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The concomitant mechanical deformation and solidification of
melts are relevant to a broad range of phenomena. Examples
include the preparation of cotton candy, the atomization of
metals, the manufacture of glass fibers, and the formation of
elongated structures in volcanic eruptions known as Pele’s hair.
Usually, solid-like deformations during solidification are neglected
as the melt is much more malleable in its initial liquid-like form.
Here we demonstrate how elastic deformations in the midst of
solidification, i.e., while the melt responds as a very soft solid
(G ∼ 100 Pa), can lead to the formation of previously unknown
periodic structures. Namely, we generate an array of droplets on
a thin layer of liquid elastomer melt coated on the outside of a
rotating cylinder through the Rayleigh–Taylor instability. Then, as
the melt cures and goes through its gelation point, the rotation
speed is increased and the drops stretch into hairs. The ongo-
ing solidification eventually hardens the material, permanently
“freezing” these elastic deformations into a patterned solid. Using
experiments, simulation, and theory, we demonstrate that the
formation of our two-step patterns can be rationalized when
combining the tools from fluid mechanics, elasticity, and statistics.
Our study therefore provides a framework to analyze multi-
step pattern formation processes and harness them to assemble
complex materials.

pattern formation | fluid–elastic coupling | solidification | soft materials

The mechanical properties of common materials are usually
time invariant, such that these quantities typically enter as

constants in the continuum mechanics models classically used
in hydrodynamics (1) and elasticity (2). Yet, the microstruc-
ture of a material may evolve through time due to biological,
chemical, or physical processes, thereby affecting its macro-
scopic properties which become time dependent. For instance,
thixotropic fluids (3), growing tissues (4), swelling gels (5), phase
separating systems (6), shape-memory polymers (7), and solid-
ifying melts (8) all have time-varying properties. In Nature,
phase transitions coupled to mechanical processes yield a broad
range of morphologies including elongated glass threads (9),
icicles (10), and penitentes (11). In engineering, melts which
transition from liquid to solid are widely used to “freeze” the
deformations induced in the liquid state into solid materials.
Examples include the glass float and rotational spinning pro-
cesses (12, 13), the foaming of ceramics (14), three-dimensional
printing (15, 16), and the fabrication of thin shells via coating
(17), as well as the functionalization of materials using fluid
instabilities (18–20).

Continuously solidifying melts explore all of the intermedi-
ate rheological states between liquid and solid, thereby pro-
viding an opportunity to combine fluid-like and elastic-like
deformations in the same material to achieve unprecedented
structures. Yet, mechanical instabilities and the patterns they
generate are primarily studied using fixed material properties,
whether in liquids (1), elastic solids (21–24), viscoelastic mate-
rials (25), or multiphase problems (26, 27). Conversely, there
are examples of complex natural structures formed by succes-
sive far-from-equilibrium nonlinear processes, e.g., in biology
(28, 29) and geomorphology (30). Porting multistep pattern

formation to comparatively simpler model systems, e.g., melts,
could unveil additional physics and open more possibilities in
engineering.

Here, we report a different kind of pattern formation involving
the elastic amplification of the liquid Rayleigh–Taylor instability
in curing elastomers. Our pattern comprises a regular array of
hairs. We first trigger the Rayleigh–Taylor instability in a thin
layer of liquid melt coated on the outside of a rotating cylinder
to produce an array of seed droplets (20). In the midst of solidifi-
cation, the rotation speed of the substrate is suddenly increased
to elastically deform the drop pattern into hairs (Fig. 1A). As
the elastomer continues to cure, the newly developed hairs are
“frozen” to form a pristine elastic material that stays in place
even when the rotation of the substrate ceases.

From Drops to Hairs. Our methodology is outlined in Fig. 1B.
Using elastomers that spontaneously cure when reagents are
mixed (vinylpolysiloxane [VPS-8] and polydimethylsiloxane
[PDMS]) (Materials and Methods), we coat the outside of a
cylinder of radius R with a uniform layer of the melt (step i).
While the melt is still liquid, i.e., while its loss modulus G

′′

is much higher than its storage modulus G ′, the cylinder is
rotated at a speed Ω1 (step ii). The resulting centrifugal accel-
eration RΩ2

1 triggers the liquid Rayleigh–Taylor instability and
generates an array of pendant drops whose characteristic size
is `c =

√
γ/ (ρRΩ2

1), the generalized capillary length with γ the
melt interfacial tension and ρ its density (20). As the polymer
cures, cross-links form in the initially disconnected polymer net-
work, thereby increasing G ′. After a time τg , the reaction reaches
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Fig. 1. From drops to hairs. (A) Side view comparing the droplets and hairs obtained with VPS-8 at Ω1 = 400 rpm, Ω2 = 1,000 rpm, t∗ = 7 min. (Scale bar,
3 mm.) (B) Schematic of the experiment coupled with the rheology data of VPS-8 curing in oscillatory shear (strain 5%, frequency 0.5 Hz). In step i, a cylinder
is initially coated with a liquid elastomer melt undergoing curing. In step ii, while the melt remains liquid (G

′′
�G′) the cylinder is rotated at a speed Ω1

to form an array of droplets through the Rayleigh–Taylor instability. In step iii, when the melt becomes predominantly elastic, i.e., for t∗& τc with τc the
gelation point, the rotation speed is increased to Ω2 to stretch the droplets into hairs. The rotation is finally stopped when the polymer is fully cured.

the gel point (8) and the melt becomes predominantly elas-
tic (G ′>G

′′
), albeit still very soft (G ′(τg)∼ 100 Pa) compared

to the fully cured elastomer (G ′(∞)> 105 Pa) (Fig. 1B). At a
time t∗& τg , the cylinder rotation speed is increased to reach
Ω2 >Ω1, thereby stretching the array of soft drops into elongated
hair-like structures (step iii). The rotation is stopped when the
elastomer is fully cured.

In Fig. 1A, we show the drop pattern obtained after step ii
and the hair pattern obtained after step iii. The elastic defor-
mation induced during step iii does not change the wavelength
of the pattern, which is set by the liquid instability. However,
step iii increases the amplitude of the pattern, yielding elongated
structures that remain indefinitely after the rotation is halted. To
rationalize the formation of these hairs, we study their growth
step by step.

Seed Droplet Pattern. The Rayleigh–Taylor instability in cur-
ing elastomer melts (20) (step ii of our experiment in Fig. 1)
produces a predominantly hexagonal array of drops with a wave-
length 2π

√
2`c , the linearly most unstable mode of the instability

(31). The growth rate of the instability is τ = 12η`4c/
(
γδ3

0

)
∼ 1 s

with η∼ 1 Pa·s the initial viscosity of the melt and δ0∼ 1 mm the
initial coating thickness. This time scale is much smaller than the

gelation time τ� τg ≈ 8 min for VPS-8 (Fig. 1B). The instabil-
ity thus has ample time to develop and saturate in the form of a
quasistatic network of interconnected pendant drops before the
gelation is point is reached (20, 32). The typical height of these
drops h0 is controlled by the capillary length `c as drops can grow
up to h0≈ 2.15`c before dripping. Likewise, `c dictates the spac-
ing between drops, such that increasing the value of the initial
acceleration Ω1 ultimately results in smaller motifs (SI Appendix,
section I and Fig. S2).

Elastic Deformation. We anticipate that the shape of the hairs
depends on the centrifugal acceleration, the rheology of the melt,
and the initial shape of the drops. To disentangle the respec-
tive role of these contributing factors we conduct the following
experiment. We increase the rotation speed of the cylinder by
successive increments (Fig. 2A) and use a high-speed camera to
track the deformation of individual drops during this stretching
sequence (Materials and Methods and Movie S1). Using PDMS,
an elastomer that cures slowly allows us to keep the mate-
rial properties approximately constant during the sequence of
successive acceleration (SI Appendix, Fig. S1A; 1

G′
∂G′

∂t

∣∣∣
t≈τg
≈

15%/min).
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Fig. 2. (A) Time evolution of the height h of a droplet as we increase the rotation speed Ω. (B) Images of the corresponding droplet after each step. The red
curve shows the initial theoretical profile used in the FEM simulations whose results are superimposed on the pictures. Color bars indicate the dimensionless
neo-Hookean strain energy density: 2W/G. (C) Steady-state height reached after each step for drops with different initial shapes. Solid curves show FEM
simulation results for the same droplets with G = 224 Pa. Experimental details: PDMS with curing accelerator, R = 6.36 cm, t∗ = 63 min (Movie S1).

In Fig. 2A we show the height, h(Ω) of an individual hair, while
the corresponding shapes are shown in Fig. 2B. At each accel-
eration step, the drop height increases and eventually reaches
a plateau a few seconds after the motor does. The higher the
rotation speed, the more the hair stretches. Our methodol-
ogy allows us to track 20 to 50 drops in each experiment and
extract their steady-state height h shown in Fig. 2C for a rep-
resentative subset of drops. As evident from Fig. 2C, the final
height of the hair depends on the initial drop shape, bigger
drops deforming comparatively more. Additionally, the increase
in height with the rotation speed appears to be nonlinear as
explained next.

Right after gelation, the elastomers behave as viscoelastic
solids (Fig. 1B and SI Appendix, Fig. S1A). In the following,
we focus on steady-state shapes such that viscous effects can
be neglected. We thus develop a purely elastic framework to
rationalize the shape of the hairs. Step ii in Fig. 1B yields qua-
sistatic drops, which are assumed to be macroscopic stress-free
solids under an acceleration RΩ2

1 after the gelation point. Using
this state as our reference configuration, we model the increase
in centrifugal acceleration of step iii as the fictitious body
force ρgeff = ρR

(
Ω2

2−Ω2
1

)
. This framework was implemented in

finite-element simulations (FEM) using an incompressible neo-
Hookean constitutive law to represent our half-cured drops. The
strain energy density is W = (G/2)

(
λ2

1 +λ2
2 +λ2

3− 3
)
, with λi

the principal stretches and G the shear modulus, the only mate-
rial constant required in our model. The axisymmetric initial
profile is obtained numerically by solving the Young–Laplace
equation for pendant drops (20) (shown as the red curve in
Fig. 2B) (Materials and Methods). The results of our FEM sim-
ulations are overlaid on the experimental pictures in Fig. 2B.
The agreement is quantitative when using the value G = 224 Pa
for the shear modulus, in reasonable agreement with the stor-
age modulus around gelation G ′(τg)∼ 200 Pa measured in the

rheometer for PDMS (SI Appendix, Fig. S1A). Using this unique
value of G , we simulate the deformations of all of the drops
shown in Fig. 2C. The numerical results are shown as solid lines
in Fig. 2C and quantitatively agree with the experimental data.
Our simple elastic framework thus appears to be sufficient to
capture the steady-state deformation of the elastomer melt right
after gelation.

We now leverage our theoretical framework to get analytical
insights into the physics at play. An elastic layer of uniform thick-
ness subjected to an acceleration can destabilize into a pattern of
hexagonal dimples via an elastic version of the Rayleigh–Taylor
instability (23, 33). However, in our experiment the hairs develop
from an array of preexisting droplets rather than a uniform layer.
This difference in initial condition produces a very different
final pattern. Balancing the pressure induced by the acceleration,
ρgeffh0 with h0 the initial drop height, and the elastic resistance
of the drop, G , yields the nondimensional parameter

α= ρgeffh0/G, [1]

which is defined locally for each drop as h0 varies across the
sample since the drops are not perfectly monodisperse (20).
A second dimensionless number, h0/`c , representing the drop
shape itself is needed to fully characterize our problem.

We repeat our multistep acceleration experiment to indepen-
dently vary geff (through R and Ω), G (through t∗, the time
at which the rotation speed is increased), and h0. Because of
the experimental uncertainties in the curing speed of the elas-
tomer (Materials and Methods), we cannot determine G precisely
beforehand and rely on the FEM simulations to determine the
shear modulus for each experiment. In Fig. 3 we plot the dimen-
sionless height, or stretch, λ= h/h0 as a function of the local
rescaled acceleration α= ρgeffh0/G for all of the drops obtained
across our experiments, while color coding the value of h0/`c .
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Fig. 3. Stretch λ= h/h0 as a function of the dimensionless gravity α=

ρgeffh0/G with geff = R
(

Ω2
2−Ω2

1

)
the acceleration jump. Markers represent

individual PDMS droplets from three experiments whose parameters are
shown in the key, and experimental uncertainties are shown as error bars.
The color codes the initial droplet dimensionless height h0/`c which defines
its shape as shown in Inset. (Scale bar, `c.) Colored solid curves are the results
of FEM simulations, the black dashed curve is our analytical model (Eq. 3),
and the dotted line is a second-order expansion of the model.

We find that the data collapse reasonably well, confirming the
relevance of α in our problem. Additionally, we performed FEM
simulations for the range of drop shapes shown in Fig. 3, Inset.
The numerical results are shown as solid lines in Fig. 3. While
these curves start to diverge past α≈ 6, their proximity indicates
the marginal influence of the details of the initial drop shape on
the final deformation.

Leveraging the predominant role of α we derive a simpli-
fied model for λ(α) based on the minimization of the energy
of the system which comprises an elastic component (the
strain energy) and a potential energy (stemming from the cen-
trifugal acceleration geff). Assuming axisymmetry and homoge-
neous deformations (34, 35) (SI Appendix, section II), the total
energy is

E =
GV0

2

(
λ2 +

2

λ
− 3− 2βαλ

)
. [2]

Here, V0 is the drop volume, λ= h/h0 is the previously defined
stretch, and β≈ 0.29 is a constant calculated from the initial drop
shape. Minimizing the total energy with respect to the stretch
( ∂E
∂λ

= 0) yields the cubic equation λ3−βαλ2− 1 = 0 whose real
solution is

λ(α) =
1

3

(
βα+ g(α) +

β2α2

g(α)

)
,

g(α) = 3

√
β3α3 + (3/2)

(
9 +

√
12β3α3 + 81

)
.

[3]

We plot Eq. 3 as a dashed black line and its asymptotic expan-
sion λ= 1 + β

3
α+ β2

32 α
2 as a dotted line in Fig. 3. We find that

our simplified model captures the drop elongation up to α≈ 8.
Above this value, the hairs in our experiments stretch more than
expected with a wider spread of the data and are eventually torn
apart for α& 20 (SI Appendix, Fig. S5A and Movie S2). The value
α= 8 coincides with the formation of voids at the base of the
hairs that break axisymmetry (SI Appendix, Fig. S5 B and C and

Movie S3). These voids reveal the limitations of our theoretical
framework (SI Appendix, section III); rationalizing the physics of
their formation is beyond the scope of this study.

From Individual Hairs to Periodic Patterns. We now turn back to
studying the patterns formed in our experiment. The initial liq-
uid Rayleigh–Taylor instability (step ii in Fig. 1) produces drops
whose characteristic size is `c . In Fig. 4A we report the dis-
tribution of the dimensionless drop height h0/`c , normalized
to represent the probability density. We observe a (positively)
skewed distribution peaked around h0 = `c that stops around
h0≈ 2.2`c . Our initial coating in step i is thick such that dripping
occurs and we can observe all possible (i.e., stable) pendant drop
solutions in a single experiment (20). We find that the log-normal
distribution LNµ,σ captures the shape of the drop distribution
(dashed curve in Fig. 4A). In Fig. 4 B–D we show the final hair
height distribution h/`c as we increase the effective gravity geff .
The distribution gradually widens and becomes more skewed
with increasing geff . Representative pictures of each experiment
in Fig. 4E show both the increase in height and the loss of
uniformity.

The hair height statistics can be understood from the defor-
mation of individual hairs. Within an experiment, small drops
experience a smaller dimensionless acceleration α than large
drops (Eq. 1). Consequently small drops deform less than large
drops, thereby widening the distribution and increasing its skew-
ness. Quantitatively, the stretching of each droplet can be seen
as the transformation of the random variable h0/`c into h/`c
following Eq. 3. For our purpose, Eq. 3 can be rewritten as
h/`c = fα̃(h0/`c), a function of the initial random variable h0/`c
with a global parameter α̃= ρgeff`c/G , the value of α for the
most probable droplet in the initial distribution. It follows that
h0/`c = f −1

α̃ (h/`c), with f −1
α̃ the inverse function of fα̃. The final

hair distribution can then be computed (36) from the initial
log-normal distribution as

Pα̃
(

h

`c

)
=LNµ,σ

(
f −1
α̃

(
h

`c

))∣∣∣∣∂f −1
α̃ (h/`c)

∂(h/`c)

∣∣∣∣ . [4]

We plot the theoretical evolution of the height distribution as
we continuously increase α̃ in Fig. 4F. We find that Eq. 4 pre-
dicts a positively skewed widening of the distribution as seen in
the experiments. In Fig. 4 B–D we compare our model to exper-
iments with VPS-8 hairs. The distributions obtained with our
model are shown as solid curves and the value of G is adjusted
around G ′(τg)≈ 40 Pa (Fig. 1B) using a maximum-likelihood
estimation (36). As evident from Fig. 4, there is a favorable
agreement between our model and the experiment (Fig. 4 B and
C). As expected from the analysis of individual hairs, the agree-
ment worsens for α̃& 8 (Fig. 4D) owing to the limitations of our
elastic model.

Shaping an Interface. Using parameterized centrifugal accelera-
tion, we have shown that liquid and elastic deformations could
be coupled to produce a different kind of periodic structures
in solidifying elastomer melts. Taking advantage of the con-
tinuously varying mechanical properties of the melt, we first
form an initial droplet pattern via the liquid Rayleigh–Taylor
instability. We then amplify the pattern by elastically stretch-
ing the drops into hairs when the elastomer is half cured.
Albeit elastic in nature, the stretching of the half-cured poly-
mer is eventually imprinted on the final material as cross-
linking proceeds in the melt. When the substrate rotation is
halted, the hairs remain in place and no noticeable defor-
mation due to the lack of acceleration can be noticed. In
fact, the elasticity of the elastomer is now orders of magni-
tude greater than when it has been stretched. This pattern is
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Fig. 4. (A) Distribution of the initial droplet dimensionless height h0/`c (from n = 754 VPS-8 droplets, Ω1 = 400 rpm). The dashed curve is a log-normal fit
LNµ,σ with µ= 0.034 and σ= 0.36. (B–D) Distribution of the final VPS-8 hair dimensionless height h/`c as the acceleration is increased from B to D, n> 379
hairs per histogram. The initial distribution fit is shown as the dashed curve while the distribution predicted by our model is the solid curve (shear modulus
fitted to G = {41.5, 24.7, 54.9} Pa respectively leading to α̃= {1.93, 6.36, 9.21}). (E) Representative pictures of the experiments shown in A–D. (Scale bar,
5 mm.) (F) Theoretical evolution of the initial drop distribution as α̃ is increased (Eq. 4).

rationalized using the tools of both fluid and solid mechanics; the
wavelength of the pattern is fixed by a fluidic instability through
the capillary length `c , while the amplitude of the pattern stems
from elasticity and the acceleration jump α.

Although demonstrated on a specific example, our approach
is generic and can theoretically be applied to any material whose
mechanical properties vary significantly. Examples include cool-
ing melts, metals, and glass, but also programmable materials
such as shape memory polymers that could make the pattern-
forming process reversible. Using different types of forcing (e.g.,
vibrations, acoustic or electromagnetic waves) could unveil a
variety of patterns that remain to be discovered, while using
smart materials (e.g., dielectric elastomers, composites) could
make these structures active in response to stimuli. These pat-
terns could offer more flexibility than their single-step coun-
terpart to build structured materials for applications in wave
control, sensing, adhesion, or wetting. In addition, we believe
our approach to modeling that consists of rationalizing the dif-
ferent pattern-forming processes individually and tying them
together statistically to understand the final structure could be
applied to multistep patterns formed by different physical pro-
cesses involving seeding (e.g., via fracture, condensation, or
crystallization).

Materials and Methods
Experimental Procedure. Two silicone-based elastomers are used: VPS-8
(Zhermack Elite Double 8 with a weight base to catalyst ratio of 1:1)
and PDMS (Dow Corning Sylgard 184 mixed with cure accelerator 3-6559
using the base:catalyst:accelerator weight ratios 8.4:1:1.66). The whole
experiment is done at room temperature T = 21± 1 ◦C. The VPS-8 (resp.

PDMS) reagents are mixed in a centrifuge (Thinky ARE-310) for 10 s
(resp. 30 s) at 2,000 rpm clockwise and then 10 s (resp. 30 s) at 2,200
rpm counterclockwise. The end of mixing sets the zero of time for our
experiments.

The initial coating is done by first pouring the melt on a horizontal cylin-
der of radius R = 63.6 or R = 38.1 mm attached to a spin coater (Laurell
WS-650Mz-23NPPB). We then use a custom blade coater with a 1-mm gap
to even out the initial thickness. For VPS-8 we start coating 1 min 10 s after
mixing and subsequently start 1 min 30 s later the cylinder rotation at Ω1.
For PDMS, we degas the mixed reactant in vacuum for 6 min before starting
the cylinder coating. The rotation at Ω1 is subsequently started 2 min later.
Finally the second rotation step at Ω2 is triggered at t∗.

Material Properties. The time-dependent rheology data of the curing elas-
tomers are obtained through small-amplitude oscillation with an Anton
Paar MCR 301 rheometer (using a cone-plate geometry CP25-1). Because
the elastomers are curing rapidly, we cannot measure both the spectral and
temporal responses simultaneously. We chose to measure {G′(t), G

′′
(t) } the

storage and loss moduli as a function of time at a constant low strain (≤5%)
and a constant frequency (0.3 to 0.5 Hz). This range of frequency is of the
order of the maximal frequency imposed in our experiments which comes
from the cylinder acceleration: The motor needs 3 to 5 s to change speed
(Fig. 2A). The data for VPS-8 are shown in Fig. 1B while the data for PDMS
are shown in SI Appendix, Fig. S1A.

These rheological measurements are restricted to small deformations and
a narrow frequency range. Moreover, the curing reaction speed and hence
τg of these materials are impacted by many external factors such as tem-
perature, mixing ratios, or the flow within the melt (17). Since G′ increases
exponentially around the gelation point, the small experimental variations
of τg create noticeable differences of shear modulus for a given t∗. As a
result, we know only the order of magnitude of the shear modulus G and
have to calibrate it using the FEM simulations by matching the shape of a
few drops as done in Fig. 2B.
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The surface tensions of both elastomer melts are similar, γ≈ 21 mN/m,
as well as their densities with ρVPS−8 = 1,070 kg/m3 and ρPDMS =

1,030 kg/m3.

Image Analysis. High-speed movies of the drops during stretching are
recorded with either a Kron Technologies Chronos 1.4 or a Phantom v2012.
The multistep stretching shown in Fig. 2 takes about 0.5 min while the cylin-
der velocity is variable and very high (up to 10.7 m/s). To extract as much
information as possible from the limited memory of the camera, we record
a small region of the cylinder shown in SI Appendix, Fig. S1C at a high frame
rate and obtain a very large number of frames (∼106). We then extract
a radial line of pixels from each frame and append them to construct a
spatiotemporal image (or kymograph) that unwraps the whole experiment.
The horizontal axis on this unwrapped image therefore represents both
the time and the angular position on the cylinder. A mark on the cylinder
allows us to detect each full rotation of the cylinder such that we can crop
horizontally the full spatiotemporal image into multiple images, each repre-
senting one rotation. We finally resize horizontally each of these images to
recover the original aspect ratio (the width of each image is set to 2πR). This
treatment reconstructs an unwrapped image of the whole cylinder perime-
ter that shows all of the drops side by side for each cylinder rotation (SI
Appendix, Fig. S1C).

For the statistical analysis, pictures of the cured samples are taken with
a high-resolution camera while rotating the sample (one picture every 10◦)
to image a large number of drops/hairs. All our image analysis is done with
imageJ and Matlab.

Simulations. Two-dimensional axisymmetric finite-element simulations are
performed with the commercial software COMSOL 5.4. First, the initial

drop shape is computed by solving numerically the Young–Laplace equa-
tion with the appropriate boundary conditions (20) (Mathematica, shooting
method):

d2θ (s)

ds2
=
− cos θ (s)

`2
c

+
d

ds

[
cos θ (s)

r(s)

]
dz(s)

ds
= cos θ (s),

dr(s)

ds
= sin θ (s),

z(0) = 0, θ(0) =−π/2,

r(sf) = 0, θ(sf) =−π/2, z(sf) = h0.

[5]

Here, {r(s), z(s)} are the (cylindrical) coordinates of the drop surface, θ(s)
is the local angle that the tangent makes with the vertical, and s is the arc
length as defined in SI Appendix, Fig. S1B. The value of sf is a priori unknown
and is determined by the additional boundary condition.

The drop shapes are then imported in the FEM solver and a thin layer
of material (height 0.05`c, width π

√
2`c) is added below the drop to com-

plete the simulated geometry: a unit cell of our experimental drop lattice
including the thin film connecting the drops. We finally apply an effective

gravity jump geff = R
(

Ω2
2−Ω2

1

)
to the drop and solve for the static mechan-

ical equilibrium with an incompressible neo-Hookean hyperelastic material
model.

Data Availability. All study data are included in this article and/or SI
Appendix.
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