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Abstract

In this work, a SEIR-type mathematical model of the COVID-19 outbreak was developed

that describes individuals in compartments by infection stage and age group. The model

assumes a close well-mixed community with no migrations. Infection rates and clinical and

epidemiological information govern the transitions between stages of the disease. The

impact of specific interventions (including the availability of critical care) on the outbreak

time course, the number of cases and the outcome of fatalities were evaluated. Data avail-

able from the COVID-19 outbreak from Spain as of mid-May 2020 was used. Key findings in

our model simulation results indicate that (i) universal social isolation measures appear

effective in reducing total fatalities only if they are strict and the number of daily interpersonal

contacts is reduced to very low numbers; (ii) selective isolation of only the elderly (at higher

fatality risk) appears almost as effective as universal isolation in reducing total fatalities but

at a possible lower economic and social impact; (iii) an increase in the number of critical

care capacity directly avoids fatalities; (iv) the use of personal protective equipment (PPE)

appears to be effective to dramatically reduce total fatalities when adopted extensively and

to a high degree; (v) extensive random testing of the population for more complete infection

recognition (accompanied by subsequent self-isolation of infected aware individuals) can

dramatically reduce the total fatalities only above a high percentage threshold that may not

be practically feasible.

Introduction

COVID-19 is the worst pandemic the world has seen in a century. The devastating conse-

quences of the pandemic, both in number of fatalities as in economic harm, have brought

unprecedented attention from nearly all fields. The large number of cases in a short period of

time have forced governments to implement interventions to slow the spread of the virus.

Such interventions consisted of the isolation of individuals (e.g. via curfews or full lockdowns,

the banning of people in public events (e.g. concerts, stadiums), the enforcement to use
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protective equipment masks in public places, the building of field hospitals and the implemen-

tation of mass testing and contact tracing among others.

Epidemic modelling has a long history [1–9], as the prediction of the course and possible

outcomes of a pandemic is crucial for society. The field has flourished during the pandemic

period, with several mathematical models for the COVID-19 disease published from March

2020 to date. Some of these modelling efforts have evaluated the evolution of the disease spread

in several countries such as in Italy [10, 11], France [12], Australia [13], the United Kingdom,

the United States [14, 15], Ukraine [16], India [17] or Africa [18]. Other modelling efforts have

focused on the earlier dynamics of transmission from initial cases, to the potential of the

implementation of interventions to limit the disease spread, such as international travel restric-

tions [19, 20], contact tracing and isolation of infected individuals at onset [21], the use of

masks [22], different scales of social distancing and isolation or the impact on the healthcare

system [23].

Other works have focused on the estimation and/or the understanding of fundamental

characteristics (i.e. potential model parameters) of the disease, such as the incubation period

[24], how the transmission might occur, as well as to assess short-term [25] and long term fore-

casts [26].

In this work a modified SEIR-type model that evaluates intervention scenarios for the

COVID-19 outbreak is presented. The model considers an approach based on the segregation

by age groups and known disease stages. The model aims at retaining mechanistic meaning of

all variables and parameters while capturing the relevant phenomena at play. The model aims

also at contributing to the understanding by broader audiences (researchers, public health

authorities, and the general public) of what to expect on the propagation of infectious diseases

and how specific interventions may help. The complexity level was intentionally limited to

maintain accessibility to non-experts and policy makers to comprehend the model results such

that expert advice and decision making can be brought closer together to help guide interven-

tions for immediate and longer-term needs.

Materials and methods

Model description

The model presented is based on balances of individuals, segregated by age group, transition-

ing between infection stages. All individuals are placed in a common single domain or com-

partment (e.g. a well-mixed city or town), no geographical clustering nor separation of any

type is considered, nor is any form of migration in or out of the community. Large cities with

ample use of public transportation are thought to be settings best described by the model.

The model also provides a direct estimation of the effective reproduction number(Rt) [27,

28] under different circumstances of individual characteristics (such as use of personal protec-

tion or awareness) as well as under population-based interventions (such as imposed social

isolation). The basic reproduction number (R0) provides an estimation of the number of cases

expected to be generated by one case in the population when all individuals are considered to

be susceptible [28, 29]. Rt however, provides the average number of secondary infections per

primary case at a given time [30] and it is used to evaluate the effectiveness of interventions

[31]. The ability to estimate the Rt for different times of the outbreak (given the interventions),

outbreak settings and interventions is considered to be a valuable characteristic of the model.

Rt is predicted to change over time with interventions not related to increased immunity (iso-

lation or use of personal protection equipment (PPE), as opposed to vaccination).

Model constituents. The model solves dynamic variables or states. Every individual

belongs, in addition to their age group (which she/he never leaves), to only one of the possible
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stages of the infection in terms of infectiousness and severity of symptoms, namely: healthy
susceptible (H); asymptomatic non-infectious (NI); asymptomatic infectious (AS); symptomatic
(S); in need of hospitalisation (SH); in need of critical care (SC); deceased (D) and recovered
immune (R).

Definitions of the model state variables are shown in Table 1. Each variable is a state vector

with the number of individuals in that stage per age group, which is defined per decade from

0–9 to 80+ year olds (9 age groups). Therefore, each state is a vector of dimensions 1x9, and

the total number of states is a matrix of dimensions 8x9. Note that vector variables and param-

eters are represented in bold font and scalar ones in regular font.

Fig 1 shows the population progress through stages as described in the model. An addi-

tional schematic representation of the model approach with the population groups considered

for the infection stages, rates of infection and transition between groups and showing possible

interactions between population groups is shown in S5 Fig in S1 File.

Rates of transition between infection stages. The transitions between stages are gov-

erned by the rates of infection and transition shown in Table 2. Notation is defined as ri,j,

where the individual moves from the compartment j to the compartment i.
The average rates of transition between states are defined such that the latest epidemiologi-

cal and clinical data can be used to determine and continuously update the parameters as

more knowledge of the disease emerges. These parameters include the proportion of individu-

als that transition to a more severe stage or recover (see Table 3) and the average times

reported at each stage before transition or recovery (see Table 4).

The rates of transition between stages healthy to critical (in number of individuals per day)

are described in Eqs 1.A–1.E. All rates are vectors per age group of dimensions (1x9). Note

that point operators between vectors indicate an operation element-by-element.

rni h ¼ ri as þ ri s ð1:AÞ

ras ni ¼ ðfas ni:=tas niÞ:� Nni ð1:BÞ

rs as ¼ ðfs as:=ts asÞ:� Nas ð1:CÞ

rsh s ¼ ðfsh s:=tsh sÞ:� Ns ð1:DÞ

rsc sh ¼ ðfsc sh:=tsc shÞ:� Nsh ð1:EÞ

Table 1. Model states in vectors (1x9) of number of individuals in each infection stage.

Definition “Number of individuals. . .” Variable Totals of all ages

Healthy susceptible to infection Nh NhT

Non-infectious asymptomatic Nni NniT

Infectious asymptomatic Nas NasT

Infectious symptomatic Ns NsT

Requiring hospitalisation Nsh NshT

Requiring critical care Nsc NscT

Deceased Nd NdT

Recovered & immune Nr NrT

https://doi.org/10.1371/journal.pone.0248243.t001
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The rates of individuals recovering from the different infected stages (in number of individ-

uals per day) are described in Eqs 2.A–2.E. (all rates in vectors per age group).

rr ni ¼ ðfr ni:=tr niÞ:� Nni ð2:AÞ

rr as ¼ ðfr as:=tr asÞ:� Nas ð2:BÞ

rr s ¼ ðfr s:=tr sÞ:� Ns ð2:CÞ

rr sh ¼ ðfr sh:=tr shÞ:� Nsh ð2:DÞ

rr sc ¼ ðfr sc:=tr scÞ:� Nsc ic ð2:EÞ

Fig 1. Schematic representation of the population compartments by infection stages and age. Only interactions between infectious individuals (both

asymptomatic and symptomatic) and healthy susceptible ones can increase the rate of infections.

https://doi.org/10.1371/journal.pone.0248243.g001

Table 2. Rates of infection and transition between states, vectors (1x9).

Definition “Rate of . . .” Variable Units

Infection by interaction with infectious asymptomatic ri_as # H infected/day

Infection by interaction with infectious symptomatic ri_s # H infected/day

Transition from non-infectious to infectious asymptomatic ras_ni # NI to AS / day

Transition from asymptomatic to symptomatic rs_as # AS to S / day

Transition from symptomatic to hospitalised rsh_s # S to SH / day

Transition from hospitalised to critical rsc_sh # SH to SC / day

Transition from critical to deceased rd_sc # SC to D / day

Recovery from asymptomatic non-infectious rr_ni # NI to R / day

Recovery from asymptomatic infectious rr_as # AS to R / day

Recovery from symptomatic rr_s # S to R / day

Recovery from hospitalised rr_sh # SH to R / day

Recovery from critical rr_sc # SC to R / day

https://doi.org/10.1371/journal.pone.0248243.t002
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The rate of transition from critical to deceased is the sum of that of those critical receiving

intensive care (rd_scic) plus that of those critical without available care (rd_scnc) as per Eqs 3.A–

3.C. All critical individuals not receiving intensive care (Nsc_ncc) are assumed to become fatali-

ties after a time (td_nc). The allocation of critical care is described below.

rd sc ¼ rd scic þ rd scnc ð3:AÞ

where rd scic ¼ ðfd sc:=td scÞ:� Nsc ic ð3:BÞ

rd scnc ¼ ð1:=td ncÞ:� Nsc ncc ð3:CÞ

Fig 2 provides a representation of the transition between stages, the proportions of individ-

uals recovering, or worsening are as per Fig 1.

Rates of infection. The infection of healthy susceptible individuals (H) is modelled as

occurring only via their interaction with infectious either asymptomatic (AS) or symptomatic

(S) individuals. Hospitalised (SH) and critical (SC) individuals are assumed not available for

interactions neither are those deceased (D).

Two rates of infection of healthy susceptible individuals (in number of infections per day)

are defined, one from each one of the two possible infecting groups (AS and S). The rates of

Table 3. Epidemiological parameters (all in vectors per age group).

Definition Parameter Units

Fraction of NI that will become AS fas_ni #AS/#NI

Fraction of AS that will become S fs_as #S/#AS

Fraction of S that will become SH fsh_s #SH/#S

Fraction of SH that will become SC fsc_sh #SC/#SH

Fraction of cared SC that will die into D fd_sc #D/#SCIC

Fraction of NI that will recover into R1 (1- fas_ni) fr_ni #R/#NI

Fraction of AS that will recover into R1 (1- fs_as) fr_as #R/#AS

Fraction of S that will recover into R1 (1- fsh_s) fr_s #R/#S

Fraction of SH that will recover into R1 (1- fsc_sh) fr_sh #R/#SH

Fraction of cared SC that will recover into R1 (1- fd_sc) fr_sc #R/#SCIC

1Calculated by difference with the complementary, not an input parameter.

https://doi.org/10.1371/journal.pone.0248243.t003

Table 4. Clinical average times in each infection stage (all in vectors per age group).

Definition Parameter Units

Time to become infectious tas_ni days

Time to develop symptoms from infectious ts_as days

Time to require hospitalisation from symptoms onset tsh_s days

Time to require critical care from hospitalisation tsc_sh days

Time to death from critical td_sc days

Time to death from critical with no care available td_nc days

Time to recover from asymptomatic non-infectious tr_ni days

Time to recover from asymptomatic infectious tr_as days

Time to recover from (non-severe) symptoms tr_s days

Time to recover from hospitalisation tr_sh days

Time to recover from critical tr_sc days

https://doi.org/10.1371/journal.pone.0248243.t004
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infection (in vectors per age group) result from the product of (i) the fraction of interactions

occurring with AS (or S) individuals among the total interactions (fias or fis) (Eqs 8.E and 8.F)

times (ii) the likelihood of contagion in an interaction with AS (or S) (pi_as or pi_s, Eqs 8.A and

8.B) (per age group), (iii) the average number of daily interpersonal contacts that H individuals

have (nih) and (iv) the number of H individuals themselves (per age group) (see Fig 3 and Eqs

4.A and 4.B).

ri as ¼ Nh:� nih� fias:� pi as; ð4:AÞ

ri s ¼ Nh:� nih� fis:� pi s; ð4:BÞ

Stage transition equations. The dynamic variation on the number of individuals in each

stage over time and per age group is governed by the population balance equations described

Fig 2. Schematic representation of the transitions rates between stages. Individuals spend in each stage an amount of time depending on their transition path towards

recovery or increased severity.

https://doi.org/10.1371/journal.pone.0248243.g002

Fig 3. Schematic representation of the terms of the infection rate.

https://doi.org/10.1371/journal.pone.0248243.g003
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in Eqs 5.A–5.H. (all in vectors by age group).

dNh=dt ¼ � rni h ð5:AÞ

dNni=dt ¼ rni h: � ras ni: � rr ni ð5:BÞ

dNas=dt ¼ ras h: � rs as: � rr as ð5:CÞ

dNs=dt ¼ rs as: � rsh s: � rr s ð5:DÞ

dNsh=dt ¼ rsh s: � rsc sh: � rr sh ð5:EÞ

dNsc=dt ¼ rsc sh: � rd sc: � rr sc ð5:FÞ

dNd=dt ¼ rd sc ð5:GÞ

dNr=dt ¼ rr as:þ rr s:þ rr sh:þ rr sc ð5:HÞ

The state transitions as governed by these rates are represented in a matrix form in S5a Fig

in S1 File.

Calculation of the effective reproduction number (Rt). The reproduction number refers

to the potential infection of susceptible individuals from infected individuals [29]. Since the

model produces, for each parameter set used, a set of values for its outputs over at any given

time, an instantaneous estimation of the reproduction number (Rt) is also obtained. Several

parameters and variables influence the Rt including the duration of infectious stages; the likeli-

hoods of infection per social contact as well as the percentages of individuals transitioning to

more severe stages.

The effective reproduction number (Rt) during the outbreak is computed over time accord-

ing to Eq 6 from the current values of the model state variables. Under this approach, infec-

tious individuals can only infect others while they are in asymptomatic (AS) and symptomatic

(S) stages. Although it has been speculated that post-symptomatic recovered individuals may

be infectious for some period of time, this has not been considered in the model at this time

due to lack of data. Hospitalised and critical individuals are assumed to be well isolated and

also not able to infect others. The provided dynamic output of the reproduction number Rt

can be used to guide and interpret the impact of interventions in terms of Rt.

Modelled infected individuals can take only three possible infectious paths, namely: (i) AS

! R; (ii) AS! S! R and (iii) AS! S! SH. These paths are made of combinations of four

possible infectious stage intervals in which infected individuals spend time and infect at their

corresponding rate (see Table 5).

The dynamic computation of Rt consists of adding the total infection contributions of every

stage interval as shown in Eq 6.

Rt ¼ S½ðri asT=NasTÞ� ðtr as:� fr as þ ts as:� ð1 � fr asÞÞþ

ðri sT=NsTÞ� ðtr s:� ð1 � fr asÞ:� fr s þ tsh s:� ð1 � fr asÞ:� ð1 � fr sÞÞ�
ð6Þ

in which, the age group weighted average rates of infection by AS and S are given as per Eqs 7.
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A and 7.B.

ri asT ¼ Sðri as :� NasÞ=NasTÞ ½infPS=indPS � d� ð7:AÞ

ri sT ¼ Sðri s :� NsÞ=NsTÞ ½infS=indS � d� ð7:BÞ

Model limitations. The model shares many of the fundamental characteristics of com-

partment SEIR-type models and is based on dynamic balances of individuals in compartments

classified by their stage of infection and age groups only. No other differentiation within those

groups is captured by the model. This characteristic allows for the model application only to

single, densely populated clusters. The model has a low complexity and requires a small num-

ber of parameters that are also mechanistic and meaningful. Most of these parameters can be

directly estimated from epidemiological and clinical data and are not recommended for cali-

bration against data. Analogous to all SEIR-type models this model carries limitations since all

variables and parameters refer to representative averages for each compartment of stage and

age group. This may limit the model representation of the non-linear interactions that occur

in reality. Phenomena like so-called super spread events or any location specific phenomena

are not reproduced by these types of models. Any quantitative interpretation of results for pre-

diction purposes should therefore be always accompanied by a critical discussion against these

limitations.

Table 5. Possible infectious stages intervals for Rt computation.

Infectious

interval

Fraction of infected passing the interval (indinterv/

indinf)

Interval duration

(d)

Total infections per stage interval per individual infected (infinterv/

indinf)

AS! R fr_as tr_as (ri_asT/ NasT)� tr_as.
� fr_as

AS! S (1 –fr_as) ts_as (ri_asT/ NasT)� ts_as.
� (1 –fr_as)

S! R (1 –fr_as)
� fr_s tr_s (ri_sT / NsT) � tr_s.

� (1 –fr_as).
� fr_s

S! SH (1 –fr_as)
� (1 –fr_s) tsh_s (ri_sT / NsT) � tsh_s.

� (1 –fr_as).
� (1 –fr_s)

https://doi.org/10.1371/journal.pone.0248243.t005

Table 6. Intervention parameters.

Definition Parameter Units

Average daily individual contacts by H nih #interactions / (H individual�day)

Personal protection and awareness by H1 lpah ;

Personal protection and awareness by PS1 lpaas ;

Personal protection and awareness by S1 lpas ;

Likelihood of infection by interaction with PS2 pi_as infections / interactions with AS

Likelihood of infection by interaction with S2 pi_s infections / interactions with S

Percentage of tested individuals from PS1 ptas #random (NI+AS) tested/#(H+NI+AS)

Percentage of tested individuals from S1 pts #random S tested/#S

Test sensitivity on AS tsns_as #AS detected / #AS tested

Test sensitivity on S tsns_s #S detected / #S tested

Reduction of interactions by unaware S1 rfis ;

1Values only within the interval [0,1]
2Calculated, not an input parameter.

https://doi.org/10.1371/journal.pone.0248243.t006
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Modelling interventions

The model presented above was used to evaluate different possible interventions to slow the

spread of the COVID-19 outbreak. Four main interventions that have been or may be applied

were evaluated namely (i) the degree of social isolation of the individuals in the population; (ii)

the level of personal protection and awareness that individuals apply to protect themselves and

others against contagion during interactions; (iii) the implementation of mass testing and (iv)

the intensive care capacity available. These interventions can be stratified by age groups. The

key parameters that define the interventions as modelled are described in Table 6.

Social isolation. The degree of social isolation is described through its impact on the

parameter (nih) (vector per age group) corresponding to the representative average number of

interpersonal contacts that healthy susceptible individuals have with others per day. Different

nih values can be applied to different age groups to describe age selective isolation strategies

such as e.g. isolation of the elderly and/or the young alone.

Level of protection and awareness. The level of protection and awareness describes the

use of personal and protective equipment (e.g. masks). The level of protection impacts the like-

lihood of infection (see Eq 4) and is described through the parameters (lpah) for healthy and

(lpaas and lpas) for infectious AS and S individuals (both in vectors per age group). Values of

the lpa parameters can vary between 0 and 1, with 1 corresponding to the use of complete pro-

tective measures and zero to no use of any protection equipment. Analogously to the nih

parameter, different values can be assigned per age group e.g. elders having a higher lpah value

due to being more prone to wearing masks compared to teenagers.

The likelihoods of infection per interaction are calculated as per Eqs 8.A and 8.B.

pi as ¼ ð1 � lpahÞ:� ð1 � lpaas
avÞ; ð8:AÞ

pi s ¼ ð1 � lpahÞ:� ð1 � lpas
avÞ; ð8:BÞ

where lpah reflects a level of protection and awareness related to interventions and defined

below; lpaas
av and lpas

av are scalars corresponding to the weighted averages over all age groups

of the pool of AS and S with which H individuals can interact (Eqs 8.C and 8.D).

lpaas
av ¼ SðNas:� lpaasÞ=NasT ð8:CÞ

lpas
av ¼ SðNs:� lpasÞ=NsT ð8:DÞ

where NasT and NsT are the total numbers of AS and S individuals of all ages respectively. The

S symbol indicates summation across all age groups.

Awareness of infection by mass testing. The awareness of infection after a positive test is

assumed to lead to a full quarantine and removes those individuals from regular interaction

with others. This awareness of infection is described through a reduction factor of interactions

(rfi). Symptomatic individuals are already assumed to have a self-imposed quarantine (rfis)

even if unaware of a positive test.

The fractions of individuals (without and with symptoms) aware of infection is therefore

equal to the product of the fraction of total individuals randomly tested from the entire popu-

lation (ptas for AS) and from the entire pool of individuals showing symptoms (pts for S) times

the corresponding test sensitivity (tsns_as and tsns_s respectively). Test sensitivity might differ

between each of the two groups (symptomatic and asymptomatic). In asymptomatic and mild

disease individuals tested, a sensitivity of the tests of 80% was assumed.

The fractions of infectious AS and S individuals that remain in interaction with others (fias

and fis) are therefore calculated as per Eqs 8.E and 8.F. Hospitalised, critical and deceased are
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considered excluded from the pool of interacting individuals.

fias ¼ S½ð1 � ptas� tsns asÞ� Nas�=S½Nh:þ Nni:þ ð1 � ptas� tsns asÞ� Nas:þ ð1

� pts� tsns sÞ� rfis:� NsÞ:þ Nr� ð8:EÞ

fis ¼ S½ð1 � pts� tsns sÞ� rfis:� NsÞ=S½Nh:þ Nni:þ ð1 � ptas� tsns asÞ� Nas:þ ð1

� pts� tsns sÞ� rfis:� NsÞ:þ Nr� ð8:FÞ

where pts is the proportion of symptomatic individuals tested (randomly) and ptas is the pro-

portion of randomly tested non-symptomatic individuals of all types. The parameters tsns_s

and tsns_as refer to the sensitivity of the tests for both groups, respectively. Table 3 shows the

definitions and units of all the parameters used in the modelling of interventions.

Critical care capacity. The impact of available critical care capacity is modelled by a spe-

cific function to allocate critically ill individuals as per the available ICU. The function allocates

critically ill individuals in two possible groups, namely those admitted to ICU (Nsc_ic) and

those not admitted to ICU due to lack of capacity or for other medical reasons (Nsc_ncc). At

each simulation time point the allocation function is computed for the total Nsc per age group.

The function allocates ICU resources with priority to age groups with higher ICU survival

rate (fr_sc) until the maximum number of intensive care units is reached leaving any remaining

individuals without care, in this way Nsc_ic and Nsc_ncc are computed.

As the COVID-19 outbreak has progressed, data indicate that not all patients in critical

condition have been admitted into intensive care units (ICU). Data show that many individu-

als with very poor prognosis, particularly those of oldest age may have never been referred to

ICU due to capacity limitations or other medical humanitarian reasons. This is based on data

from Spain as of May 2020 [32] showing that for individuals over 70, only a fraction of the

reported fatalities previously hospitalised was ever admitted. In order to maintain consistency

with the reported data as of May 2020 [32] the parameters of fd_sc and fsc_sh have been esti-

mated such that the product of fd_sc
� fsc_sh (fatality ratios over hospitalised individuals) is con-

sistent with reported numbers for all ages irrespective of reported ICU admissions.

Results and discussion

Impact of interventions on a COVID-19 outbreak case study

A case study based on a scenario of propagation of the COVID-19 pandemic using data avail-

able from Spain as of May 2020 [32, 33] is presented below. The results obtained are intended

to be interpreted qualitatively and to be contextualized to the specific setting characteristics.

They serve also as a demonstration of the model potential if applied with higher confidence

parameter values. Several selected scenarios were simulated aimed at illustrating the impact of

different interventions.

Default reference epidemiological and clinical parameter values were extracted from differ-

ent information sources on the COVID-19 outbreak as available in May 2020 [24, 32, 34, 35].

Details of values and sources are provided in S1 and S2 Tables in S1 File respectively, with indi-

cations of the level of confidence. A population with an age distribution as that of the region of

Madrid (Spain) in 2019 was used [36] for the simulations.

Default reference values for interventions-related parameters (number of interactions per

age group, level of protection awareness, and the isolation due to testing) were selected in

order to describe a situation prior to the outbreak and without any specific intervention (see

values and rationale in S3 Table in S1 File). The value for available intensive care beds per mil-

lion people (capICpM) of 261 has been used by default in all case studies. The dynamic
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simulation results of the default outbreak scenario under no intervention is shown in S4 Fig in

S1 File.

All scenarios are simulated for 365 days and evaluated in terms of (i) final total number of

fatalities at outbreak termination and (ii) final number of fatalities per age group. In addition,

the scenarios are presented also in terms of dynamic profiles over time for (iii) number of

active cases; (iv) reproduction number; (iv) number of critical cases; (v) number of fatalities.

Intervention #1. Social isolation. Under this scenario, the impact of the degree of social

isolation (nih) was evaluated by age brackets. Four cases are shown, namely (i) universal social

isolation, (ii) isolation for elders only (for individuals over 60 years old), (iii) isolation for

youngsters (below 20 years old), and (iv) isolation for both elders and youngsters (only people

20 years or older and younger than 60 years old were not isolated).

The comparison between the impacts of the four types of isolations is shown in Fig 4. For

the complete results of the four isolation intervention cases, please refer to the S1 File, Section

VI.

It appears that social isolation starts to be effective in terms of significantly reducing total

deaths after the number of daily contacts is placed below a threshold number (approximately

two to three daily contacts in this example). Above this number of contacts per day, it does not

appear to significantly modify the total final fatalities. This represents a decrease in number of

contacts from 70–80%, which falls in line with the observations reported in literature that

social distancing required over 80% to be effective [13].

Full details of the results shown in Fig 4 can be seen in (see S6 Fig in S1 File). The model is

capable of capturing the effect of the number of interactions partly due to its description of the

Fig 4. Impact of the degree of social isolation under the four different strategies (universal and per age groups) on the total number of fatalities at the end of the

outbreak (left) and on the maximum values of critically ill individuals ever reached during the outbreak (right). Numbers are as percentage of the total population.

https://doi.org/10.1371/journal.pone.0248243.g004
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saturation of the healthcare capacity. S6a Fig in S1 File (middle left) illustrates the “flatten the

curve” concept, now globally popular. In line with other publications [10, 11], if interactions

are not decreased, the number of cases grows rapidly and explosively. S6a Fig in S1 File (mid-

dle right) shows the estimate of Rt over time. This illustrates how the level of social isolation

can define the infectability and the number of cases each infected individual will infect (Rt)

showing how factors such as interventions can impact Rt. The number of critical cases

increases throughout time as the social interaction increases S6a Fig in S1 File (bottom left).

As shown in Fig 4, the selective social isolation of the elderly has a potentially very signifi-

cant impact on final total fatalities at an almost comparable level than for universal isolation.

This is consequence of the much higher mortality by the disease in the elder than in the youn-

ger (S1 Table in S1 File, Section I) [32]. This is a result with potentially significant conse-

quences as it indicates that a sustained isolation selective only to the elderly and not to the

other age groups could be applied for economic and social reasons at a small cost in number of

increased total fatalities. The isolation of the young individuals (< 20 years old) produces no

effect in the overall number of total fatalities. The detailed results of imposed social isolation

selective to age groups is shown in S6b-S6d Fig in S1 File.

Many of the early interventions during the COVID-19 outbreak started by isolating the

elderly and the young (no schools, no colleges, or universities for students), decreasing the

number of interactions of the two subpopulations substantially. The isolation of these popula-

tion groups together results in similar effects to that of the isolation of the elderly alone with

no significant added value in isolating the young respect only the elderly as shown in Fig 4.

Intervention #2. Level of protection and awareness. The impact of the level of self-pro-

tection and awareness was evaluated in this scenario. The parameter that describes this inter-

vention is the level of personal protection and awareness (lpa) of the healthy and infectious

population groups (lpah, lpaas and lpas) (see S3 Table in S1 File). Increases in these parameters

decrease the likelihood of infection per interaction (see Eqs 8.A and 8.B) and subsequently the

rates of infection (Eqs 4.A and 4.B). Fig 5 presents the main impacts of this intervention on the

total final fatalities and on the maximum number of critical cases. For the full descriptive

results, including the predictions of the effective reproduction number Rt, please refer to S7

Fig in S1 File, Section VII.

Fig 5 shows that high levels of protection and awareness appear as having a potentially

major impact, leading to a very significant reduction on total outbreak fatalities at the highest

levels of protection. This is in line of the substantial impact of the masks previously reported in

other models [22, 37], however in their case they point that even low protection of masks

might deem important decreases in number of cases. The height of the peak of critical cases

decreases the higher the level of protection is, Fig 5 (right). In addition, if the peak does not

exceed the critical care capacity (0.026% of the population), the total number of fatalities

reaches much smaller values. Although moderate values for the levels of protection and aware-

ness of 60% or lower decrease the speed of the outbreak they eventually yield the similar num-

ber of fatalities due to the exceeded ICU capacity.

Intervention #3. Awareness of infection by testing. The impact of widespread extensive

random testing was evaluated in this scenario. Fig 6 shows the comparison of the impact of

testing only symptomatic individuals, testing randomly only the non-symptomatic population

(therefore the same fraction of asymptomatic) and testing everyone both with and without

symptoms.

Only when both symptomatic and asymptomatic groups are extensively tested to levels

allowing for a detection of near 90% of total infections, a meaningful impact is predicted. The

current test sensitivities (around 80%) imply that even at 100% of population tested those high

levels of detections required will be unachievable and a large number of infections will remain
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undetected. Therefore, the intervention appears to be ineffective if only applied by itself (for

the complete simulation results of the impact of this intervention, please refer to S8a-S8c Fig in

S1 File, Section VIII). The number of fatalities (and also number of cases) could be decreased

substantially only when mass testing is combined with other interventions (social isolation,

increased level of protection and/or increase in ICU beds) [11]. In addition, Fig 6 shows clearly

that testing only symptomatic individuals leads to barely no impact at all. The results show

that extensive testing as a sole strategy (not combined with other interventions such as social

isolation, higher lpa and increase in ICU beds) appears as unfeasible to decrease the number of

fatalities due to the high percentage of detections, sustained over time, required.

Intervention #4. Critical care capacity. The impact of the availability of intensive care

beds was evaluated in this scenario. The parameter that describes this intervention is the number

of available intensive care beds per million population. Fig 7 illustrates the model predictions for

this scenario, in terms of total final fatalities and numbers of critical cases over time. Note that

once the ICU beds capacity is exceeded the critically ill patients become fatalities in one day.

From Fig 7 (for more complete details, refer to S9 Fig in S1 File, Section IX), the large

impact that the increase in critical care resources can have in decreasing total fatalities

becomes evident. The higher the availability of critical beds, the lower number of fatalities.

These appears to be in accordance with the interventions in several countries for building field

hospitals [38]. The trend applies until there is no shortage of IC beds and all remaining fatali-

ties are only the unavoidable ones. This intervention avoids those deaths that are preventable

by the availability of critical care support for those that need it.

Conclusions

The impact of specific interventions on the outbreak time course, number of cases and out-

come of fatalities were evaluated. Data available from Spain for the COVID-19 outbreak as of

Fig 5. Impact of the levels of protection and awareness on the total number of fatalities at the end of the outbreak (left) and on the maximum values of critically

ill individuals ever reached during the outbreak (right). Numbers are as percentage of the total population.

https://doi.org/10.1371/journal.pone.0248243.g005
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Fig 6. Impact of the infection detection level (product of the proportion of individuals tested times the test the sensitivity, 80%) for symptomatic alone,

asymptomatic alone and for both. The impact on the total number of fatalities at the end of the outbreak (left) and on the maximum values of critically ill individuals

ever reached during the outbreak (right) are shown. Numbers are as percentage of the total population.

https://doi.org/10.1371/journal.pone.0248243.g006

Fig 7. Impact of the availability of intensive care beds on the final number of fatalities total and also per age group (left) as well as for the different time course

profiles of the number of critical cases (right). Numbers are in percentage of the total population of all ages.

https://doi.org/10.1371/journal.pone.0248243.g007
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May 2020 was used. Our results on the impact and mechanisms of the various interventions

indicate that:

1. Universal social isolation measures may be effective in reducing total fatalities only if they

are strict and the average number of daily social interactions is reduced below a low thresh-

old number.

2. Selective isolation of only the age groups most vulnerable to the disease (i.e. older than 60)

appears almost as effective as the universal isolation in reducing total fatalities but at a pos-

sible much lower economic damage. The compared impacts of different social isolation

interventions on the final total number of fatalities (Fig 4, left) shows that the isolation of

only the elderly can achieve equivalent impact to that of all.

3. An increase in the number of critical care beds could save a significant number of lives.

Using our current parameters values, an estimate of 8 fatalities could be avoided per extra

available critical care bed unit.

4. The use of protective equipment (PPE) appears capable of reducing very significantly the

total fatalities if implemented extensively and to a high degree.

5. Extensive random testing of the population leading to isolation of the infected individuals,

appears to be an ineffective intervention (if applied only by itself) due to the required

(unreachable with existing test sensitivities) high percentage of infection detections and the

logistic difficulty for its maintenance over time.

Any quantitative interpretation of the above results must be accompanied with a critical

discussion in terms of the model limitations and its frame of application. The sensitivity analy-

ses provided can be used to help such analysis.

Supporting information

S1 File. The Matlab1 source code and Excel file containing all parameter values used as

well as a non-age segregated version of the model are available at https://github.com/

EnvBioProM/COVID_Model.

(PDF)
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