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Abstract

The tremendous and rapid technological advances that humans have achieved in the last decade 

have definitely impacted how surgical tasks are performed in the operating room (OR). As a high-

tech work environment, the contemporary OR has incorporated novel computational systems into 

the clinical workflow, aiming to optimize processes and support the surgical team. Artificial 

intelligence (AI) is increasingly important for surgical decision making to help address diverse 

sources of information, such as patient risk factors, anatomy, disease natural history, patient values 

and cost, and assist surgeons and patients to make better predictions regarding the consequences of 

surgical decisions. In this review, we discuss the current initiatives that are using AI in 

cardiothoracic surgery and surgical care in general. We also address the future of AI and how high-

tech ORs will leverage human-machine teaming to optimize performance and enhance patient 

safety.
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Artificial intelligence in surgery

The term artificial intelligence (AI) has a range of meanings, from specific forms of AI, such 

as machine learning, to the more far-fetched idea of AI that meets criteria for consciousness 

and sentience. AI systems range from those that seek to model human reasoning to solve a 

problem, to those that exclusively use large datasets to generate a framework to answer the 
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problem of interest, to those that attempt to incorporate elements of human reasoning but do 

not require accurate modeling of human processes. Machine learning (ML) is a family of 

statistical and mathematical modeling techniques that uses a variety of approaches to 

automatically learn and improve the prediction of a target state, without explicit 

programming (e.g. Boolean rules). Different methods, such as Bayesian networks, random 

forests, deep learning, and artificial neural networks, each use different assumptions and 

mathematical frameworks for data input, and learning occurs within the algorithm.1

AI is increasingly important for surgical decision making to help address diverse sources of 

information, such as patient risk factors, anatomy, disease natural history, patient values and 

cost, and assist surgeons and patients to make better predictions regarding the consequences 

of surgical decisions.2 For instance, a deep learning model was used to predict which 

individuals with treatment-resistant epilepsy would most likely benefit from surgery.1, 3 AI 

platforms can provide roadmaps to aid the surgical team in the operating room, reducing risk 

and making surgery safer.4, 5 In cardiothoracic surgery, previous studies have developed 

machine learning algorithms that can outperform standard operative risk scores in predicting 

intrahospital mortality after cardiac procedures.6

In addition to planning and decision making, AI may be applied to change surgical 

techniques. Remote-controlled robotic surgery has been shown to improve the safety of 

interventions where clinicians are exposed to high doses of ionizing radiation and make 

surgery possible in anatomic locations not otherwise reachable by human hands.7, 8 As 

autonomous robotic surgery improves, it is likely that surgeons will in some cases oversee 

the movements of robots.9

Surgical data science

With the emergence of novel technologies and their incorporation into the operating room 

(OR), alongside the enormous amount of data generated through patient surgical care, a new 

scientific discipline called surgical data science (SDS) was created. The main goal of SDS is 

to improve the quality of interventional healthcare and its value by capturing, organizing, 

processing and modeling data.10 Within SDS, complex data can emerge from different 

sources, such as patients; operators involved in delivering care; sensors for measuring patient 

and procedure-related data; and domain knowledge. Built upon SDS, promising applications 

of AI and ML have been developed with the ultimate goal of supporting surgical decision-

making and improving patient safety.11 Differently from more traditional data modeling 

approaches which are mostly based on regression techniques, SDS leverages machine 

learning techniques that can learn relationships between data features without much input 

from the human modeler. In unsupervised machine learning, for example, there are no pre-

existing labels/annotations, requiring minimum human supervision. Previous supervised and 

unsupervised machine learning techniques have been used to assess physician competence in 

a variety of settings.12

A good example of how SDS can be used for quality improvement initiatives is the OR 

black box system.13 This analytic platform allows the capture and integration of a wide 

variety of intraoperative data (e.g. audio, video, physiological parameters), enabling both 
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human- and AI-based metrics. Recent studies have been using this platform to investigate 

technical and non-technical surgical performance and their relationship with patient 

outcomes.14, 15 More recently, few studies have been able to demonstrate the feasibility and 

validity of machine learning algorithms to early predict intraoperative complications, such as 

hypotension and hypoxemia in both noncardiac5, 16 and cardiothoracic surgery.6, 17

Another data-driven application of AI in surgery concerns the assessment of intraoperative 

performance at both individual and team levels. Current gold standard assessments of 

intraoperative technical and non-technical skills are based on observation and rating by 

experts. Although these methods are widely used, there are many limitations related to the 

inherent subjectivity of these tools, suboptimal inter-rater reliability and limited 

reproducibility and scalability. The use of AI, especially computer vision, offers a promising 

opportunity to automate, standardize and scale performance assessment in surgery, including 

cardiothoracic surgery. Prior investigations have documented the reliability of video-based 

surgical motion analyses for assessing laparoscopic performance in the operating room as 

compared to the traditional time-intensive, human rater approach.18 Azari et al. compared 

expert surgeon’s rating assessments to computer-based assessments of technical skills (e.g. 
suturing, knot tying) including fluidity of motion, tissue handling and motion economy.19

Augmented cognition in the OR

The tremendous and rapid technological advances that humans have achieved in the last 

decade have definitely impacted how surgical tasks are performed in the OR. As a high-tech 

work environment, the contemporary OR has incorporated novel computational systems to 

the clinical workflow, aiming to optimize processes and support the surgical team.20 In 

addition to generating an enormous amount and variety of data, which can be used for 

developing predictive machine learning models, this complex computational-based 

environment has also enabled the augmentation of human cognition at both individual and 

team levels.21 In this high-tech OR, cognition is extended outside individuals’ minds 

throughout the entire surgical team, incorporating not only human agents but also non-

human systems that are involved during the course of surgery.

Cardiothoracic surgery is a perfect example of how AI can be used to support surgical care 

through cognitive augmentation. The cardiothoracic OR is a high-risk high-stakes 

environment, where multiple specialized professionals interact with each other, coordinate 

tasks as a team, and use a variety of equipment, technological devices and interfaces to 

effectively care for complex patients in need of surgical treatment.22 By functioning as a 

complex socio-technical system, the cardiothoracic team performs tasks in a coordinated 

way, requiring cognitive abilities that are beyond each individual team member’s 

performance. Since each team member in isolation does not have control of the team 

performance as a whole, cognitive activities are emergent processes of teamwork rather than 

individual tasks.23

Existing AI systems are able to collect, process and make sense of information gathered in 

the OR.24 However, an important requirement for these systems is the ability to understand 

and adapt their algorithms based on real-time contextual information, enabling them to 
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provide context-aware assistance.25, 26 Predictive accuracy is also important. In order to be 

able to support and guide team cognitive tasks, an AI system should anticipate future states 

by using past and current information from the OR’s human and non-human systems.27 In 

terms of cognitive augmentation in the OR, cognitive state monitoring and human activity 

recognition are essential features of an AI system. To monitor cognitive states at both 

individual and team levels, physiological metrics such as heart rate variability (HRV), 

electroencephalography (EEG) and near-infrared spectroscopy (NIRS) are the most used, 

since they allow real-time objective measures of cognitive load.28 Figure 1 displays the 

cardiac surgeon’s cognitive load, indexed by HRV (LF/HF ratio) during different steps of a 

cardiac procedure.

Computer vision in surgery

In the realm of human activity recognition, computer vision is a promising AI method that 

can be used for surgical task segmentation and team dynamics monitoring. To encompass all 

the advances and future potentials of the use of AI to enhance cognition in the OR, a new 

interdisciplinary field called “cognitive surgery” or “cognition-guided surgery” has recently 

been created.25 Computer vision is a branch of AI that extracts and processes data from 

images and videos and provides the machine understanding of this data.29 In several fields, 

computer vision technologies are able to achieve human-level performance, and in certain 

cases even exceed human abilities.29-31

In surgery, the main applications of computer vision are related to surgical workflow 

segmentation,32, 33 instrument recognition and detection,34 and image-guided surgical 

interventions.35 However, a new area for applying computer vision in the OR, especially in 

team-based complex procedures, such as cardiothoracic surgery, is in the understanding of 

individual and team behaviors. Other fields of medicine and psychology already are using 

automated body position and movement tracking to investigate human non-verbal behaviors.
36 In surgery, most of the applications of this technology involve tracking surgeon’s gestures 

and hands motion to extract objective metrics of technical psychomotor skills.37 However, 

recent studies have explored the use of position and motion data generated by computer 

vision applications to measure team dynamics and coordination in the OR. Team centrality 

and team proximity are examples of behavioral metrics investigated in these studies (Figure 

2).37-39

Autonomous robotic surgery

Robotic technology is going to change the face of surgery in the near future. Robots are 

expected to become the standard modality for many common procedures, including coronary 

bypass and abdominal surgery. Autonomous and semi-autonomous modes are increasingly 

being investigated and implemented in surgical procedures, automating various phases of the 

operation. The complexity of these tasks is also shifting from the low-level automation early 

medical robots to high-level autonomous features, such as complex endoscopic surgical 

manoeuvres and shared-control approaches in stabilized image-guided beating-heart surgery. 

Future progress will require a continuous interdisciplinary work, with breakthroughs such as 
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nanorobots entering the field. Autonomous robotic surgery is a fascinating field of research 

involving progress in artificial intelligence technology.9, 40

Machine-learning-empowered instrumentation for robotic-assisted surgery is the object of 

intense investigation. For ML surgical skill learning, expert knowledge is typically supplied 

by experienced surgeons. Implicit imitation learning is a form of supervised learning, which 

is usually concerned with accelerating reinforced learning through the observation of an 

expert mentor. The agent observes the state transitions of the experts’ actions and uses the 

information extracted from these observations to update its own states and actions. The 

mentor (surgeon) and the agent may have identical or different action capabilities, or 

identical or different reward structures. Several methods that have been developed for 

modeling human movement could be used to learn the state and actions of the expert. 

Human skill has been modeled from sets of recorded data using hidden Markov models, 

neural networks, and fuzzy nets.41

Human-machine teaming in the OR

As computational systems become ubiquitous, and our workplace is full of computer-based 

devices and networks, new forms of interaction, communication, and coordination have 

surged.42 The way computer-based systems are designed and operated in the cardiothoracic 

OR plays a critical role in workflow efficiency, clinicians’ cognitive load and, ultimately, 

surgical performance.22

When AI systems are integrated within a complex OR environment, the opportunity for 

human-machine teaming emerges, creating novel cognitive engineering opportunities that 

have the potential to enhance patient safety and improve clinical outcomes in complex team-

based surgery.

Conclusions

Recent research has aimed to develop intelligent machine teammates, developing innovative 

computational algorithms and expanding the use of human cognitive models for AI.43 This 

research has produced novel forms of human-machine teaming in healthcare applications, 

transportation, manufacturing assembly lines and defense.44, 45

In cardiac surgery, novel systems have been developed aiming to integrate clinicians’ 

physiological data, as a proxy for cognitive performance, with patient data and OR medical 

devices.46, 47 Some studies have attempted to optimize surgical coordination and team 

communication by using a data-driven approach that integrates human and non-human 

agents to enhance safety and mitigate errors in the cardiothoracic OR.48, 49
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Figure 1.—. 
Surgeon’s cognitive load as measured by the HRV parameter: low frequency (LF)/high 

frequency (HF) ratio captured by a wearable physiological sensor.
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Figure 2.—. 
Computer vision system extracting human body position and motion in the cardiac operating 

room.
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