

Reagents and Tools table

Reagent/resource Reference or source Identifier or catalogue number

Experimental models

NIH3T3 (M. musculus) Ueli Schibler (Morf et al, 2012)

Oligonucleotides and sequence-based reagents

smFISH exonic probes Bmal1 This study Table EV1

smFISH exonic probes Nr1d1 This study Table EV1

smFISH exonic probes Cry1 This study Table EV1

Chemicals, enzymes and other reagents

DMEM Thermo Fisher Scientific 11965092

Foetal Bovine Serum (FBS) Sigma-Aldrich F7524

Penicillin–Streptomycin–Glutamine (PSG) antibiotics Thermo Fisher Scientific 10378016

Trypsin Thermo Fisher Scientific 12604013

Fibronectin Sigma-Aldrich F0895

Phosphate-buffered Saline (PBS) Thermo Fisher Scientific 10010023

Dexamethasone Sigma-Aldrich D4902

Coverslips Marienfeld Superior 0111580

Cell culture plate, 12-well Greiner Bio-One 665 180

Formaldehyde Sigma-Aldrich F15587

Stellaris Wash Buffer A Stellaris SMF-WA1-60

Nuclease-free water Thermo Fisher Scientific AM9932

Deionised Formamide PanReac AppliChem A2156

Hybridisation Buffer Stellaris SMF-HB1-10

Ribonucleoside Vanadyl Complex New England Biolabs S1402S

Yeast tRNA Ambion AM7119

DAPI Thermo Fisher Scientific D1306

HCS CellMask Green Stain Thermo Fisher Scientific H32714
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Reagents and Tools table (continued)

Reagent/resource Reference or source Identifier or catalogue number

Stellaris Wash Buffer B Stellaris SMF-WB1-20

ProLong Gold Antifade Mountant Thermo Fisher Scientific P10144

Software

CellProfiler3.1.8 https://cellprofiler.org

Ilastik1.3.2 https://www.ilastik.org

Other

Leica DM5500 Microscope Leica Microsystems

Methods and Protocols

Cell lines and culture condition
For maintenance, wild-type mouse NIH3T3 fibroblasts were cultured

in Dulbecco’s modified Eagle medium (DMEM, Gibco) complemented

with 10% foetal bovine serum (FBS, Sigma) and 1% PSG antibiotics

(Gibco). Cells were grown at 37°C, 5% CO2 and 100% humidity and

passaged every 2–3 days, until the day of the experiment. Circadian

clock entrainment by temperature cycles was performed using a

Memmert INCO153 incubator controlled by the Memmert Celsius 10.0

software. We entrained the clock using temperature cycles ranging

from 35.5°C to 38.5°C, as previously described (Saini et al, 2012) and

for at least 10 days prior beginning of the experiment. To maintain

synchronisation after passaging, we always applied the splitting proce-

dure at the same temperature cycle position (37°C), when the clock

was at its trough. To enhance the synchronisation when splitting, we

applied a serum shock by recovering trypsinised cells into DMEM

without serum prior inoculating a new dish containing serum-supple-

mented DMEM (Balsalobre et al, 1998).

Single-molecule RNA fluorescence in situ hybridisation
(smRNA FISH)
Cells were plated on 6-well plates containing 18 mm round cover

glasses (Fisher Scientific) treated with a solution of 25 μg/ml Fibro-

nectin (Sigma-Aldrich) diluted in 1× PBS for 30 min at room tempera-

ture. Wells were seeded with 0.2 × 106 cells. Cells were cultured in

serum-free DMEM (Gibco), supplemented with 1% PSG antibiotics, to

prevent cell division. Ten hours later, cells were treated with 100 nM

dexamethasone (Sigma-Aldrich) for 30 min. The treatment was

followed by medium change. For the experiment where the circadian

clock was synchronised using temperature cycles, the same procedure

was applied except entrained cells were not treated with dexametha-

sone. The smRNA FISH protocol was largely adapted from the Stellaris

RNA FISH protocol for adherent cells, which describes the method

used by Raj et al (2008). Stellaris exonic probes coupled with

Quasar570 (548/566nm, Red, BMAL1Red, NR1D1Red) or Quasar670

(647/670nm, FarRed, BMAL1FarRed, CRY1FarRed) were hybridised to

targeted mRNA. Probe sets are shown in Table EV1. The hybridisation

was performed in 50 μl of Stellaris hybridisation buffer complemented

with 250 μg/ml Yeast tRNA (Ambion) and 5 mM Ribonucleoside

Vanadyl Complex (New England Biolabs). Cells and nuclei were then

co-strained with 0.4 μg/ml green HCS CellMask (Invitrogen) and

0.7 μg/ml DAPI (Thermo Fisher), respectively. HCS CellMask and

DAPI were diluted in the Stellaris wash buffer. Cover glasses were

finally mounted onto microscopy slides in ProLong™ Gold Antifade

Mountant (Thermo Fisher). For each time point in both time course

experiments (4 and 6 h sampled experiments), cells were plated in

triplicate. Each replicate was independently synchronised and

prepared for smFISH analysis.

Imaging
Slides were imaged at the EPFL imaging facility (BIOP) with a Leica

DM5500 wide field microscope equipped with a LED Lumencor

SOLA lamp, an HCX PL APO 63× Oil objective and an appropriate

set of filters (blue, green, orange and far red). We took series of

about 40 z-sections with a step of 0.3 μm, depending on the thick-

ness of the cell layer in the field.

Image processing and data analysis
smRNA FISH microscopy images were processed using a custom

analysis pipeline based on open-source software Ilastik1.3.2 and

CellProfiler3.1.8 (Kamentsky et al, 2011; Berg et al, 2019).

1 CellProfiler was first used to generate maximum Z-stack

projections (all channels) and sum Z-stack projections (Red

channel only).

2 Secondly, Ilastik pixel classification projects were used to

generate probability maps of dots from max Z-stack projec-

tions. One Ilastik workflow has been used for each (Red) and

(FarRed) channels using Random Forest Model trained with a

mix of images from independent experiments.

3 Finally, CellProfiler was used to segment dots (dots probability

maps), cells (sum Z-projections, Red channel), nucleus (max

Z-projection, DAPI channel) and cytoplasms (cell minus

nucleus) and related with each other. Data analysis was

performed using custom R and Matlab scripts and functions.

Cosinor regression of smFISH data population mean mRNA levels
To model the smFISH population average mRNA levels (Fig 1B), we

performed a least-squares fit using the mean mRNA count of each

replicate at all the time points. We used the following function with

2 harmonics to model to mean mRNA level mg(t) for each gene g:

mgðtÞ¼ a0,g
2
þa1,gcos

2πt

12
�ϕ1,g

� �
þa2,gcos

2πt

24
�ϕ2,g

� �
(1)

Probabilistic models of smFISH data and parameter inference
To model the smFISH mRNA count distributions from populations

of cells, we proposed several candidate models with unique biologi-

cal interpretations and estimated parameters in a Bayesian para-

digm. To infer the parameters, we will use Bayes’ rule:

pðθjyÞ/ pðyjθÞpðθÞ:
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where p(y|θ) is the likelihood of observing the data given param-

eters θ (likelihood), p(θ) is the estimate of the parameter values

before observing evidence (prior probability), and p(θ|y) is the

probability of the parameters θ after the data y is observed (pos-

terior probability). Note that in the case of normally distributed

errors (a Gaussian model), the (log) likelihood reduces to a least-

squares model, but this is not applicable here for count data. In

our dataset we measure the smFISH count yi,g for cell i and gene

g, and each cell has an associated time ti and a measured cell

area Ai. To calculate the likelihood of the data for a given set of

parameters θ, we multiply over a total of N measured cells and

all genes

pðyjθÞ¼
Y
g

YN
i¼1

pðyi,g jti,Ai,θÞ

where p(yi,g|ti,Ai,θ) represents the probability of observing an

smFISH count yi,g in a single cell given the time ti, area Ai and

parameters θ for a given model. Once the likelihood and priors are

specified for each model, we used the Hamiltonian Monte Carlo

sampler provided within the STAN probabilistic programming

language (Carpenter et al, 2017) to sample model parameters from

the posterior distribution using 4 different chains with 1,000

samples each.

Explicit mathematical models of smFISH counts
For all four models, we use the fact that mRNA counts in a single

cell are well described by a negative binomial (NB) distribution,

which is an approximation of the telegraph model of bursty tran-

scription that is valid when the mRNA half-life is long in relation to

the time spent in the active promoter state (Raj et al, 2006), which

is typical for mammalian genes (Suter et al, 2011; Zoller et al,

2015). As we explain now, the NB distributions cover the intrinsic

noise, while extrinsic noise sources are modelled with mixtures of

such NB distributions, i.e. weighted sums of NB distributions with

parameters that can vary from cell-to-cell.

For each model, there is a burst size parameter bi,g and bust

frequency parameter fi,g, which depend on the model considered

(Table 1) and which control the shape of the mRNA distribution for

each gene g. Since 3T3 cells are tetraploid, and, again assuming that

the bursts are short, the inferred burst frequency for tetraploid cells

will be approximately four times that of a single allele. The probabil-

ity of observing an smFISH count yi,g for gene g and for cell i follows

a negative binomial distribution:

p yi,g jbi,g , f i,g
� �

¼Neg�bin yi,g jbi,g , f i,g
� �

¼ Γð f i,gþyi,gÞ
Γðyi,gþ1ÞΓð f i,gÞ

1

1þbi,g

� � f i,g bi,g
1þbi,g

� �yi,g

The mean of the NB distribution is given by bi,gfi,g, while the

variance is given by bi,g f i,gþb2i,g f i,g .

Model M1—oscillatory burst frequency and fixed burst size
In model M1, the burst size (bg) is a constant while the burst frequency

(fg) varies with circadian time, which is based on previous live-cell

imaging experiments using the same cell line showing that burst

frequency of clock genes is modulated by the circadian clock while the

burst size remains constant (Nicolas et al, 2018). For all models, the

burst frequency (fg) uses the same function mg(t) (Equation 1) that

was fitted to the mean mRNA level but rescaled with a parameter γg,

which ensures that the phase of oscillations is the same for all models.

We used weakly informative priors on the parameters bg,γg ~ N

(0,100). The complete probabilistic model for M1 is therefore.

bg ∼Normalð0,100Þ
γg ∼Normalð0,100Þ

bi,g ¼ bg

f i,g ¼ γgmgðtiÞ

yi,g ∼Neg�binðbi,g , f i,gÞðM1Þ

Model M2—cell size-dependent burst size
Model (M2) incorporates cell size, where we modified the depen-

dence between burst size and cell area with an exponent βg. This

assumption is based on previous results in mammalian cells show-

ing that burst size scales with cell volume (Padovan-Merhar et al,

2015), and the use of an exponent βg is to account for the fact that

we measure cell area instead of cell volume. Consequently, the

reformulated model is as follows:

bg ∼Normalð0,100Þ

γg ∼Normalð0,100Þ

βg ∼Normalð0,100Þ:

bi,g ¼ bgA
βg
i

f i,g ¼ γgmg tið Þ

yi,g ∼Neg�binðbi,g , f i,gÞðM2Þ

where Ai represents the cell area for cell i, and we again used a

weakly informative prior βg ∼Nð0,100Þ.

Model M3—phase noise from incomplete synchronisation
For model M3, we incorporate imperfect synchronisation by allow-

ing each cell to have an individual phase φi, and the cell-specific

phases are distributed around a population average. We used a von

Mises prior φi for the distribution of cell phases.

VonMisesðφijkÞ¼
eκcosðφiÞ

2πI0ðκÞ

where I0ðκÞ is the modified Bessel function of order 0. We used a

value of κ = 2, which approximately matches the phase spread

observed in live microscopy for mammalian fibroblasts (Pulivarthy

et al, 2007). To simplify the analysis, we fixed parameters previ-

ously contained in model M2 to their posterior mean values, and

in M3, we keep the waveform shape and phase for the bursting

frequency fixed (from M2), but allow the burst frequency ampli-

tude to vary. The amplitude of the oscillatory function is rescaled

with the parameter λg, and the full model is thus given by
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λg ∼Uð0,2Þ

φi ∼VonMisesðφijκ¼ 2Þ

bi,g ¼ bgA
β
i

f i,g ¼ γg
a0,g
2
þ λga1,gcos

2πti
24
�ϕ1,g�φi

� �
þ λga2,gcos

2πti
12
�ϕ2,g�φi

� �� �

yi,g ∼Neg�binðbi,g , f i,gÞðM3Þ

Model M4—cell-specific burst size
In model M4, we included an additional cell-specific random vari-

able ϵi,g to modify the burst size in each cell i for each gene g. We

assumed that the ϵi,g is bivariate log-normally distributed between

pairs of genes g = 1 and 2. The log-normal distribution is parame-

terised with µg, σg and ρ, which represent the mean, variance and

correlation of ϵi,g between genes g1 and g2 (in log space). Practically,

this means that when bursts are large for one gene, they can be

large (correlated) or small (anticorrelated) for another gene. Biologi-

cally, this correlation could be generated when the transcription rate

of one gene is affected by the activity of another gene (i.e. feed-

back). Model M4 is therefore specified as.

μg ∼Normalð0,100Þ
σg ∼Normalð0,100Þ

ρ∼ LKJð4:0Þ

log
ɛi,g1
ɛi,g2

� �
∼N

μg1
μg2

" #
,

σ2g1 ρσg1σg2

ρσg1σg2 σ2g2

" # !

bi,g ¼ ɛi,gA
βg
i

f i,g ¼ γgmgðtiÞ

yi,g ∼Neg�binðbi,g , f i,gÞðM4Þ

We used an LKJ prior with shape parameter 4 to regularise ρ.

The correlation coefficient ρ is inferred between Bmal1-Cry1 and

Nr1d1-Cry1, but it is not directly inferred between Nr1d1 and Bmal1.

As such, for the 3-dimensional simulations we assume the ϵi,g
parameters are conditionally independent between these two genes

(i.e. the entry in the precision matrix for Nr1d1-Bmal1 is zero).

Model selection
We use two different methods to estimate the predictive accuracy of

all of our models: adjusted within-sample predictive accuracy and

cross-validation. The starting point for our first approach is given by

the elpd (expected log pointwise predictive density for a new

dataset). This can in theory be estimated using leave-one-out cross-

validation, where one cell is removed from the dataset.

elpdleave�one�out¼∑
N

i¼1
logpðyijy�iÞ¼ ∑

N

i¼1
log

Z
pðyijθÞpðθjy�iÞdθ

which uses the leave-one-out predictive density given the data

without cell i. However, this would involve retraining the model

for each cell, which is not feasible with thousands of cells. As

shown in (Gelfand et al, 1992), the log predictive density for the

held-out cell yi can be estimated from the posterior samples of the

full dataset using importance ratios

pðyijy�iÞ≈
1

1
S∑

S
s¼1

1
pðyi jθsÞ

We estimate the elpdleave-one-out with Pareto smoothing of the

importance weights (Pareto-smoothed important sampling, PSIS-

LOO) using the parameter samples for each model together with the

PSIS-LOO python function provided with (Vehtari et al, 2017).

We also used cross-validation directly by performing parameter

inference for each model on a training set and then calculating the log-

likelihood of a test set. We partitioned the data by removing one gene

from each replicate slide k from a total of K slides. We performed

posterior parameter sampling on the training data, and then, we used

the posterior mean θ̂�k¼
R
θpðθjy�kÞdθ to calculate the likelihood of

observing the test replicate data logpðykjθ̂�kÞ. The expected log point-

wise predictive density for a new slide is then given as.

elpdleave�replicate�out¼∑
N

i¼1
logpðykjθ̂�kÞ

Model M4 contains latent variables ϵk that are not known for the

new gene on the test slide k. We therefore integrate over latent vari-

ables ϵk using S Monte Carlo simulations.

elpdleave�replicate�out ¼ ∑
K

k¼1
log

Z
pðyk,ɛkjθ̂�kÞdɛk¼ ∑

K

k¼1
log

1

S
∑
S

s¼1
pðykjɛsk, θ̂�kÞ

Variance decomposition
The goal of variance decomposition is to determine how intrinsic

noise and fluctuations in extrinsic parameters contribute to the

variance in smFISH counts. We follow the approach shown in

(Bowsher & Swain, 2012) that generalises the Law of Total Vari-

ance to any number of variables. In this framework, intrinsic

variance will be defined as the average variance of gene expres-

sion in cells with exactly the same intracellular conditions, and

extrinsic variability is the variance generated by cellular parame-

ters and additional stochastic variables in the cell. For the

selected model M4, extrinsic noise refers to time t, cellular area

A and the burst size noise term ϵ, whereas intrinsic noise refers

to the variance of the negative binomial distribution averaged

over all other noise sources. Practically, the variance is decom-

posed by successively conditioning on groups of extrinsic parame-

ters. For mRNA counts Y and extrinsic parameters X1, X2 and X3

the decomposition is as follows:

V½Y� ¼E V½YjX1,X2,X3�½ �þE V E½YjX1,X2,X3�jX1,X2½ �½ �

þE V E½YjX1,X2�jX1½ �½ �þV E½YjX1�½ �,

where the first term represents the variance from intrinsic transcrip-

tional noise, and the remaining terms describe the contribution to vari-

ance from extrinsic variables. The expectation operator E used with

conditioning variables (i.e. E[Y|Xi]) denotes averaging over all random

variables except those given in the conditioning. In our case, the

extrinsic conditioning variables Xi correspond to time t, cellular area A
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and the burst size noise term ϵ. There is no unique mathematical way

to decompose the variance with multiple extrinsic variables, and

hence, the contribution to variance of each of our extrinsic variables

depends on whether the extrinsic conditioning variables Xi is assigned

to X1, X2 or X3. We therefore average over all possible combinations,

but practically the difference in variance calculated under different

orderings, e.g. E[V[E[Y|X1,X2,X3]|X1,X2]] compared to V[E[Y|X3]] is

usually only a small percentage.

The intrinsic transcriptional noise contains the term V[Y|X1,X2,

X3], which is the variance of the negative binomial distribution for

given values of extrinsic parameters. This term can be further

decomposed into a Poisson and a promoter noise component:

V YjX1,X2,X3½ � ¼E YjX1,X2,X3½ �þαE YjX1,X2,X3½ �2,

where α is the dispersion parameter of the negative binomial

distribution. Under our model, the expectation E[Y|X1,X2,X3] is

equal to bf and the dispersion parameter α is equal to 1/f. All

terms were computed via simulation of the inferred model, where

we used the posterior mean parameter values of the preferred

model M4.

A simplified stochastic model of the core clock circadian network
In this section, we describe the simplified stochastic model of the

Nr1d1/Cry1/Bmal1 reaction network that is used in Appendix Fig

S13. The basis of the model is the telegraph model of bursty gene

expression (Peccoud & Ycart, 1995). For each gene, the promoter

can be in an active state (denoted gon) or an inactive state (goff).

Production of mRNA molecules (denoted M), i.e. transcription, only

occurs when the promoter is in an active state, and the mRNAs are

then translated into protein molecules (P).

To model the transcription factor network, the protein molecules

of each gene can activate or repress the transcription rate of other

genes or itself (i.e. autoregulation). To use a realistic network topol-

ogy, we adapted the mathematical model proposed in (Rel�ogio et al,

2011) (network topology shown in Appendix Fig S13A).

To keep the model close to the preferred model M4, we used a 24-

h oscillating function kon(t) to control the promoter activation reac-

tion goff �!
konðtÞ

gon (and hence the burst frequency is oscillating). We

must therefore use a simulation framework that accounts for time-

varying hazard functions, and to do this, we use a thinning approach

(Lewis & Shedler, 1979; Voliotis et al, 2016). The algorithm used for

simulation is shown in Algorithm 1. In essence, a "thinning" reaction

is added with hazard function w(t) such that kon(t)+w(t) is a fixed

upper bound Ukon . The sum of the two reactions is then a homoge-

nous Poisson process with rate Ukon . By starting with a homogenous

Poisson process with rate Ukon and keeping each event with probabil-

ity konðtÞ=Ukon , the resulting process will be inhomogenous with rate

kon(t). We keep track of the number of thinning events by introduc-

ing an additional species R for each gene. The total state of the

network can then be described with the vector:

X¼ goff;Cry1, gon;Cry1, MCry1, PCry1, RCry1, . . .
�

goff;Nr1d1, gon;Nr1d1, MNr1d1, PNr1d1, RNr1d1, . . .

goff;Bmal1, gon;Bmal1, MBmal1, PBmal1, RBmal1�T

For each gene i in {Nr1d1,Cry1,Bmal1}, the model is then

described with the following set of reactions:

goff,i �!
kon;iðtÞ

gon,i Promoter activation

goff;i�!
wiðtÞ

goff;iþRi Thinning reaction

gon;i�!
koff,i

goff;i Promoter deactivation

gon,i �!
hiðXÞ

gon;iþMi Transcription

Mi�!αP MiþPi Translation

Mi�!δ ϕ mRNA degradation

Pi�!δ ϕ Protein degradation

The gene–gene interactions are encoded through the regulation of

transcription rate by the protein levels of other genes in the network

(hi(X)). To simplify the model, we used an activatory or inhibitory Hill

function to represent each of the feedback loops used in Rel�ogio et al

(2011) (network topology shown in Appendix Fig S13A).

hCry1ðXÞ¼ αM,Cry1
1

1þ P0
PBmal1

� �n
0
B@

1
CA 1

1þ PNr1d1

P0

� �n
0
B@

1
CA 1

1þ PCry1
P0

� �n
0
B@

1
CA:

hNr1d1ðXÞ¼ αM,Nr1d1
1

1þ P0
PBmal1

� �n
0
B@

1
CA 1

1þ 5PCry1
P0

� �n
0
B@

1
CA:

hBmal1ðXÞ¼ αM,Bmal1
1

1þ PNr1d1

P0

� �n
0
B@

1
CA:

We use the oscillatory burst frequency inferred from the data to

set the promoter activation rate. The burst frequency inferred for

each model f i¼ γi
a0,i
2 þa1,icos

2πt
24 �ϕ1,i

� �þa2,icos
2πt
12 �ϕ2,i

� �� �
is

rescaled by the mRNA half-life parameter δ.

All model parameters are shown in Appendix Table S1. Stochas-

tic simulations are then performed with Algorithm 1.

Algorithm 1: Stochastic simulations of the network with time-

varying parameters.

kon;Cry1ðtÞ¼ δγCry1
α0,Cry1

2
þα1,Cry1cos

2πt

24
�ϕ1,Cry1

� �
þα2,Cry1cos

2πt

12
�ϕ2,Cry1

� �� �

kon;Nr1d1ðtÞ¼ δγNr1d1
α0,Nr1d1

2
þα1,Nr1d1cos

2πt

24
�ϕ1,Nr1d1

� �
þα2,Nr1d1cos

2πt

12
�ϕ2,Nr1d1

� �� �

kon;Bmal1ðtÞ¼ δγBmal1

α0,Bmal1

2
þα1,Bmal1cos

2πt

24
�ϕ1,Bmal1

� �
þα2,Bmal1cos

2πt

12
�ϕ2,Bmal1

� �� �
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Initialise time t  0 and network state X  X0;

while t ≤ T do

Set a0 ∑M
j¼1aj½X2Ct�, where aj[X,t] are the reaction propensities aj at time

t;

Draw exponentially distributed number τ∼ expð1=a0Þ;
Update time t tþ τ;

Update all propensities aj[X,t];

Set a0 ∑M
j¼1aj½X2Ct�;

Draw uniformly distributed random number u ~ U(0,1);

Choose reaction associated with the smallest positive integer j satisfying:
∑ j

i¼1aj½X2Ct�≥ a0u;

end

Data availability

The datasets and computer code produced in this study are available

in the following databases: Modelling computer scripts: GitHub

(https://github.com/naef-lab/CircadianSMFISH).

Expanded View for this article is available online.

Acknowledgements
We thank Cl�emence Hurni and the BIOP imaging facility at the EPFL for

support in setting up the multichannel smFISH imaging and members of the

Naef-lab for valuable feedback on the manuscript. Research in the Naef lab is

supported by a Swiss National Science Foundation Grant number

310030_173079 and the EPFL.

Author contributions
NEP, AH and FN conceptualised the study. NEP, AH, JY and FN contributed to

the methodology. AH, ED and DN performed investigation. NEP and AH

performed formal analysis. ED and AH curated the data. NEP, ED, AH and JY

contributed to the software. NEP, AH and FN wrote the original draft. NEP, AH,

JY, ED, DN and FN reviewed and edited the manuscript. FN provided resources

and supervision.

Conflict of interest
The authors declare that they have no conflict of interest.

References

Aguilar-Arnal L, Hakim O, Patel VR, Baldi P, Hager GL, Sassone-Corsi P (2013)

Cycles in spatial and temporal chromosomal organization driven by the

circadian clock. Nat Struct Mol Biol 20: 1206–1215
Ahmed S, Rattray M, Boukouvalas A (2019) GrandPrix: scaling up the bayesian

GPLVM for single-cell data. Bioinformatics 35: 47–54
Aryal RP, Kwak PB, Tamayo AG, Gebert M, Chiu PL, Walz T, Weitz CJ (2017)

Macromolecular assemblies of the mammalian circadian clock. Mol Cell

67: 770–782.e6
Bahar Halpern K, Tanami S, Landen S, Chapal M, Szlak L, Hutzler A, Nizhberg

A, Itzkovitz S (2015) Bursty gene expression in the intact mammalian liver.

Mol Cell 58: 147–156
Balsalobre A, Damiola F, Schibler U (1998) A serum shock induces circadian

gene expression in mammalian tissue culture cells. Cell 93: 929–937

Battich N, Stoeger T, Pelkmans L (2015) Control of transcript variability in

single mammalian cells. Cell 163: 1596–1610
Berg S, Kutra D, Kroeger T, Straehle CN, Kausler BX, Haubold C, Schiegg M,

Ales J, Beier T, Rudy M et al (2019) Ilastik: interactive machine learning for

(Bio)image analysis. Nat Methods 16: 1226–1232
Bieler J, Cannavo R, Gustafson K, Gobet C, Gatfield D, Naef F (2014) Robust

synchronization of coupled circadian and cell cycle oscillators in single

mammalian cells. Mol Syst Biol 10: 739

Bowsher CG, Swain PS (2012) Identifying sources of variation and the flow

of information in biochemical networks. Proc Natl Acad Sci USA 109:

E1320–E1328
Bruggeman FJ, Teusink B (2018) Living with noise: on the propagation of

noise from molecules to phenotype and fitness. Curr Opin Syst Biol 8:

144–150
Campbell KR, Yau C (2019) A descriptive marker gene approach to single-cell

pseudotime inference. Bioinformatics 35: 28–35
Carpenter B, Guo J, Hoffman MD, Brubaker M, Gelman A, Lee D, Goodrich B,

Li P, Riddell A, Betancourt M (2017) Stan: a probabilistic programming

language. J Stat Softw 76: 1–32
Chan TE, Stumpf MPH, Babtie AC (2017) Gene regulatory network inference

from single-cell data using multivariate information measures. Cell Syst 5:

251–267.e3
Cheong JK, Virshup DM (2011) Casein kinase 1: complexity in the family. Int J

Biochem Cell Biol 43: 465–469
Dattani J, Barahona M (2016) Stochastic models of gene transcription with

upstream drives: exact solution and sample path characterization. J R Soc

Interface 14: 1–19
Droin C, Paquet ER, Naef F (2019) Low-dimensional dynamics of two coupled

biological oscillators. Nat Phys 15: 1086–1094
Elowitz MB, Levine AJ, Siggia ED, Swain PS (2002) Stochastic gene expression

in a single cell. Science 297: 1183–1186
Foreman R, Wollman R (2020) Mammalian gene expression variability is

explained by underlying cell state. Mol Syst Biol 16: 1–13
Gelfand AE, Dey DK, Chang H (1992) Model determination using predictive

distributions with implementation via sampling-based methods. In

Bayesian statistics, 4th edn. Bernardo JM, Berger JO, Dawid AP, Smith AFM

(eds), pp 147–167. Oxford: Oxford University Press

G�omez-Schiavon M, Chen L-F, West AE, Buchler NE (2017) BayFish: bayesian

inference of transcription dynamics from population snapshots of single-

molecule RNA FISH in single cells. Genome Biol 18: 164

Gut G, Tadmor MD, Pe’er D, Pelkmans L, Liberali P(2015) Trajectories of

cell-cycle progression from fixed cell populations. Nat Methods 12:

951–954
Hansen MMK, Desai RV, Simpson ML, Weinberger LS (2018) Cytoplasmic

amplification of transcriptional noise generates substantial cell-to-cell

variability. Cell Syst 7: 384–397.e6
Hilfinger A, Norman TM, Paulsson J (2016) Exploiting natural fluctuations to

identify kinetic mechanisms in sparsely characterized systems. Cell Syst 2:

251–259
Hughes ME, DiTacchio L, Hayes KR, Vollmers C, Pulivarthy S, Baggs JE, Panda

S, Hogenesch JB (2009) Harmonics of circadian gene transcription in

mammals. PLoS Genet 5: e1000442

Itzkovitz S, van Oudenaarden A (2011) Validating transcripts with probes and

imaging technology. Nat Methods 8: S12–S19
Jouffe C, Cretenet G, Symul L, Martin E, Atger F, Naef F, The GF, Biogenesis

CCCR (2013) PLoS Biol 11: e1001455

Kamentsky L, Jones TR, Fraser A, Bray MA, Logan DJ, Madden KL, Ljosa V,

Rueden C, Eliceiri KW, Carpenter AE (2011) Improved structure, function

16 of 18 Molecular Systems Biology 17: e10135 | 2021 ª 2021 The Authors

Molecular Systems Biology Nicholas E Phillips et al

https://github.com/naef-lab/CircadianSMFISH
https://doi.org/10.15252/msb.202010135


and compatibility for cellprofiler: Modular high-throughput image analysis

software. Bioinformatics 27: 1179–1180
Kempe H, Schwabe A, Cremazy F, Verschure PJ, Bruggeman FJ (2015) The

volumes and transcript counts of single cells reveal concentration

homeostasis and capture biological noise. Mol Biol Cell 26: 797–804
Kim J, Marioni JC (2013) Inferring the kinetics of stochastic gene expression

from single-cell RNA-sequencing data. Genome Biol 14: R7

Konkoli Z (2010) Exact equilibrium-state solution of an intracellular complex

formation model: KA→P reaction in a small volume. Phys Rev E Stat

Nonlinear Soft Matter Phys 82: 1–5
Larsson AJM, Johnsson P, Hagemann-Jensen M, Hartmanis L, Faridani OR,

Reinius B, Segerstolpe �A, Rivera CM, Ren B, Sandberg R (2019)

Genomic encoding of transcriptional burst kinetics. Nature 565:

251–254
Leise TL, Wang CW, Gitis PJ, Welsh DK (2012) Persistent cell-autonomous

circadian oscillations in fibroblasts revealed by six-week single-cell

imaging of PER2:LUC bioluminescence. PLoS One 7: 1–10
Lewis PA, Shedler G (1979) Simulation of nonhomogeneous Poisson processes

by thinning. Nav Res Logist Q 26: 403–413
Li Y, Shan Y, Desai RV, Cox KH, Weinberger LS, Takahashi JS (2020) Noise-

driven cellular heterogeneity in circadian periodicity. Proc Natl Acad Sci

USA 117: 10350–10356
Lipinski-Kruszka J, Stewart-Ornstein J, Chevalier MW, El-Samad H (2015)

Using dynamic noise propagation to infer causal regulatory relationships

in biochemical networks. ACS Synth Biol 4: 258–264
Liu Z, Lou H, Xie K, Wang H, Chen N, Aparicio OM, Zhang MQ, Jiang R, Chen

T (2017) Reconstructing cell cycle pseudo time-series via single-cell

transcriptome data. Nat Commun 8: 1–8
Llamosi A, Gonzalez-Vargas AM, Versari C, Cinquemani E, Ferrari-Trecate G,

Hersen P, Batt G (2016) What Population reveals about individual cell

identity: single-cell parameter estimation of models of gene expression in

yeast. PLoS Comput Biol 12: 1–18
L€uck S, Thurley K, Thaben PF, Westermark PO (2014) Rhythmic degradation

explains and unifies circadian transcriptome and proteome data. Cell Rep

9: 741–751
Ma D, Panda S, Lin JD (2011) Temporal orchestration of circadian autophagy

rhythm by C/EBPβ. EMBO J 30: 4642–4651
Mauvoisin D, Wang J, Jouffe C, Martin E, Atger F, Waridel P, Quadroni M,

Gachon F, Naef F (2014) Circadian clock-dependent and -independent

rhythmic proteomes implement distinct diurnal functions in mouse liver.

Proc Natl Acad Sci USA 111: 167–172
Mermet J, Yeung J, Hurni C, Mauvoisin D, Gustafson K, Jouffe C, Nicolas D,

Emmenegger Y, Gobet C, Franken P et al (2018) Clock-dependent

chromatin topology modulates circadian transcription and behavior. Genes

Dev 32: 347–358
Mohawk JA, Green CB, Takahashi JS (2012) Central and peripheral circadian

clocks in mammals. Annu Rev Neurosci 35: 445–462
Munsky B, Neuert G, van Oudenaarden A (2012) Using gene expression noise

to understand gene regulation. Science 336: 183–187
Nagoshi E, Saini C, Bauer C, Laroche T, Naef F, Schibler U, Ansermet QE,

Boveresses C, Epalinges C (2004) Circadian gene expression in individual

fibroblasts: cell-autonomous and self-sustained oscillators pass time to

daughter cells. Cell 119: 693–705
Nicolas D, Zoller B, Suter DM, Naef F (2018) Modulation of transcriptional

burst frequency by histone acetylation. Proc Natl Acad Sci USA 115: 7153–
7158

Padovan-Merhar O, Nair GP, Biaesch AG, Mayer A, Scarfone S, Foley SW, Wu

AR, Churchman LS, Singh A, Raj A (2015) Single mammalian cells

compensate for differences in cellular volume and DNA copy number

through independent global transcriptional mechanisms. Mol Cell 58:

339–352
Partch CL, Green CB, Takahashi JS (2014) Molecular architecture of the

mammalian circadian clock. Trends Cell Biol 24: 90–99
Peccoud J, Ycart B (1995) Markovian modelling of gene product synthesis.

Theor Popul Biol 48: 222–234
Phillips NE, Mandic A, Omidi S, Naef F, Suter DM (2019) Memory and

relatedness of transcriptional activity in mammalian cell lineages. Nat

Commun 10: 1–12
Pulivarthy SR, Tanaka N, Welsh DK, De Haro L, Verma IM, Panda S (2007)

Reciprocity between phase shifts and amplitude changes in the

mammalian circadian clock. Proc Natl Acad Sci USA 104: 20356–20361
Raj A, van den Bogaard P, Rifkin SA, van Oudenaarden A, Tyagi S (2008)

Imaging individual mRNA molecules using multiple singly labeled probes.

Nat Methods 5: 877–879
Raj A, Peskin CS, Tranchina D, Vargas DY, Tyagi S (2006) Stochastic mRNA

synthesis in mammalian cells. PLoS Biol 4: e309

Raj A, Rifkin SA, Andersen E, Van Oudenaarden A (2010) Variability in gene

expression underlies incomplete penetrance. Nature 463: 913–918
Reddy AB, Karp NA, Maywood ES, Sage EA, Deery M, O’Neill JS, Wong GKY,

Chesham J, Odell M, Lilley KS et al (2006) Circadian orchestration of the

hepatic proteome. Curr Biol 16: 1107–1115
Reinke H, Asher G (2019) Crosstalk between metabolism and circadian clocks.

Nat Rev Mol Cell Biol 20: 227–241
Rel�ogio A, Westermark PO, Wallach T, Schellenberg K, Kramer A, Herzel H

(2011) Tuning the mammalian circadian clock: Robust synergy of two

loops. PLoS Comput Biol 7: 1–18
Robles MS, Cox J, Mann M (2014) In-Vivo quantitative proteomics reveals a

key contribution of post-transcriptional mechanisms to the circadian

regulation of liver metabolism. PLoS Genet 10: e1004047

Saini C, Morf J, Stratmann M, Gos P, Schibler U (2012) Simulated body

temperature rhythms reveal the phase-shifting behavior and plasticity of

mammalian circadian oscillators. Genes Dev 26: 567–580
Schmidt EE, Schibler U (1995) Cell size regulation, a mechanism that controls

cellular RNA accumulation: Consequences on regulation of the ubiquitous

transcription factors Oct1 and NF-Y, and the liver-enriched transcription

factor DBP. J Cell Biol 128: 467–483
Shah K, Tyagi S (2013) Barriers to transmission of transcriptional noise in a c-

fos c-jun pathway. Mol Syst Biol 9: 1–11
Sun X-M, Bowman A, Priestman M, Bertaux F, Martinez-Segura A, Tang W,

Whilding C, Dormann D, Shahrezaei V, Marguerat S (2020) Size-dependent

increase in RNA polymerase II initiation rates mediates gene expression

scaling with cell size. Curr Biol 30: 1217–1230.e7
Suter DM, Molina N, Gatfield D, Schneider K, Schibler U, Naef F (2011)

Mammalian genes are transcribed with widely different bursting kinetics.

Science 332: 472–474
Takahashi JS (2017) Transcriptional architecture of the mammalian circadian

clock. Nat Rev Genet 18: 164–179
Thompson A, May MR, Moore BR, Kopp A (2020) A hierarchical Bayesian

mixture model for inferring the expression state of genes in

transcriptomes. Proc Natl Acad Sci USA 117: 19339–19346
Ukai-Tadenuma M, Yamada RG, Xu H, Ripperger JA, Liu AC, Ueda HR (2011)

Delay in feedback repression by cryptochrome 1 Is required for circadian

clock function. Cell 144: 268–281
Vehtari A, Gelman A, Gabry J (2017) Practical Bayesian model evaluation

using leave-one-out cross-validation and WAIC. Stat Comput 27:

1413–1432

ª 2021 The Authors Molecular Systems Biology 17: e10135 | 2021 17 of 18

Nicholas E Phillips et al Molecular Systems Biology



Voliotis M, Thomas P, Grima R, Bowsher CG (2016) Stochastic simulation of

biomolecular networks in dynamic environments. PLoS Comput Biol 12:

e1004923

Wang J, Mauvoisin D, Martin E, Atger F, Galindo AN, Dayon L, Sizzano F,

Palini A, Kussmann M, Waridel P et al (2017) Nuclear proteomics

uncovers diurnal regulatory landscapes in mouse liver. Cell Metab 25:

102–117
Welsh DK, Yoo S-H, Liu AC, Takahashi JS, Kay SA (2004) Bioluminescence

imaging of individual fibroblasts reveals persistent, independently phased

circadian rhythms of clock gene expression. Curr Biol 14: 2289–2295
Wu G, Ruben MD, Schmidt RE, Francey LJ, Smith DF, Anafi RC, Hughey JJ,

Tasseff R, Sherrill JD, Oblong JE et al (2018) Population-level rhythms in

human skin with implications for circadian medicine. Proc Natl Acad Sci

USA 115: 201809442

Yeung J, Naef F (2018) Rhythms of the genome: circadian dynamics from

chromatin topology, tissue-specific gene expression, to behavior. Trends

Genet 34: 915–926
Yoo SH, Mohawk JA, Siepka SM, Shan Y, Huh SK, Hong HK, Kornblum I,

Kumar V, Koike N, Xu M et al (2013) Competing E3 ubiquitin ligases

govern circadian periodicity by degradation of CRY in nucleus and

cytoplasm. Cell 152: 1091–1105
Zechner C, Unger M, Pelet S, Peter M, Koeppl H (2014) Scalable inference of

heterogeneous reaction kinetics from pooled single-cell recordings. Nat

Methods 11: 197–202
Zhang R, Lahens NF, Ballance HI, Hughes ME, Hogenesch JB (2014) A

circadian gene expression atlas in mammals: Implications for biology and

medicine. Proc Natl Acad Sci USA 111: 16219–16224
Zoller B, Little SC, Gregor T (2018) Diverse spatial expression patterns emerge

from unified kinetics of transcriptional bursting. Cell 175: 835–847.e25
Zoller B, Nicolas D, Molina N, Naef F (2015) Structure of silent transcription

intervals and noise characteristics of mammalian genes. Mol Syst Biol

11: 823

License: This is an open access article under the

terms of the Creative Commons Attribution License,

which permits use, distribution and reproduction in

any medium, provided the original work is properly

cited.

18 of 18 Molecular Systems Biology 17: e10135 | 2021 ª 2021 The Authors

Molecular Systems Biology Nicholas E Phillips et al


