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Plants must coordinate photosynthetic metabolism with the daily
environment and adapt rhythmic physiology and development to
match carbon availability. Circadian clocks drive biological rhythms
which adjust to environmental cues. Products of photosynthetic
metabolism, including sugars and reactive oxygen species (ROS),
are closely associated with the plant circadian clock, and sugars
have been shown to provide metabolic feedback to the circadian
oscillator. Here, we report a comprehensive sugar-regulated tran-
scriptome of Arabidopsis and identify genes associated with redox
and ROS processes as a prominent feature of the transcriptional
response. We show that sucrose increases levels of superoxide
(O2

–), which is required for transcriptional and growth responses
to sugar. We identify circadian rhythms of O2

–-regulated tran-
scripts which are phased around dusk and find that O2

– is required
for sucrose to promote expression of TIMING OF CAB1 (TOC1) in
the evening. Our data reveal a role for O2

– as a metabolic signal
affecting transcriptional control of the circadian oscillator in
Arabidopsis.
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Plant metabolism is inextricably linked to daily photoperiodic
cycles because of the requirement of light for photosynthesis.

Anticipation and adaptation to changing light availability enables
plants to optimize metabolism according to their immediate
environment. Plant metabolism responds to environmental cues,
such as light, temperature, and biotic and abiotic stress, by diverse
mechanisms (1).
Plant cells require signaling mechanisms to sense carbon and

energy status and adjust metabolism. Snf1 RELATED KINASE
1 (SnRK1) and TARGET OF RAPAMYCIN 1 (TOR1) are
counteracting signaling hubs which are activated under low and
replete carbon status, respectively (2, 3). Trehalose-6-phosphate
(T6P) is an essential signaling sugar which indicates carbon
status and acts through SnRK1 (4, 5).
Circadian clocks are an endogenous timekeeping mechanism,

which regulate rhythms of physiology and metabolism and control
responses to environmental signals according to the time of day (6).
The core circadian oscillator in Arabidopsis is a network of transcrip-
tion factors composed of Myb-like genes CIRCADIAN CLOCK
ASSOCIATED 1 (CCA1), LATE ELONGATED HYPOCOTYL
(LHY), and REVIELLE (RVE) expressed at dawn; PSEUDO
RESPONSE REGULATOR (PRR) genes expressed through the
day, including TIMING OF CAB 1 (TOC1) at dusk; and the
Evening Complex in the night. The phase and amplitude of gene
expression and protein levels are responsive to environmental
cues, and they, in turn, coordinate the regulation of thousands
of genes.
There is extensive transcriptional and post-transcriptional control

of photosynthetic metabolism by the circadian clock, and there is
metabolic feedback on the circadian oscillator. Elevated SnRK1
activity under carbon limitation lengthens the circadian period, and
sucrose shortens the period by T6P-SnRK1 acting on the oscillator
gene PRR7 (7–9). The period also responds to glucose by a TOR-
dependent mechanism (10). In continuous dark, circadian rhythms

rapidly dampen but can be sustained by the addition of sugars. This
effect of sugar requires GIGANTEA (GI), a clock protein which is
stabilized by sucrose in the evening (11). Sugars can also reinitiate
transcriptional rhythms in dark-adapted seedlings, setting the phase
according to the time of sugar application (8, 12), but the mecha-
nism in unknown.
Redox state and levels of reactive oxygen species (ROS), which

are tightly linked to metabolism, are also associated with circadian
rhythms in plants. There are circadian rhythms of hydrogen
peroxide (H2O2) and NADP(H)+ in Arabidopsis (13, 14). Circadian
rhythms of peroxiredoxin oxidation have been detected across
Kingdoms (15). These rhythms of redox state and associated ROS
are generally considered as outputs of rhythmic metabolism
controlled by the circadian clock (13) or even independent of the
circadian oscillator (15). The defense hormone salicylic acid per-
turbs redox state and affects gating of immune response, dependent
on the redox-sensitive transcription factor NON-EXPRESSOR OF
PATHOGENESIS 1 (NPR1) (14). However, there is presently no
clear evidence of a role for redox signals as a mechanism of met-
abolic feedback to the circadian oscillator in plants.
Distinguishing sugar and light signals can be challenging in

photosynthetic cells since it is likely that sugar signaling will be
activated in the light. Recent advances in our understanding of the
impact of metabolic signaling to the plant circadian clock have
relied on experiments in low light or darkness (7, 8, 10–12, 16).
Here, we use an experimental approach based on the previous
observation that sugar can activate the expression of circadian
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clock genes in dark-adapted seedlings to define a light-independent,
sugar-regulated transcriptome in Arabidopsis (8, 12). We compare
the response of the transcriptome to sucrose in the dark and inhi-
bition of photosynthesis in the light and identify redox and ROS
processes as a prominent feature of transcriptional responses to
sugars. We demonstrate that superoxide (O2

–) can act as a signal to
alter gene expression and growth in response to sucrose. This O2

–

signal acts to promote transcription of circadian oscillator genes in
the evening. These reveal that ROS can function as metabolic
signals affecting circadian rhythms in Arabidopsis.

Results
To identify transcripts that are regulated by sugars in the pres-
ence and absence of light and photosynthesis, we designed an
RNA sequencing (RNA-Seq) experiment based on the previous
observation that sugars can reinitiate transcriptional circadian

rhythms in dark-adapted Arabidopsis seedings (8, 12). Two-wk-old
wild-type (Col-0) seedings were grown in the dark for 72 h to
dampen circadian rhythms and establish a stabilized C starvation
state. At subjective dawn, dark-adapted seedlings were trans-
ferred to media containing 10 mM mannitol (osmotic control) or
sucrose and maintained in the dark or transferred to media-
containing 10 mM mannitol with or without 3-(3,4-dichlorophenyl)-
1,1-dimethylurea (DCMU), an inhibitor of photosynthesis, and
grown in the light. The four treatments provide conditions of no
sugar/no light (Dark), sugar/no light (Suc), sugar/light (Light),
and light/no sugar (DCMU) (Fig. 1A). We confirmed that seedling
glucose content increased in the Suc and Light treatments but not
in the Dark or DCMU treatments (Fig. 1B). To capture both early
and late transcriptional responses within the timeframe of a typical
photoperiod, shoot tissue was harvested at subjective dawn (0 h)
and 0.5, 2, and 8 h after the treatments and prepared for RNA-Seq.
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Fig. 1. A light-independent sugar-regulated transcriptome of Arabidopsis. (A) The 2-wk-old seedlings were grown in the dark for 72 h and then transferred
to 10 mM mannitol (Dark) or sucrose (Suc) in the dark, into the light with 10 mM mannitol (Light), or 20 μM DCMU and 10 mM mannitol (DCMU). Shoot tissue
was collected at 0, 0.5, 2, and 8 h for RNA-Seq. (B) Leaf glucose content in seedlings grown as in A (means ± SD, n = 3; *P < 0.05 from Dark; Bonferroni-
corrected t test). (C) Venn diagrams of differentially expressed genes at each time point in samples collected in the dark (Left) or light (Right). (D) Expression
trajectories of 14 clusters of coexpressed genes identified by variational Bayesian–Gaussian mixture model. Pink and blue lines indicate genes identified as up-
and down- or down- and up-regulated by sucrose/DCMU, respectively. The number of genes within each cluster are in parentheses. (E) GO enrichment maps
of the top 15 terms in each cluster in D. Node colors correspond to the cluster(s) represented in D. Node sizes are proportional to the number of genes.
Selected nodes are labeled with significantly enriched, representative GO terms for each network. See Dataset S4 for the fully annotated networks.
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We detected 5,571 Suc-regulated genes that were differentially
expressed between Dark and Suc treatments and 4,628 DCMU-
regulated genes differentially expressed between Light and
DCMU (Fig. 1C and Dataset S1). The quantification of gene
expression by RNA-Seq was corroborated for 31 representative
transcripts by qRT-PCR with a strong positive correlation (R2 =
0.91) (SI Appendix, Fig. S1). The overlap of differentially
expressed genes between time points was relatively low (Fig. 1C),
suggesting the sampling design captures a wide dynamic range of
the transcriptional response. A comparison of our list of Suc-
regulated genes to published microarray datasets (17, 18) indi-
cated that we have captured a more extensive sugar-regulated
transcriptome (SI Appendix, Fig. S2A).
To identify genes that are regulated by sugar, independent of

light availability, we generated a list of genes that were up-
regulated by Suc in the dark and down-regulated by DCMU in
the light (sugar-activated; 927) or down-regulated by Suc in the
dark and up-regulated by DCMU in the light (sugar-repressed;
1,117) (Dataset S2 and SI Appendix, Fig. S3). The sugar-
activated genes were enriched for Gene Ontology (GO) terms
related to protein and cell wall synthesis (SI Appendix, Fig. S3A).
Sugar-repressed genes were enriched for GO terms related to
light signaling, circadian rhythm, and sugar metabolism (SI Ap-
pendix, Fig. S3 B and C). We compared our list of all 2,042 sugar-
regulated genes to published lists of genes regulated by SnRK1
and TOR, which are two major energy signaling hubs (2, 3).
There was significant overlap with both datasets, but 1,080 sugar-
regulated genes were unique to this study (SI Appendix, Fig.
S3D), including 929 genes represented on the Arabidopsis Ge-
nome (ATH1) microarrays. These unique genes could represent
responses either upstream or independent of SnRK1- and TOR-
mediated signaling. Among the most significantly enriched GO
terms in this list was response to oxygen-containing compound
and circadian rhythm (SI Appendix, Fig. S3E).
To define the temporal characteristics of the complete tran-

scriptome dataset, we performed clustering analysis of expression of
18,071 genes across all 53 samples using variational Bayesian–
Gaussian mixture models (Fig. 1D and Dataset S3). We opted
for 14 clusters as a tradeoff between maximizing the explained
variance and producing meaningful clusters (SI Appendix, Fig. S4
and Fig. 1D). Several clusters were associated with either sugar-
repressed (clusters 1 through 4) or sugar-activated (clusters 11
through 14) genes (Fig. 1D). We searched for enriched GO
terms within each cluster (Dataset S3) and summarized these
using an enrichment map of the top 15 terms within each cluster
(Fig. 1E and Dataset S4). Some highly enriched GO term networks
were specific to one or two clusters, such as inositol phosphate
processes in cluster 13 or circadian rhythm and growth in clusters 8
and 13. Other enrichment GO term networks represent four or five
clusters. The largest of these networks included terms associated
with metabolism of sugars, nucleotides and phospholipids, chloro-
plast function, and proteostasis. The second largest enrichment
network included terms associated with ROS metabolism and sig-
naling, metabolic stress, and immune responses.
Since GO terms associated with ROS appear to be a strong

feature of the complete dataset, we hypothesized that ROS might
be contributing to transcriptional responses to sugar. Indeed,
response to oxygen-containing compound was the most signifi-
cantly enriched GO term among all 2,042 sugar-regulated genes
and among Suc-regulated genes at 2 h (SI Appendix, Fig. S2B).
Within the former, 195 genes are associated with this GO term,
including ANNEXIN 2 (ANN2) and six WRKY transcription
factor genes (Fig. 2A and Dataset S5). We also identified 95 sugar-
regulated genes previously reported as ROS-responsive (19), in-
cluding ASCORBATE PEROXIDASE 1 (APX1) and CATALASE 2
(CAT2) (Fig. 2B and Dataset S5).
To test whether treatment of Arabidopsis seedlings with su-

crose affects production of ROS in dark-adapted seedlings, we

used histochemical stains for H2O2 and O2
– (Fig. 2 C and D).

Treatment of dark-adapted seedlings with sucrose led to a de-
crease in staining for H2O2 within 30 min. By contrast, sucrose
treatment of dark-adapted seedlings increased stain for O2

–

within 2 h compared to mannitol controls. The elevated nitro-
blue tetrazolium (NBT) stain was observed throughout the
shoot, including hypocotyl, cotyledons, and leaves. To corrobo-
rate this observation, we used an L-012 luminescence assay,
which does not discriminate between H2O2 and O2

– but provides
better temporal resolution of ROS production than histochem-
ical stains. Consistent with the NBT stains for O2

–, we detected
elevated L-012 luminescence within 2 h in sucrose-treated seedlings
compared to mannitol-treated controls (Fig. 2E). Presumably, this
assay underestimates the difference in O2

– production since the
signal in sucrose-treated seedlings will be the sum of the reduced
H2O2 and the increased O2

– (Fig. 2C). The ROS response detected
in both the histochemical and luminescent assays is concomitant
with the timing of the transcriptional response associated with
ROS-related genes that we detected after 2 h (Fig. 2 A and B,
SI Appendix, Fig. S2B, and Dataset S1).
The accumulation of O2

– in sucrose-treated seedlings might be
a byproduct of increased energy metabolism or could be con-
tributing as a signal to affect transcriptional changes. We looked
for chemicals that could inhibit the sucrose-induced production
of O2

–. Diphenyleneiodonium (DPI) is an inhibitor of NADPH
oxidases, which generate O2

– at the plasma membrane. Methyl
viologen (MV) interferes with electron transport from photo-
system I (PS I) and elevates O2

–. 3-amino-1,2,4-triazole (3-AT) is
a catalase inhibitor which promotes H2O2 accumulation. We
tested the effect of these chemicals on induction of a circadian-
regulated luciferase reporter for COLD, CIRCADIAN RHYTHM
REGULATED 2 (CCR2). DPI strongly inhibited the increase of
luciferase luminescence in sucrose-treated, dark-adapted CCR2p:LUC
seedlings, whereasMV and 3-AT did not (Fig. 3A). Similarly, DPI, but
not MV or 3-AT, also inhibited sucrose-induced L-012 luminescence
(Fig. 3B) and histochemical staining for O2

– but did not affect sucrose-
induced changes in staining for H2O2 (Fig. 3 C and D).
We used the transcriptional response of CCR2p:LUC to gen-

erate a dose–response curve of inhibition by DPI. This response
was inhibited by 30% at 1 μM DPI and by >70% at concentra-
tions above 5 μM (Fig. 3E). Similar dose-dependent effects were
also observed for two other NADPH oxidase inhibitors,
VAS2870 (20) and apocynin (21), but not for the xanthine de-
hydrogenase inhibitor allopurinol (22) (SI Appendix, Fig. S5). We
confirmed that DPI also inhibited sucrose induction of CCR2
and WRKY60 transcripts by qRT-PCR (Fig. 3F) as well as
WRKY11p:β-GLUCURONIDASE (GUS) and WRKY30p:GUS
reporters (SI Appendix, Fig. S6). Thus, DPI effectively inhibits
transcriptional regulation of multiple sugar-regulated genes.
DPI could be inhibiting transcriptional responses to sugar in

our assay by affecting uptake of sucrose, altered sugar metabolism,
or inhibition of sugar sensing or signaling. We measured soluble
sugars glucose, fructose, and sucrose in sucrose-treated dark-
adapted seedlings in the presence of dimethyl sulfoxide (DMSO;
control) or DPI. We did not detect a difference from controls for
any sugar within 8 h of sucrose treatment (SI Appendix, Fig. S7),
suggesting that inhibition of sugar uptake or sucrose catabolism
cannot account for the dramatic inhibition of the transcriptional
response by DPI.
Since DPI can inhibit transcriptional responses to sugar, we

sought to establish whether DPI also affects other sugar-regulated
processes in Arabidopsis. Seed germination in both dormant and
nondormant seeds is inhibited by exogenous sugar, acting through
abscisic acid-dependent pathways (23). Similar to sucrose, DPI also
inhibits germination (24) (SI Appendix, Fig. S8). If DPI inhibits
germination by the same pathway as sucrose, we expected that their
effects would be nonadditive. However, the effect of DPI on inhi-
bition of germination was detected both with and without sucrose in
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dormant and nondormant seeds (SI Appendix, Fig. S8). This sug-
gests that DPI does not affect the regulatory pathways through
which sucrose inhibits seed germination.
Sugars promote growth. To test the effect of DPI on growth

promotion by sucrose, we measured effects on hypocotyl elon-
gation and root growth in dark-grown seedlings. This growth
assay enables quantification of effects of sugar on cell elongation
in the hypocotyl and cell division in the root in the absence of
light signals. Seedlings growing on media containing DPI had
slightly reduced hypocotyl length and root length in control
media, and DPI strongly attenuated the positive effects of su-
crose on both hypocotyl and root length (Fig. 3G). These data
suggest that DPI inhibits the signaling or metabolism of sucrose
to promote cell elongation and cell division.
NADPH oxidases are encoded by a family of 10 RESPIRA-

TORY BURST OXIDASE HOMOLOG (RBOH) genes in Ara-
bidopsis. We tested whether rboh mutants had altered ROS
production in dark-adapted seedlings using L-012 luminescence
assays. Both the rbohb and rbohc mutants had a similar response
to sucrose as wild type, but rboha mutants and rbohd rbohf
double mutants had reduced L-012 luminescence (SI Appendix,
Fig. S9A), similar to wild type treated with DPI, VAS2890, or
apocynin (SI Appendix, Fig. S5B). We also tested whether rboh
mutants had altered growth responses to sucrose (SI Appendix,
Fig. S9B). The rbohd rbohf double mutant had reduced root and
hypocotyl length on control media compared to wild type, but
growth was still responsive to sucrose in the mutant. Stimulation
of hypocotyl growth by sucrose was reduced in the rboha mutant
compared to wild type, but stimulation of root growth was

unaffected. Thus, although we detected small growth effects in
the mutants, none of those tested were able to phenocopy the
effect of DPI. Similarly, the transcriptional response of CCR2 or
WRKY60 to sucrose in dark-adapted seedlings was not reduced
in rbohmutants (SI Appendix, Fig. S9C). These suggest that there
is residual O2

– accumulation in these mutants sufficient to elicit a
response and that there is genetic redundancy in the molecular
targets of DPI contributing to these sugar responses.
Sugars affect period of circadian rhythms (8), and the circa-

dian clock contributes to rhythms of ROS homeostasis (13). We
tested the effect of DPI, MV, and 3-AT on circadian rhythms in
media with or without sucrose. We measured circadian rhythms
of TOC1p:LUC in continuous low light (10 μmol · m−2 · s−1)
because the effect of exogenous sucrose on circadian rhythms is
more pronounced in these conditions (8). The circadian period
was significantly shorter in seedlings grown on sucrose compared
to mannitol for all ROS modifiers, similar to the DMSO control
(Fig. 4 A and B). This suggests that these chemicals did not affect
the adjustment of period by exogenous sucrose.
Sugars also affect the amplitude of circadian rhythms (11).

Luciferase signal is dramatically elevated in TOC1p:LUC seed-
lings transferred to media containing sucrose compared to
mannitol (Fig. 4 A and C). This transcriptional response does not
require GI (SI Appendix, Fig. S10), a clock protein which is post-
transcriptionally regulated by sucrose (11). The effect of sucrose
in TOC1p:LUC seedlings was strongly attenuated in the presence
of DPI, elevated in the presence of MV, and unaffected by 3-AT
(Fig. 4C), which is consistent with the effects of these compounds
on O2

– levels. The effects of DPI and MV were particularly
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pronounced during the night and were not observed in CCA1p:LUC
or PRR7p:LUC seedlings (Fig. 4C), suggesting O2

– acts on specific
components of the oscillator.
Since the effects of DPI and MV differed between the

morning-phased CCA1p:LUC and PRR7p:LUC and evening-
phased TOC1p:LUC, we wondered whether this might reflect
a global pattern of O2

– on transcriptional rhythms. We used a set
of previously reported O2

–- and H2O2-responsive transcripts (19)
to determine their phases in continuous light from a published
RNA-Seq dataset (25). The distribution of phases of transcripts
up- and down-regulated by O2

– or H2O2 deviated significantly
from expectations (Fig. 4D and Dataset S5). The phases of
transcripts up-regulated by H2O2 were enriched several hours
after subjective dawn, and down-regulated transcripts were
enriched before subjective dawn. This is consistent with the
reported role of CCA1 in driving rhythms of H2O2, which peak in
the early morning (13). By contrast, the phase of transcripts up-
regulated by O2

–, which included TOC1, GI, PRR5, and LUX,
were enriched around subjective dusk. About 20% of these genes
are direct TOC1 targets (26) (Dataset S5). Transcripts down-

regulated by O2
–, including LHY and RVE8, were enriched

around subjective dawn. This suggests that H2O2 and O2
– pro-

duction or signaling are antiphased and is consistent with a role
of O2

– contributing to promoting oscillations of circadian tran-
scripts in the evening.

Discussion
We have identified ROS-regulated genes as a prominent feature
in the response of the Arabidopsis transcriptome to sugars in
both dark and light (Fig. 1). The transcriptional response to
sucrose in dark-adapted seedlings coincides with an increase in
ROS levels, including O2

– (Fig. 2). Both the accumulation of O2
–

and transcriptional response to sucrose were strongly attenuated
in seedlings treated with DPI, a chemical inhibitor of flavoenzymes
including NADPH oxidases (Fig. 3). DPI also inhibited the pro-
motion of hypocotyl elongation and root growth by sucrose, dem-
onstrating a broader impact of the ROS signal in sugar responses.
Finally, we found that DPI inhibited the effect of sucrose on the
evening expressed TOC1 and identified a highly significant anti-
phasing of rhythmic transcripts that are up- and down-regulated by
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O2
– to dusk and dawn, respectively (Fig. 4). This is different from

the redox effects of salicylic acid on both morning and evening
genes (14). Thus, we propose that O2

– functions as a metabolic
signal associated with sugar levels, which acts positively on the
circadian oscillator in the evening. An association between cellular
sugar status and redox state has been long recognized in the context
of metabolism and oxidative stress (27), but our data provide evi-
dence of a role for O2

– as a dynamic sugar signal affecting daily
rhythms of gene expression. This effect of sugar on the oscillator
appears to be distinct from the T6P/SnRK1-mediated effect on the
period via transcriptional regulation of PRR7 (7) (Fig. 4) and the
post-transcriptional control of GI (11) (SI Appendix, Fig. S9), re-
vealing an additional layer of metabolic control of circadian
rhythms in plants.
DPI is a potent inhibitor of NADPH oxidases, which generate

extracellular O2
– at the plasma membrane activated by intra-

cellular signals (28). We observed reduced sucrose-activated
ROS production and modest growth phenotypes in rboha and
rbohd rbohf mutants, but the transcriptional response to sucrose
was similar to wild type (SI Appendix, Fig. S8). Notwithstanding
that the five rboh mutants examined here represent over 90% of
total RBOH gene expression (Dataset S1), the subtle phenotypes
in the rboh mutants compared to DPI-treated seedlings probably
reflects functional redundancy within this gene family. This will
be challenging to verify, since higher order mutants would be
expected to be lethal. It is possible that effects of DPI on O2

–-
mediated responses to sugar can be attributed to inhibition of
other flavoenzymes. For example, in photosynthetic organisms,

DPI inhibits O2
– production from xanthine dehydrogenases,

glutathione reductases, and mitochondrial NAD(P)H dehydro-
genases (29–31). However, the similar effects of VAS2890 and
apocynin, but not allopurinol, on sugar responses support the
role of NADPH oxidases (SI Appendix, Fig. S5).
MV interferes with electron transport from PS I, as well as in

mitochondria (32), and leads to the accumulation of O2
–, so the

opposite effects on transcriptional responses might be expected
compared to DPI. MV was unable to induce a transcriptional
response in CCR2p:LUC seedlings without sucrose (Fig. 3A),
which suggests that O2

– alone does not activate circadian gene
expression or that the site of O2

– accumulation in MV-treated
seedlings is not sufficient to act as the signal. However, MV ele-
vated the response to sucrose in TOC1p:LUC seedlings (Fig. 4C),
suggesting that O2

– and sucrose might act synergistically.
O2

– is generated in mitochondria, chloroplasts, peroxisomes,
and the apoplast (28). O2

– is typically scavenged quickly by su-
peroxide dismutases. Elevation of O2

– could be due to increased
production or reduced scavenging. The increase in O2

– triggered
by sucrose in dark-adapted seedlings by histochemical stain and
L-012 assay was relatively low and slow compared to elicitor-
induced respiratory burst (33) but faster than a ROS effect
reported for cell wall damage (34). It might be that sucrose
generates O2

– in specific cell types or subcellular locations, the
signal might be diluted in bulk tissues, or our detection methods
might have insufficient sensitivity. This might explain why we
couldn’t detect L-012 luminescence in rbohd rbohf double mu-
tants (SI Appendix, Fig. S8A). Thus, it will be useful to map the
cellular and subcellular location of the O2

– signal using the
expanding toolset of available redox probes (35–37). This will
also provide clearer identity of candidate proteins producing
the signal.
Reversible oxidation of redox-sensitive proteins by ROS can

alter their activity. In Arabidopsis, redox-sensitive proteins that
are oxidized by H2O2 have been identified in most cellular
compartments (38). These include plasma membrane receptors
(39), glycolytic enzymes (38, 40), which can localize in the nu-
cleus and associate with DNA (41, 42), and transcription factors
(43). Thus, localized changes in redox state could affect signaling
pathways and gene expression by various mechanisms. Changes
in localized O2

– concentration could modify protein function
indirectly after dismutation to H2O2 or directly by affecting Fe-S
proteins (28).
It is experimentally difficult to separate the effects of H2O2,

O2
–, or other ROS on protein oxidation. Differences in target

specificity for ROS might depend on their redox dynamics or
subcellular location. H2O2 is regarded as the most likely ROS
signal because it is relatively stable compared to the more re-
active O2

– (28). However, our phase analyses of H2O2 and O2
–

regulated transcripts indicate clear temporal separation of their
effects (Fig. 4). This might reflect differences in spatial organi-
zation of oxidative metabolism at different times of day. The
mechanism by which sugar-activated O2

– production affects gene
regulation will depend on its cellular location.
By examining the effects of sugar on the Arabidopsis tran-

scriptome independently of light, we have uncovered a role for
redox status, exemplified by accumulation of O2

–, that promotes
responses to sugar, including growth and circadian rhythms. In
contrast to the previously reported association of circadian
rhythms of H2O2, which are phased in the morning (13), the O2

–-
activated transcriptome peaks in the evening and includes core
genes within the circadian oscillator. Sugar promotes O2

–, which
alters gene expression by either an extracellular or intracellular
redox signal, which could transmit to the nucleus via signaling or
protein localization. We propose that this metabolic signal
functions to coordinate rhythmic physiology and growth in re-
sponse to environmental conditions that affect photosynthetic
metabolism.
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Materials and Methods
Details of plant materials and growth conditions, RNA-Seq and clustering (44,
45), qRT-PCR, histochemical stains, luminescence assays, and sugar quantifi-
cation are described in SI Appendix. Primers are listed in Dataset S6.

Data Availability. RNA-Seq data have been deposited in European Nucleotide
Archive (PRJEB40453). Additional files associated with RNA-Seq analyses are
available from Dryad Digital Repository (https://doi.org/10.5061/dryad.v41ns1rv9).
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