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Systolic and diastolic myocardial dysfunction has been demonstrated to be associated with an activation of the circulating and local renin–angio-
tensin–aldosterone system (RAAS), and with a subsequent inappropriately increased production of reactive oxygen species (ROS). While, at
low concentrations, ROS modulate important physiological functions through changes in cellular signalling and gene expression, overproduc-
tion of ROS may adversely alter cardiac mechanics, leading to further worsening of systolic and diastolic function. In addition, vascular endo-
thelial dysfunction due to uncoupling of the nitric oxide synthase, activation of vascular and phagocytic membrane oxidases or mitochondrial
oxidative stress may lead to increased vascular stiffness, further compromising cardiac performance in afterload-dependent hearts. In the
present review, we address the potential role of ROS in the pathophysiology of myocardial and vascular dysfunction in heart failure (HF)
and their therapeutic targeting. We discuss possible mechanisms underlying the failure of antioxidant vitamins in improving patients’ prognosis,
the impact of angiotensin-converting enzyme inhibitors or AT1 receptor blockers on oxidative stress, and the mechanism of the benefit of
combination of hydralazine/isosorbide dinitrate. Further, we provide evidence supporting the existence of differences in the pathophysiology
of HF with preserved vs. reduced ejection fraction and whether targeting mitochondrial ROS might be a particularly interesting therapeutic
option for patients with preserved ejection fraction.
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Introduction
Heart failure (HF) is the leading cause of morbidity and mortality in
industrialized countries with direct and indirect costs in 2012 across
the globe of $108 billion per annum,1 making this condition among
the most resource-intensive. Since the incidence of HF increases
with age, demographic trends in the world indicate that HF hospita-
lizations are likely to increase worldwide.

Traditionally, HF has been viewed as a consequence of a reduced
ejection fraction (i.e. HF with reduced ejection fraction; HF-rEF) re-
sulting from myocardial infarction (MI), valve disease, arterial hyper-
tension, myocarditis, or other structural or myocardial diseases.
More recently, following an improved understanding of cardiac dy-
namics, it has become clear that �50% of patients present with
symptoms of HF that are due to diastolic dysfunction despite

preserved systolic function (HF with preserved ejection fraction;
HF-pEF). Although the prognosis of HF-pEF is apparently less severe
than HF-rEF,2 the preserved ejection fraction variety of HF is asso-
ciated with significant mortality and morbidity early after the first
diagnosis (Figure 1).

The classic clinical syndrome of HF is characterized by fluid reten-
tion leading to pulmonary congestion and peripheral oedema (back-
ward failure) and by low cardiac output (forward failure), that
combined may cause a severe limitation of exercise capacity. The
major pathophysiological cause for HF-rEF is coronary artery dis-
ease and myocardial infarction (MI). Following MI, the non-infarcted
areas of the heart adapt to the increased wall stress, a process
known as cardiac remodelling which involves changes in the struc-
ture and function of cardiac myocytes as well as the extracellular
matrix in the non-infarcted myocardium. The main mechanisms
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involved in these adaptive changes involve the activation of the sym-
pathetic nervous system and the renin–angiotensin–aldosterone
system (RAAS), which both drive maladaptive ventricular remodel-
ling that produce the HF-rEF phenotype of the failing myocardium.

Notably, activation of the sympathetic nervous system and the
RAAS both are associated with increased production of reactive
oxygen species (ROS) in cardiovascular tissues. Increased ROS pro-
duction, in turn, can result in excess oxidative stress, manifest as
protein oxidation, lipid peroxidation, and DNA damage, that may
contribute to cellular dysfunction. Indeed, a growing body of evi-
dence supports the concept that myocardial systolic and diastolic
dysfunction, as well as vascular/endothelial dysfunction, may at least,
in part, be a consequence of this increased oxidative stress.

With the present review we wish to introduce the reader first to
the complex free radical chemistry, discuss the enzymatic ROS
sources that are active in the presence of systolic and diastolic HF
and vascular dysfunction, their pathophysiological consequences
with respect to the contraction and relaxation of the myocardium
and to vascular stiffness and their therapeutic targeting. We will
also discuss whether increased oxidative stress in HF-pEF has a dif-
ferent pathophysiology compared with HF-rEF and whether target-
ing mitochondrial ROS might be a particularly interesting option for
patients with HF-pEF.

Free radical chemistry
Reactive oxygen species are oxygen-based chemical species that are
able to react rapidly with molecules such as cellular lipids, proteins,
and nucleic acids. They comprise a group of highly reactive mole-
cules including the free radicals superoxide (O2

·2), hydroxyl radical
(·OH), but also non-radical species such as hydrogen peroxide
(H2O2) and hypochlorite (OCl2). Superoxide is readily produced
by reaction of excess electrons with molecular oxygen, and thus
can be considered as a ‘primary’ ROS that with additional acquisition

of electrons (reduction), gives rise to the formation of other ROS
such as H2O2 and ·OH.

One means whereby superoxide can facilitate subsequent ROS
generation is by reacting with Fe3+ to generate Fe2+. This reduced
form of iron can then react with H2O2 in the so-called Fenton reac-
tion to produce ·OH (Figure 2). The combined reactions of O2

·2 and
H2O2 to generate ·OH in the presence of iron is known as the
Haber–Weiss reaction (see Figure 2). Superoxide can also produce
other ROS via its interaction with nitric oxide (·NO). When the two
species are formed simultaneously, these two radicals will react with
each other at a diffusion-limited rate to form peroxynitrite
(ONOO2), a highly reactive intermediate that has important conse-
quences for vascular tone and, as a consequence, ventricular after-
load. For example, peroxynitrite produces tyrosine nitration of the
prostacyclin synthase that leads to an inhibition of the vasodilator
PGI2.

3 Similarly, ONOO2 can react with and inhibit the activity of
the .NO target enzyme, soluble guanylyl cyclase.4 Finally, peroxyni-
trite oxidizes tetrahydrobiopterin, an important cofactor for the
endothelial nitric oxide synthase (eNOS), thereby impairing endo-
thelial ·NO production and even facilitating ROS production from
eNOS, a phenomenon known as eNOS uncoupling.5 Collectively,
these consequences of ROS production can increase vascular
tone resulting in reduced cardiac output and increased myocardial
oxygen demand—deleterious effects that can exacerbate the
clinical syndrome of HF.

Multiple antioxidant defence systems are in place to limit
the damage of inappropriate ROS production. These include both
non-enzymatic and enzymatic systems. The former consist mainly
of antioxidants such as glutathione, vitamins C and E, bilirubin, uric
acid, and beta carotene. The enzymatic systems include superoxide
dismutase (SOD), catalase, peroxiredoxin (Prx), glutathione peroxid-
ase (GPx), and thioredoxin (Trx). These antioxidant defence systems
can become overwhelmed under certain circumstances and disease

Figure 1 Mortality for patients with heart failure with preserved
ejection fraction and heart failure with reduced ejection fraction
adjusted for age, gender, aetiology of heart failure, hypertension,
diabetes, and atrial fibrillation (with permission from ref.2).
Copyright & 2012 Oxford University Press.

Figure 2 Superoxide (O2
·2) is produced from molecular oxygen

(O2) and may react with nitric oxide (·NO) to form peroxynitrite
(ONOO2), thereby reducing the bioavailability of nitric oxide.
Alternatively, superoxide may be dismutated by superoxide
dismutases (SODs) to form hydrogen peroxide (H2O2), which is
either degraded to water by catalases (CAT) and glutathione per-
oxidases (GPx), or reacts with free ferrous iron (Fe2+), generated
by superoxide from ferric iron (Fe3+), to form hydroxyl radical
(·OH) in the Fenton reaction, one of the most reactive species
in biological systems. The entire reaction cycle is called the
Haber–Weiss reaction or cycle.
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states characterized by persistently high levels of ROS. Indeed, exces-
sive ROS formation can deplete the low-molecular-weight antioxi-
dants and peroxynitrite, in particular, is known to inactivate
important antioxidant enzymes such as the mitochondrial MnSOD
(by nitration and dityrosine formation)6,7 and thiol-based antioxidant
enzymes (by sulfoxidation). In fact, one can find increased 3-
nitrotyrosine formation, a marker of excessive peroxynitrite gener-
ation in vivo, in the setting of inflammatory,8 cardiovascular,9 and
neurodegenerative diseases.10

In general, there is a delicate balance between ROS formation and
the inactivation of ROS via the antioxidant systems. Several ROS,
particularly H2O2, are known to serve as local signalling mole-
cules,11,12 thus completely quenching ROS could have important ad-
verse consequences via interruption of normal signalling cascades. It
is thought that ROS are best suited for compartmentalized signalling
and antioxidant defence systems may prevent their ‘leaking’ to un-
wanted areas resulting in cellular damage.13 When a certain thresh-
old of ROS formation and impaired ROS degradation is reached,
redox signalling may be overcome by oxidative stress and the cell
can accumulate oxidatively modified structures (e.g. proteins,
DNA, lipids)14 leading to disease states.

Enzymatic reactive oxygen species
sources in the myocardium and the
vasculature
A growing body of evidence suggests that in the setting of HF, ROS
production within the myocardium and the vasculature is substan-
tially increased.15 –19 This has been shown for several animal models
of HF but also for patients with systolic and diastolic dysfunction and
clinical signs of congestive HF. Various sources of ROS, all interact-
ing with each other, were identified in HF (Figure 3).

Mitochondria
In mitochondria, the Krebs cycle generates NADH and FADH2

which donate electrons to the electron transport chain (ETC)
(Figure 4). Through sequential redox reactions along the respiratory
chain, a proton gradient is formed, which drives ATP production.20

In the heart, the ATP pool of a cardiac myocyte is consumed in
less than a minute, and in situations of exertion, cardiac output
(and thus, ATP consumption) can be increased several fold.21,22

Thus, matching ATP supply to demand is critical for normal cardiac
myocyte function. One mechanism for ATP supply in the setting of
increased demand (e.g. b-adrenergic stimulation) is an accelerated
regeneration of oxidized NAD+ to reduced NADH by increasing
the amplitude and frequency of cytosolic Ca2+ transients and mito-
chondrial uptake of Ca2+,23 which in turn activates key dehydro-
genases of the Krebs cycle. Thus, typical variations in ATP
demand and supply involve considerable modulation of oxidative
phosphorylation and mitochondrial activity.

Depending on the respiratory state of the cell, between 0.2 and
2% of electrons can escape the respiratory chain to interact with
oxygen thereby non-enzymatically generating O2

·2 during oxidative
phosphorylation. In mitochondria, much of this superoxide is dismu-
tated to H2O2 by Mn-SOD24 and the resulting hydrogen peroxide
eliminated by glutathione peroxidase and peroxiredoxin. Notably,
these antioxidant processes also require reduced NADPH.25,26

In summary, mitochondrial Ca2+ uptake is not only important
to match ATP supply to demand (via NADH),27 but also to re-
generate the antioxidant capacity in the mitochondrial matrix
(via NADPH).28

Unlike normal cardiac function, studies in HF identified increased
O2

·2 generation from complex I of the respiratory chain, which con-
sequently lead to excessive formation of H2O2 and ·OH29,30 as well
as consumption of NAD(P)H. Further work suggested that excess
ROS could lead to a feedforward cycle. In this scenario, ROS
produced damage to mitochondrial DNA that lead to either down-
regulation (and/or mismatched stoichiometry) of respiratory com-
plexes that exhibited reduced respiratory coupling and enhanced
electron leakage from the respiratory chain to elevate ROS
production.31

Besides these changes in ROS production, an increase in mito-
chondrial ROS emission might result from the pathological remod-
elling of cytosolic and mitochondrial ion handling that are
hallmarks of HF.25 During a cardiac action potential, Ca2+ enters
myocytes triggering further release of Ca2+ from the sarcoplasmic
reticulum (SR) and allowing contraction of the myofilaments. In
HF, the dysfunction of the SR Ca2+ ATPase (SERCA2a) and an in-
creased leak of Ca2+ from the SR via ryanodine receptors lead to a
slowed kinetics of Ca2+ decay in the cytoplasm of myocytes and,
therefore, to an impaired relaxation of the cardiac muscle during
diastole. To compensate for the slowed uptake of Ca2+ into the
SR, the expression and activity of the sarcolemmal Na+–Ca2+ ex-
changer are up-regulated, resulting however in an increased cyto-
solic Na+ concentration.32 – 36

These changes in ionic homeostasis affect excitation–contraction
coupling and have adverse effects on mitochondrial Ca2+ handling.
Further, they affect mitochondrial energetics and ROS production
through a reduced mitochondrial Ca2+ uptake and accelerated

Figure 3 Enzymatic superoxide sources in heart failure.
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Figure 4 Interplay between excitation–contraction (EC) coupling, mitochondrial redox state, and oxidative stress in normal and failing hearts.
The Krebs cycle produces NADH, which donates electrons (e2) to the electron transport chain (ETC) to promote proton (H+) translocation
across the inner mitochondrial membrane (IMM). The proton gradient (DpH) is harnessed by the F1Fo ATP synthase to generate ATP. Superoxide
anion radicals (·O2

2) are produced at the ETC and dismutated to hydrogen peroxide (H2O2) by Mn2+-dependent superoxide dismutase (SOD).
Hydrogen peroxide is eliminated by enzymes requiring NADPH (i.e. glutathione peroxidase, GPX; and peroxiredoxin, PRX). Reduced form of
NADP is regenerated by enzymes facilitating products of the Krebs cycle (i.e. isocitrate dehydrogenase, IDH; malic enzyme, MDH; and transhy-
drogenase, THG). Ca2+ is taken up into mitochondria via a Ca2+ uniporter (MCU) and stimulates key enzymes of the Krebs cycle. Ca2+ is ex-
ported from mitochondria via a Na+/Ca2+ exchanger (NCLX). During EC coupling, Ca2+ is released from the SR via ryanodine receptors (RyR),
and due to the close vicinity of the SR to mitochondria, a mitochondrial Ca2+ microdomain with very high Ca2+ concentrations facilitates Ca2+

uptake into mitochondria. Mitochondrial Ca2+ uptake during increased physiological workload (i.e. during b-adrenergic stimulation) regenerates
NADH and NADPH to match ATP supply to demand (through NADH) and regenerate the antioxidative capacity (through NADPH). In heart
failure, decreased SR Ca2+ release and increased cytosolic Na+ (in part related to an increased late Na+ current, late INa) impairs mitochondrial
Ca2+ uptake, which oxidizes NADH and NADPH and thus, provokes energetic deficit and oxidative stress (all changes in heart failure are marked
with red arrows). This oxidizes Ca2+/Calmodulin-dependent protein kinase II (CaMKII) which in turn phosphorylates RyRs, thereby increasing SR
Ca2+ leak, and also increases late INa, setting in motion a positive feedback loop of impaired EC coupling with contractile dysfunction and arrhyth-
mias, impaired mitochondrial energetics and oxidative stress. Furthermore, CaMKII phosphorylates histone deacetylase 4 (HDAC4), which pro-
motes cardiac hypertrophy through activation of pro-hypertrophic genes in the nucleus. Potential points of intervention in patients with heart
failure are late INa (by ranolazine), improving SR Ca2+ ATPase (SERCA) activity through gene therapy, or by ameliorating mitochondrial ROS emis-
sion by Bendavia (SS-31) or MitoQ. GSH, glutathione; TRX, thioredoxin; DCm, mitochondrial membrane potential. NCX, Na+/Ca2+ exchanger;
NKA, Na+/K+ ATPase; NHE, Na+/H+ exchanger; OMM, outer mitochondrial membrane.
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Ca2+ extrusion via the mitochondrial Na+/Ca2+ exchanger.23,28,37

The decreased Ca2+ concentration hampers Krebs cycle activation
and accounts for oxidation of NADH and NADPH, which may con-
tribute to both an energetic deficit and oxidative stress.28,38 Show-
ing the importance of the maladaptive up-regulation of the Na–Ca
exchanger in the pathophysiology of HF, pharmacological inhibition
of this enzyme has been shown to restore mitochondrial Ca2+ le-
vels, reducing mitochondrial ROS emission and improving remodel-
ling in an animal model of HF.39 Taken together, the changes in
cytoplasmic Ca2+ handling may result in perturbations of mitochon-
drial Ca2+ and Na+, which in turn limit NADH and NADPH levels
needed for antioxidant activity thereby producing a pro-oxidative
shift in the redox state of the mitochondrial matrix and an increased
mitochondrial ROS emission.25

Since several ion handling proteins are redox-regulated, oxidative
stress can further impact excitation–contraction coupling either
directly or through the activation of so-called stress kinases, which
may contribute to contractile dysfunction and arrhythmias.40 A key
mediator in this respect is the Ca2+/calmodulin-dependent protein
kinase II (CaMKII), a central regulator of proteins involved in excita-
tion–contraction coupling. The expression and activity of the CaM-
KII are up-regulated in HF and thought to account for many
pathological changes in the failing heart.40 CaMKII is activated by oxi-
dation41 resulting in an increase in late INa as well as an increase in
the open probability of ryanodine receptors that can initiate a feed-
forward mechanism of decreased sarcoplasmic Ca2+ load and re-
lease, elevated [Na+]i, mitochondrial ROS emission, and CaMKII
activation.42 Similar changes may result from ROS-mediated oxida-
tive activation or inhibition of membrane ion transporters.40 Other
than Ca2+ handling, ROS have been shown to have important impli-
cations for contractile myofilaments as their Ca2+ sensitivity and
elasticity are subject to redox modifications by reactions with titin
and other proteins.43,44

Besides affecting excitation– contraction coupling, ROS are
also known to contribute to maladaptive structural remodelling
of the left ventricle through activation of CaMKII, HDAC4 and
various mitogen-activated protein kinase pathways.41,45,46 Finally,
ROS are critical activators of the mitochondrial permeability tran-
sition pore, inducing apoptosis and/or necrosis.47 Murine models
of HF suggest that apoptosis may have an important role in deter-
mining the transition to dilated cardiomyopathy.48 Thus, consider-
able evidence indicates that HF-rEF involves disturbances
of cytosolic and mitochondrial ion handling that may account for
an increase in mitochondrial ROS levels that has important
implications for excitation–contraction coupling, leading to fur-
ther impairments in myocardial contractility, energetics, and oxi-
dative stress.

Evidence for mitochondrial ROS formation in HF comes from
experimental work in animals with pressure overload-induced
left- and right-ventricular failure.49,50 In fact, recent experimental
studies implicate mitochondrial ROS production as a causal feature
of pressure-overload and also angiotensin II-induced systolic
or diastolic HF.51 – 53 In these models, mitochondria-targeted
antioxidants14,19,54,55 have been shown to prevent HF and cardio-
myocyte dysfunction. Collectively, these studies suggested that
mitochondria appear to integrate and even amplify ROS signalling
from other non-mitochondrial sources in the cell.19 In the following

paragraphs, we will focus on other ROS sources and the interplay
between ROS sources in various cell types.

NADPH oxidase
This enzyme was initially described in inflammatory cells like neutro-
phils and macrophages (phagocytic NADPH oxidase) but is known
to also exist as seven distinct isoforms that each have distinct tissue
distributions. In the cardiovascular system, specific isoforms have
been demonstrated in endothelial, smooth muscle, and adventitial
cells (vascular NADPH oxidase)56–59 as well as cardiac myocytes60

and NADPH oxidase activity is increased in failing human hearts.16,61

Thus, vascular and myocardial tissue contain isoforms of the
NADPH oxidase, suggesting that they could be involved in the regu-
lation of cardiac function.

Over the last decade, evidence indicates that specific isoforms
of the NADPH oxidase family have important roles in both the
physiology and pathophysiology of the heart. Myocardial cells ex-
posed to physiological stretch activate the sarcolemmal and
t-tubule-localized Nox2 NADPH isoform to produce ROS in a pro-
cess that requires intact microtubules (known as X-ROS signalling).
Localized ROS, in turn, sensitize nearby ryanodine receptors in the
SR to produce increased Ca2+ entry in the cytoplasm.62,63 This pro-
cess is called mechano-chemotransduction and also appears to in-
volve nitric oxide synthase as well as Ca2+/calmodulin-dependent
protein kinase II (CaMKII),63 raising the possibility that peroxynitrite
and methionine oxidation are also involved.64

There is also evidence that Nox2 could be a target of therapy in
HF. In murine models of ischaemic HF, genetic deletion of the Nox2
accessory protein, p47phox, improved infarct area and survival,65

whereas gene therapy with Nox2–siRNA in nanoparticles im-
proved cardiac function.66 Whether the vascular or the phagocytic
NADPH oxidase located in inflammatory cells prevail in determin-
ing the favourable impact of Nox2 inhibition in ischaemia-induced
HF remains unclear. In vascular models of oxidative stress, such as
angiotensin II infusion,67,68 however, depletion of inflammatory cells
attenuates some features of oxidative stress such as endothelial dys-
function, vascular ROS formation, and also arterial hypertension.68

Thus, it is tempting to speculate that inhibition of the phagocytic
NADPH oxidase may also have ameliorative effects on HF, but
this remains to be investigated.18

The Nox4 isoform of NADPH oxidase has also been described in
the myocardium. In contrast to Nox2, Nox4 is an unusual enzyme
isoform as it does not require any regulatory subunits and it constitu-
tively produces H2O2 rather than superoxide. In the cell, it is located
in the endoplasmic reticulum and perhaps, also in the mitochon-
dria.69 – 71 Stimuli that activate Nox4 include ischaemia, hypoxia,
and adrenergic stimuli, all present and enhanced in the setting of
HF. The implications of Nox4 for HF syndromes are not yet clear,
but evidence exists for some beneficial as well as negative effects.
For example, mice lacking cardiac Nox4 were shown to either exhibit
reduced or aggravated maladaptive remodelling in pressure
overload-induced HF72 are sensitized to ischaemic myocardial
injury,73 perhaps through reductive stress and down-regulation of
stress–response pathways such as HIF-1a.73,74 Since Nox4 is also
known to promote angiogenesis, its absence in the myocardium could
lead to capillary rarefaction and sensitivity to ischaemic injury.75
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Crosstalk between mitochondria and the
NADPH oxidase
A crosstalk between mitochondria and NADPH oxidases via ROS
signalling appears to be of utmost importance for the cardiovascu-
lar system.76,77 The release of ROS from the mitochondria into
the cytosol may trigger further ROS-induced ROS production
mediated by the activation of diverse ‘redox-switches’ within
the cell (Figure 5). For example, oxidation of thiol residues in xan-
thine dehydrogenase promote conversion to its ROS-generating
oxidase form78 and oxidative events promote the uncoupling of
NO synthase via multiple mechanisms including redox-sensitive
kinases, BH4 depletion, and disruption of the enzyme zinc-sulfur
complex (summarized in ref.76). These mechanisms may be in-
itiated by the ‘escape’ of mtROS that may occur in a burst-like
fashion as a consequence of increased membrane permeability
(summarized in refs.25,77), under de-energized conditions in the
failing heart.

Conversely, we also know that NADPH oxidase-derived ROS
can augment ambient mitochondrial ROS levels via stimulation of
ROS production (Figure 5) or simply by depletion of mitochondrial
antioxidant systems (e.g. NADH/NADPH). Through this self-
amplificating mechanism, focal cytosolic ROS production may be
extended across the entire cellular mitochondrial network.79 – 81

This mechanism may be particularly relevant in HF-pEF, since in a
mouse model in which chronic angiotensin II infusion (a canonical
Nox2 activator) induced diastolic (but not systolic) dysfunction
and fibrosis, and this was completely ablated by mitochondrial over-
expression of catalase or a mitochondria-targeted peptide (SS-31;
see also below).19,52

Uncoupled endothelial nitric oxide
synthase
Heart failure is associated with endothelial dysfunction,82 an abnor-
mality that can be corrected with oral or intra-arterial administra-
tion of vitamin C,83 suggesting a role for oxidative stress in this
phenomenon. Preclinical studies with experimental animal models
of HF (both dilated cardiomyopathy and myocardial infarction) re-
veal both vascular and myocardial ROS production is up-regulated
in these settings.84,85 Further, inhibition of eNOS resulted in a de-
crease in ROS, demonstrating the existence of an uncoupled en-
zyme state where ·NO production was replaced by superoxide
production.84 Similarly, several other enzymes downstream in the
NO cascade (e.g. soluble guanylyl cyclase or cGMP-dependent
kinase I) were also inhibited. Thus, ·NO bioactivity was impaired
and appeared related to activation of the RAAS, as inhibition with
either captopril or the AT1 receptor blocker irbesartan improved
the phenotype.85 Collectively, these findings emphasize the role
of the activated RAAS in the vascular abnormalities encountered
in the setting of HF.

Xanthine oxidase and reactive oxygen
species production in heart failure
Recent studies have demonstrated that serum uric acid levels
.7 mg/dL are an important prognostic marker for all-cause mortal-
ity in HF.86 In this context, serum uric acid levels are known to rise
with increased purine catabolism resulting from tissue hypoxia,
apoptosis, and/or enhanced or up-regulated xanthine oxidoreduc-
tase activity (reviewed in ref.87), raising the possibility that xanthine
oxidase could contribute to the pathophysiology of HF. In this re-
gard, increased xanthine oxidase activity and expression have
been described in failing myocardium and inhibition of xanthine oxi-
dase appeared to improve coronary and peripheral endothelial dys-
function, and myocardial contractility in HF patients.88,89

Despite these promising effects in smaller randomized trials, the
results of a larger multicentre trial have been disappointing. Hare
et al. randomized 405 class III or IV HF patients to oxypurinol or pla-
cebo and found no significant changes in clinical outcomes such as
HF morbidity, mortality, and quality of life, with a non-significant
trend in patients with serum uric acid levels .9.5 mg/dL.90 Further-
more, in a very recent trial in patients with HF-rEF, allopurinol failed
to improve clinical status, exercise capacity, quality of life, or left
ventricular ejection fraction at 24 weeks.91 Therefore, the most dir-
ect interpretation is that serum uric acid levels might not have a

Figure 5 Crosstalk between different cardiovascular ROS
sources. Upon agonist-driven activation of NADPH oxidase (e.g.
via angiotensin-II-mediated AT1R activation), the enzyme pro-
duces superoxide and hydrogen peroxide leading to activation of
mitochondrial ROS (mtROS) formation by mitochondrial redox
switches (mRS). These mtROS can escape from mitochondria by
increased mitochondrial permeability (mPM) involving several
pores and channels. In the cytosol these mtROS can activate
Nox2 (or Nox1) via redox-sensitive kinases such as protein
kinase C (PKC) and tyrosine kinases (cSrc). Likewise Nox- and
mitochondria-derived ROS can convert xanthine dehydrogenase
to the xanthine oxidase (XO) or lead to eNOS uncoupling further
contributing to this vicious circle. Alternatively, this crosstalk starts
at the mitochondrial level by excessive mtROS formation during
the aging process, a dysregulated ion balance (e.g. in the failing
heart) or in response to ischaemia/reperfusion (I/R) damage.

T. Münzel et al.2560



causal role in HF but rather represent a marker of adverse prognosis
indicative of oxidative damage within the myocardium and/or the
vasculature.

Nitric oxide deficiency and heart failure
with preserved ejection fraction
It is known for many years that ·NO and NOS are having a role in
cardiac relaxation. The endothelial and also the neuronal NOS are
located in the heart and in particular the neuronal NOS has been
demonstrated to be an important modulator of cardiac nitroso
balance and function. E.g. it has been demonstrated that nNOS
modulates cardiac relaxation via effects on phospholamban phos-
phorylation.92 Interestingly, in the setting of arterial hypertension,
Silberman et al.93 demonstrated that decreased myocardial ·NO
levels lead to increased cytosolic calcium and diastolic dysfunction.
These adverse effects were corrected by supplementation with
BH4, a NOS cofactor, but not NH4 suggesting an uncoupling of
NOS as the principle mechanism.93

While oxidative stress is common in patients with both HF-rEF
and HF-pEF, different cellular and enzymatic sources of ROS pro-
duction have been suggested. As recently outlined by Paulus and
Tschöpe,94 comorbidities induce a proinflammatory state in patients
with HF-pEF (through elevated plasma levels of interleukin-6, sol-
uble ST2, tumour necrosis factor-a, and pentraxin 3) that may in-
duce ROS production in endothelial cells. Through paracrine
mechanisms, this may then affect protein kinase G signalling in car-
diac myocytes that induce sarcomere stiffness and pro-hypertrophic
signalling. In contrast, in HF-rEF, most ROS production may occur in
cardiac myocytes and induce maladaptive remodelling through the
induction of programmed cell death, autophagy, and fibrosis. Such
differential ROS signalling pathways may be one explanation why
treatments that improved the outcome of patients with HF-rEF
failed in patients with HF-pEF and should be subject to further re-
search that enables us to identify better treatments of either
syndrome.

Therapeutic strategies
The important contribution of ROS to the pathophysiology of HF
may indicate that therapeutic strategies aimed at reducing oxidative
stress within the myocardium and the vasculature may beneficially
influence the course of the disease. In the next paragraphs we will
discuss why so far simple antioxidant strategies, e.g. with vitamins
failed to improve prognosis in patients with HF, discuss new ap-
proaches to reduce oxidative stress by the use of mitochondria tar-
geting antioxidants and why ACE inhibitors or the combination
therapy such as ISDN/hydralazine may be effective in restoring
the impaired redox balance.

Antioxidants/vitamins
Despite a predominant role of ROS in the pathophysiology of HF,
large clinical trials have failed to show any benefit of antioxidants
such as vitamin E and vitamin C in any cardiovascular disease (re-
viewed in ref.95). Many explanations have been offered as to why
antioxidants have proved ineffective in these studies, a prominent
one being that agents such as vitamin E and vitamin C are not

targeted to sites of ROS generation that are most important in
pathological conditions, such as mitochondria.

In addition, specific ROS often react much more quickly than can
be quenched by antioxidants. For example, superoxide combines
with .NO to form peroxynitrite in a diffusion-limited reaction
(k ¼ 1.9 × 1010 mol L21 s21) that is almost 10× faster than its deg-
radation by SOD, suggesting that it is very difficult to prevent per-
oxynitrite formation. With regard to common antioxidants,
superoxide and vitamin C react much slower than .NO, on the
order of 105 mol L21 s21, indicating that exceptionally high con-
centrations of this vitamin would be needed in specific tissue or
even cell organelle to be effective. Since vitamin E is even less react-
ive (�103 mol L21 s21) the case is even stronger for its ineffective-
ness. Further, the compartimentalization of ROS production makes
non-targeted approaches much less effective. Thus, it is not likely
that vitamins can scavenge superoxide in order to prevent its inter-
action with .NO and the subsequent formation of the highly reactive
and toxic intermediate peroxynitrite, even when given in high
concentrations.

Indeed, although vitamin E effectively scavenges lipid peroxyl ra-
dicals, it has been demonstrated to have a rather limited activity
against other oxidants such as superoxide, peroxynitrite, and hypo-
chlorous acid that have been implicated to play a major role in the
pathophysiology of atherosclerosis.

There is also experimental evidence from animals and patients
that suggests that lipid peroxidation occurs even in the presence
of vitamin E and higher doses of the vitamin could be harmful
(reviewed in ref.95). For example, further attempts to increase the
effectiveness with higher doses of vitamin E resulted in worsening
of atherosclerosis and vascular function,96 which may be related
to the formation of the pro-oxidative vitamin E radical97

(Figure 6A and D). Enrichment of the vitamin E radical in the myocar-
dium may exert negative inotropic effects, which may explain why
long-term treatment with vitamin E does not prevent but rather in-
duce HF and acute left heart decompensations as shown for the
HOPE98 and HOPE TOO trials99 (Figure 6B and C ).

Another important aspect why antioxidants may fail was pre-
sented by Ristow et al.100 The authors demonstrated that antioxi-
dant supplements such as vitamin C and E prevented the
molecular regulators of insulin sensitivity and endogenous antioxi-
dant defence induced by physical exercise,100 and exercise was
shown to improve symptoms and quality of life in patients with
HF-rEF and also HF-pEF.101– 103

Angiotensin-converting enzyme inhibitors
or AT1-receptor blocker: are they the
better ‘antioxidants’?
Angiotensin-converting enzyme inhibitors inhibit kininase II, which
leads to increased formation of bradykinin, which in turn enhances
stimulation of the endothelial bradykinin receptor B2 prompting the
release of ·NO,104 endothelium-derived hyperpolarizing factor and
prostacyclin. These actions explain in part the combined vasodila-
tor, antithrombotic, and anti-proliferative effects of ACE inhibitors.
By inhibiting angiotensin II formation, they also beneficially influence
inflammatory processes in the vessel wall,105,106 prevent smooth
muscle proliferation, and prevent the activation of the vascular
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and phagocytic NADPH oxidase, a dominant vascular source of
superoxide.84 By limiting the production of superoxide at its enzym-
atic source, many issues concerning the free radical scavenging effi-
cacy of antioxidants (i.e. compartimentalization, pro-oxidant effects,
etc.) are not a consideration.

Targeting mitochondrial reactive oxygen
species
Recent studies indicate that targeted inhibition of ROS production
in certain microdomains holds promise as a therapeutic strategy
over the untargeted approach with classical antioxidants (Figure 4).
In this regard, targeting mitochondria with their central role in cel-
lular ROS formation has been a topic of great interest, particularly in
cardiac myocytes. The Szeto-Schiller peptide (SS-31) is a tetrapep-
tide that accumulates several thousand-fold in mitochondria and

protects from apoptotic cell death.107 While initial studies suggested
that SS-31 was an antioxidant,107 more recent studies revealed that
it does not directly scavenge ROS, but rather prevents mitochon-
drial ROS formation via interaction with cardiolipin, an important
lipid of the inner mitochondrial membrane critical for proper assem-
bly of the respiratory complexes of the ETC.108 Mitochondrial ROS
production oxidizes cardiolipin and makes it dysfunctional, allowing
dissociation of respiratory chain complexes which may give rise to
further electron leakage promoting O2

·2 formation. SS-31 directly
interacts with cardiolipin and prevents its oxidation, and this pre-
sumably interrupts a vicious cycle of cardiolipin oxidation, ROS pro-
duction and deterioration of ATP production.25,109

The SS-31 peptide, but not the non-targeted N-acetyl cysteine,
prevented the development of diastolic dysfunction in response
to angiotensin II (a canonical activator of NADPH oxidase). These
findings bolster the concept of NADPH oxidase/mitochondrial

Figure 6 (A) Effects of Vitamin E high and low concentrations on endothelial function of cholesterol fed animals (with permission from ref.93).
Copyright& 1994 American Society for Clinical Investigation. (B) Effects of Vitamin E treatment on the incidence of heart failure (with permission
from ref.113). Copyright& 2005 American Medical Association. (C) Effects of Vitamin E treatment on left heart decompensations (with permission
from ref.113). Copyright & 2005 American Medical Association. (D) Potential pro-oxidative effects of Vitamin E (with permission from ref.94).
Copyright & 1999 Elsevier Science Ltd. All rights reserved.
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crosstalk of ROS signalling.51,52,76 and provide a rationale for
microdomain-targeted therapies. Furthermore, SS-31 prevented
HF development and maladaptive ventricular remodelling in a sys-
tolic HF model induced by pressure overload.53 Also, in a large ani-
mal model of ischaemic cardiomyopathy, both short- and long-term
treatment with SS-31 improved LV function, which was associated
with improvement in mitochondrial respiration and ATP produc-
tion. Under the name Bendavia, the drug is currently being tested
clinically in a comprehensive programme involving patients with
HF,108 while a phase II study on patients with myocardial infarction
showed safety and some promising signs towards improvement of
cardiac and renal function (STEMI-EMBRACE trial, presented at
ACC, Chicago, March 2015 and110 for the study design).

Another class of compounds that appears attractive for targeting
mitochondrial ROS are antioxidants linked to the lipophilic cation
TPP+111 that accumulate in the mitochondrial matrix. Linkage of co-
enzyme Q, a respiratory chain component for ROS detoxification
with TPP+ (mitoQ), provided protection in various animal models
of cardiovascular and neurodegenerative diseases.25,111 For
example, MitoQ improved cardiomyocyte function in a model of
acute cardiac volume overload.54 Clinically, MitoQ was safe in pa-
tients with neurodegenerative diseases but has not been tested in
cardiovascular conditions as yet.111 Interestingly, a recent clinical
trial on 420 patients with HF with unconjugated coenzyme Q10

showed a significant improvement of morbidity and mortality,112

but its implications for future HF guidelines are unclear due to the
rather small scale of the study.113 The mitochondria-targeted anti-
oxidant mitoTEMPO (as well as mitochondria-specific overexpres-
sion of human catalase) have been highly effective in preventing
pressure-overload-induced HF in animals.55 Considering the
tight interaction between excitation–contraction coupling and
mitochondrial energetics, attempts to improve cytosolic and/or
mitochondrial ion handling may provide additional benefit by pre-
venting mitochondrial ROS production. Two examples of this could
be gene therapy to up-regulate SERCA (CUPID trial) or inhibiting
late INa with ranolazine.114 In this context, it is worth noting that
both treatment with b-blockers and ACE inhibitors was associated
with improvements of excitation–contraction coupling on the cel-
lular level, pinpointing how these drugs may improve energetics and
prevent oxidative stress as well (see preceding paragraph).

Cotherapy of hydralazine and nitrates
improves the redox balance between
nitric oxide and superoxide in patients
with chronic heart failure
In patients with coronary artery disease (CAD), treatment with
nitroglycerin (GTN) and isosorbide dinitrate (ISDN) cause rapid
haemodynamic and anti-anginal tolerance,115 an effect that is also
seen in patients with chronic congestive HF where ISDN causes ra-
pid tolerance development with respect to the left ventricular filling
pressure.116

An interesting aspect is the interaction between the organic
nitrate ISDN and the arteriolar dilator hydralazine in patients with
severe HF. Several clinical studies have clearly established that
the combination of ISDN with hydralazine is able to improve
prognosis117 compared with prazosin in the V-Heft-I and exercise

capacity compared with enalapril in V-HeFT II trial.118 Also, the
African-American Heart Failure Trial (A-HeFT), a double-blind,
randomized, trial demonstrated that the combination of ISDN and
hydralazine markedly improved the composite endpoint of the trial,
which included death from any cause, first hospitalization for HF and
quality-of-life measures.119 One potential mechanism for these ob-
servations is that this particular combination of ISDN and hydrala-
zine is rather devoid of tolerance and its associated endothelial
dysfunction. Indeed, more recent experimental studies demon-
strated that hydralazine is a powerful inhibitor of GTN-induced
formation of reactive oxygen species such as superoxide or perox-
ynitrite (ONOO2) in vitro in the vasculature120 and in vivo,121 thus
correcting the disrupted redox balance between superoxide and
nitric oxide in the cardiovascular system of patients with chronic
congestive HF.122 Dulce et al.123 demonstrated that by reducing
sarcoplasmic Ca2+-leak, hydralazine improves calcium cycling and
contractility of the myocardium as well as restoring cardiac excita-
tion–contraction coupling. Thus, these drugs in combination exert
direct myocardial effects that provide a mechanistic basis for the
favourable functional and structural responses in the treatment of
congestive HF.

Phosphodiesterase 5 inhibition
According to a recent meta-analysis, the phosphodiesterase 5
(PDE5) inhibitor sildenafil improved haemodynamic parameters in
HF-rEF patients when compared with placebo.124 In contrast, ad-
ministration of sildenafil for 24 weeks did not significantly improve
exercise capacity or clinical status compared with placebo.125

Exercise training
Exercise training improves quality of life, symptoms, and possibly
the outcome in patients with HF-pEF and HF-rEF. These benefits
may be mediated by reducing central and systemic neuroendocrine
activation, in particular the RAAS and sympathetic nervous
systems. On a molecular level, exercise training may impact
not only the heart directly, but also vessels, the kidney, skeletal
muscles, and other organs, systemically interconnected through
central sympatho-excitatory processes and mediated by reduced
b-adrenergic- and angiotensin II-signalling that reduces oxidative
stress and increases the bioavailability of NO from eNOS.126

Conclusions
While a large body of evidence supports an association between
oxidative stress and vascular dysfunction, the relationship with myo-
cardial contractile dysfunction has only been investigated recently.
Reactive oxygen species are important mediators of physiological
functions, but in higher concentrations they may modify cardiac me-
tabolism and mechanics, triggering a feedforward mechanism that
leads to further worsening of systolic and diastolic function.

Scavenging of ROS with antioxidants has however proved to have
no effect in modifying patients’ prognosis. While this evidence does
not disprove the role of ROS in cardiovascular pathophysiology, it
emphasizes the need of studies addressing ROS-dependent patho-
physiology with highly specific interventions targeted at the cellular
microcompartiments in which these ROS are produced.
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