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A high percentage of pediatric gliomas and bone tumors report-
edly harbor missense mutations at glycine 34 in genes encoding
histone variant H3.3. We find that these H3.3 G34 mutations
directly alter the enhancer chromatin landscape of mesenchymal
stem cells by impeding methylation at lysine 36 on histone H3
(H3K36) by SETD2, but not by the NSD1/2 enzymes. The reduction
of H3K36 methylation by G34 mutations promotes an aberrant
gain of PRC2-mediated H3K27me2/3 and loss of H3K27ac at active
enhancers containing SETD2 activity. This altered histone modifi-
cation profile promotes a unique gene expression profile that sup-
ports enhanced tumor development in vivo. Our findings are
mirrored in G34W-containing giant cell tumors of bone where
patient-derived stromal cells exhibit gene expression profiles as-
sociated with early osteoblastic differentiation. Overall, we dem-
onstrate that H3.3 G34 oncohistones selectively promote PRC2
activity by interfering with SETD2-mediated H3K36 methylation.
We propose that PRC2-mediated silencing of enhancers involved in
cell differentiation represents a potential mechanism by which
H3.3 G34 mutations drive these tumors.
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Highly recurrent missense mutations in genes encoding his-
tone H3 have been found in a variety of human tumors

(1–4). Previous studies have led to biochemical and functional
insights of the H3 K27M and H3 K36M “oncohistones” that are
found in 84% of diffuse intrinsic pontine gliomas and 95% of
chondroblastomas, respectively. The G34 class of oncohistones
occur exclusively in the histone variant H3.3 and are found in
92% of giant cell tumors of the bone (GCTB; G34W/L), 17% of
high-grade astrocytomas (HGA; G34R/V) and 5% of osteosar-
comas (G34R/W) (1, 3, 5).
Histone H3 is encoded by 13 copies of histone H3.1/H3.2 and

2 copies of the H3.3 variant (H3F3A and H3F3B). Nucleosomes
containing histone H3.3 are assembled at promoters, gene bod-
ies, and enhancers of transcriptionally active genes by the HIRA
histone chaperone complex and at telomeres and pericentric
repeats by ATRX-DAXX (6). Despite constituting a small
fraction of total H3 in the nucleus, recent reports found that
incorporation of H3.3 at enhancers is required to maintain high
levels of H3K27ac (7, 8). Interestingly, unlike the “K-to-M”

mutations found in gliomas and chondroblastoma that affect
both canonical and variant histone H3, the G34 mutations are
only found in the histone variant H3.3 (1, 9, 10). Functional or
mechanistic explanations for the remarkable specificity of G34
mutations for histone H3.3 remain unclear.
Polycomb group (PcG) proteins are essential for proper de-

velopment and are frequently misregulated in human cancers
(11). Previous studies have highlighted a central role for mis-
regulation of polycomb silencing in the context of cancers har-
boring lysine-to-methionine oncohistones (10, 12–14). Polycomb

Repressive Complexes (PRC1 and PRC2) function in a collab-
orative chromatin-based cross-talk with H3K27me3 to initiate and
maintain transcriptional silencing of developmentally regulated
genes (15). While only H3K27me3 interacts with PRC1 to mediate
local chromatin compaction, PRC2-catalyzed H3K27me1/2/3 are
proposed to serve as molecular “placeholders” that antagonize
H3K27ac and prevent spurious enhancer activation (16). Several
mechanisms have evolved to fine tune the activity of EZH1/2, the
catalytic subunits of PRC2, including posttranslational modifica-
tions (PTMs) on the histone H3 tail. For example, PRC2 binds its
own product H3K27me3 through the EED subunit, resulting in an
∼10-fold increase in its catalytic activity on the neighboring nu-
cleosomes that is thought to promote spreading of Polycomb
domains in cis (17). This spreading of PRC2 and H3K27me3 is
impeded by modifications associated with active chromatin. In
particular, nucleosomes containing H3K36me2/3, modifications
catalyzed by SETD2, NSD1/2, and ASH1L enzymes, are poor
substrates for PRC2 (18–20). Some human cancers exploit these
regulatory mechanisms to disrupt normal PRC2 activity to drive
tumor-specific transcriptomes (10, 21–24).
In this study, we describe a mechanism by which H3.3 G34

mutations alter gene expression through perturbation of local chro-
matin modifications. We find that G34W and other tumor-associated
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G34 mutations impede SETD2-dependent H3K36 methylation in
cis, while allowing NSD2 activity. The reduction of SETD2-dependent
H3K36 methylation promotes aberrant PRC2-mediated H3K27me2/3
on nucleosomes containing the G34W-mutated H3.3 at enhancers.
Expression of H3.3 G34W or G34R transgenes in cell lines drives
a unique gene expression profile that is dependent on histone
variant H3.3 and PRC2-mediated methylation in cis. Finally, we
find that H3.3 G34 oncohistones likely promote tumorigenesis
in vivo by stimulating proinflammatory gene expression associ-
ated with early osteoblastic differentiation.

Results
G34 Mutations Promote H3K27me2/3 by Impeding SETD2 Activity.
Glycine 34 on histone H3 lies in close proximity to the K27
and K36 residues that are methylated and acetylated in vivo.
Previously, we found that histones containing G34R/V substitu-
tions exhibited lower H3K36me3 in vivo (12). We hypothesized that
G34 mutations function in tumorigenesis by promoting a unique
PTM profile on nucleosomes containing the mutant histone and
altering gene expression. Because G34 mutations decrease H3K36
methylation, we were curious to know if G34 substitutions affect
other PTMs on nucleosomes containing the mutant histone. To this
end, we generated a series of histone H3.3 transgenes that each
contained an amino acid substitution that could be achieved by
single nucleotide mutations between residues G33 and K37
(Fig. 1A). We expressed these transgenes in human HEK293T cells
and purified mononucleosomes containing the mutant histones
using FLAG affinity immunoprecipitation (Fig. 1B). Using bottom-
up quantitative mass spectrometry, we observed that all mutant
H3.3 histones exhibited lower H3K36me3 in cis relative to wild-type
(WT) H3.3 (Fig. 1C and SI Appendix, Fig. S1A).
H3K36 methylation is catalyzed by SETD2, NSD1, NSD2, and

ASH1L in mammals. While all these enzymes can catalyze
H3K36me1/2, SETD2 is the sole enzyme responsible for
H3K36me3 (21, 22). A recent co-crystal structure of the SETD2
SET domain with the H3 K36M peptide revealed that the side
chains of amino acids G33 and G34 lie in a constrained substrate
tunnel (21), and substitutions at these residues would likely ob-
struct SETD2 activity by sterically clashing with the substrate
channel. To directly test this hypothesis, we determined SETD2
activity on recombinant nucleosomes containing G34 mutations
using in vitro methyltransferase assays. Mutations at the G34
position reduced SETD2 activity to a similar extent as a K36R
negative control in cis (Fig. 1D and SI Appendix, Fig. S1B). Sur-
prisingly, we found that nucleosomes containing G34 mutations
did not negatively affect NSD2-dependent K36 methylation
in vitro (Fig. 1E). The SETD2 residues that lie in close proximity
to G34 are substituted with smaller side chain amino acids in
NSD1/2 SET domains (SI Appendix, Fig. S1C). We speculate that
these smaller residues reduce steric clashing with the bulky R/W/V
found on the mutant H3.3 and allow NSD2 to effectively catalyze
H3K36 methylation on G34 mutant histones.
Although all H3.3 substitutions between G33 and K37 reduced

H3K36me3 in vivo, our mass spectrometry analyses revealed that
peptides containing G34 substitutions exhibited the highest lev-
els of H3K27me3 (Fig. 1F and SI Appendix, Fig. S1 D and E).
These data suggest that H3.3 G34 nucleosomes are excellent
substrates for PRC2. In our in vitro methyltransferase assays
using recombinant nucleosomes, we found that wild-type H3.3
and G34 mutant nucleosomes are equally good substrates for
PRC2-mediated H3K27 methylation (Fig. 1G and SI Appendix,
Fig. S1 B and F). We and others have found that nucleosomes
containing H3K36me2/3 serve as poor substrates for PRC2
(18–20). Because G34 histones exhibit low H3K36me3 and high
K27me2/3 levels, we hypothesized that G34 mutations uniquely
promote H3K27me2/3 in cis through reduction of SETD2-
mediated H3K36 methylation and toleration by PRC2. To di-
rectly test this proposition, we assessed PRC2 activity on

nucleosomes preincubated with wild-type SETD2 or a catalyti-
cally dead mutant SETD2 (Fig. 1 H and I and SI Appendix, Fig.
S1 G–I). We found high levels of PRC2-mediated H3K27me3 on
H3.3 G34 mutant nucleosomes as compared to wild-type nu-
cleosomes after pretreatment with SETD2. These data directly
link the gain of H3K27me2/3 on G34 mutant nucleosomes
in vivo with their ability to impede SETD2, but not PRC2,
activity in vitro (Fig. 1J).
Histone H3.3 G34 mutations are common in GCTB and HGAs,

whereas H3.3 K36 mutations are not found in these tumors. In-
terestingly, we found that nucleosomes containing K36A/R substi-
tutions exhibited reduced conversion of H3K27me1 to H3K27me3
(Fig. 1 F and G), suggesting that PRC2 requires an unmodified
lysine at the 36th position of the H3 substrate for its maximal ac-
tivity (Fig. 1 F, G, and I). These data also provide a biochemical
explanation for the coenrichment of H3K36me3 and H3K27me1 in
cells (16). Taken together, these findings suggest that H3.3 G34
mutations uniquely promote increased H3K27me2/3 by preventing
SETD2 activity, while allowing maximal PRC2 activity in cis
(Fig. 1J).

Local Loss of H3K36me3 and Gain of H3K27me3 in Cells Expressing
H3.3 G34W. We generated immortalized mesenchymal stem cells
(mMSCs) that expressed FLAG-HA-tagged H3.3 WT or G34W
mutant transgenes to define how H3.3 G34 mutations affect
histone PTMs in vivo. The H3.3 G34W histones in our cell lines
constituted 8 to 9% of total histone H3, which is in the range of
mutant histone H3.3 proteins found in human tumors (SI Ap-
pendix, Fig. S2A) (12). Expression of H3.3 G34W did not affect
overall levels of H3K27me3 in cells (SI Appendix, Fig. S2B).
However, we found that G34W mutant H3 histones exhibited
both decreased H3K36me3 and increased H3K27me3 (SI Ap-
pendix, Fig. S2C). These findings are consistent with our in vitro
experiments where we found that G34 mutations give rise to
changes in H3K27me3 in cis by impeding SETD2 activity.
Because the G34 mutations work in cis, we employed se-

quential chromatin immunoprecipitation (reChIP) sequencing
assays in order to assess changes in K27 and K36 methylation on
nucleosomes containing the mutant histone. First, we performed
FLAG ChIP to purify nucleosomes containing ectopically
expressed H3.3 histones and subjected the eluate to reChIP us-
ing H3K27me3 or H3K36me3 antibodies (Fig. 2A and SI Ap-
pendix, Fig. S2D). As predicted, the G34W substitution did not
affect the deposition pattern of histone H3.3 (SI Appendix, Fig.
S2 E and F), which is instead dependent on key amino acids in
the histone core (22). Next, we validated the efficiency of our
reChIP protocol by comparing the distribution of H3K27me3
and H3K36me3 reChIP and ChIP intensities relative to H3.3.
Importantly, we found that reChIP sequencing reads were sub-
stantially enriched within the genomic loci containing H3.3 and
depleted from loci lacking H3.3 (SI Appendix, Fig. S2 G–I),
confirming that the immunoprecipitated K36me3 and K27me3
were from nucleosomes containing the epitope-tagged H3.3.
We mapped loci containing both H3.3 and H3K36me3 in or-

der to identify genomic regions where the H3.3 G34W mutation
would directly affect K36 methylation levels (SI Appendix, Fig.
S3A). Consistent with previous studies, we found H3.3 enriched
in genomic regions containing dynamic chromatin including ac-
tive genes (transcript per kilobase million > 10) and enhancers
(nonpromoter-associated H3K27ac peaks) (6, 23). While direct
mapping of SETD2 occupancy has been elusive due to a lack of a
ChIP-grade SETD2 antibody, we used quantitative ChIP se-
quencing (ChIP-Seq) from Nsd1/2 double knockout and Nsd1/2/
Setd2 triple knockout cell lines to identify SETD2-mediated
H3K36me2. By comparing the H3K36me2 ChIP-Seq signals
from these knockout cell lines, we found that SETD2-mediated
H3K36me2 and H3K36me3 were enriched at enhancers and
gene bodies of active genes (SI Appendix, Fig. S3 A and D), in
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agreement with previous studies (24–26). Also consistent with
the known overlap of H3.3 and H3K36me3, our H3.3-K36me3
reChIP sequencing reads primarily mapped to gene bodies and
active enhancers (SI Appendix, Fig. S4A).
Notably, we observed a reduction of H3.3-K36me3 and a

concomitant gain of H3.3-K27me3 in cells expressing H3.3
G34W at H3K36me3-enriched loci (Fig. 2 B–D and SI Appen-
dix, Fig. S4B). This result is consistent with our in vitro finding
that the G34W substitution blocks SETD2 but permits PRC2
activity. The gain of H3.3-K27me3 occurred primarily at active
genes and enhancers (Fig. 2E and SI Appendix, Fig. S4 C and
E). Using standard ChIP-Seq, we found a modest reduction of
H3K36me3 and gain of H3K27me3 at active enhancers and
H3K36me3 peaks (SI Appendix, Fig. S4D). Taken together, our
in vitro and in vivo results demonstrate that deposition of H3.3
G34W leads to increased H3K27me3 by reducing H3K36
methylation.

Previously, we found that H3 K36M transgenes reduced global
levels of H3K36me2/3 and increased H3K27me3 in intergenic
regions (10). This genome-wide gain of H3K27me3 led to a di-
lution of PRC1 and derepression of polycomb-silenced genes. In
contrast, we did not detect substantial changes in the EZH2
occupancy upon expression of H3.3 G34W (SI Appendix, Fig.
S4F). Importantly, polycomb-silenced genes, which were dere-
pressed in cells expressing H3 K36M, remained silent in cells
expressing H3.3 G34W (SI Appendix, Fig. S4G). These results
highlight important distinctions between the global effect of H3
K36M and local changes mediated by H3.3 G34W.

Reduction of H3K27ac at Enhancers in Cells Expressing H3.3 G34W. Pre-
vious studies have found that H3K27 methylation (H3K27me1/2/3)
can regulate enhancer activity by acting as a chemical group
placeholder to antagonize acetylation at this residue (16, 27). We
used ChIP-Seq in EED-depleted cells to test the role of PRC2
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Fig. 1. G34 mutated oncohistones exhibit increased H3K27me2/3. (A) Schematic displaying the histone H3.3 mutant transgenes used to assess PTM changes
in cis using the purification strategy depicted in B. (C) Mass spectrometry data displaying the abundance of H3K36me3 on the mutated H3.3 peptides. (D and
E) SETD2 and NSD2 in vitro methyltransferase assays using recombinant mononucleosome substrates containing point mutations on H3.3 as labeled. CPM:
counts per minute. P value for reduced counts on the G34 mutated substrates was determined using t test. n.s.: not significant. (F) Mass spectrometry data
displaying the abundance of H3K27me3 on the mutated peptides. (G) Immunoblots of in vitro PRC2 methyltransferase reactions using recombinant mon-
onucleosome substrates containing point mutations in H3.3. (H and I) Schematic for sequential methyltransferase reactions using recombinant mono-
nucleosomes containing WT or G34-mutated H3.3. (I) Immunoblots of reactions preincubated with WT or catalytically dead SETD2 and 50 μM S-adenosyl-
methionine depicted in H. PRC2 and additional 50 μM SAMwere added to the reaction and incubated for 3 h. (J) Model depicting the effect of G34 mutations.
Missense mutations on H3.3 G33-K37 block SETD2 activity in cis. However, only mutations at G34 position permit PRC2 activity at K27 and hence, uniquely
increase H3K27me2/3 in cis by decreasing H3K36me3. Error bars represent SD.
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activity in regulating enhancer silencing. We found that loss of EED
by transient expression of Cre-recombinase in EEDflox/flox mouse
embryonic fibroblasts led to global loss of H3K27me2/3 and a
concomitant gain of H3K27ac (Fig. 3A) (28). Importantly, upon
genetic depletion of PRC2, we found a substantial gain of H3K27ac
at promoter-distal sites (Fig. 3A), supporting the model that PRC2
activity influences H3K27ac levels at enhancers.
Histone H3.3 is enriched at active enhancers where canonical

histones H3.1/2 are depleted (Fig. 3B), and recent reports sug-
gest that H3.3 is responsible for most H3K27 acetylation at en-
hancers (7, 8). Because G34 mutations in human cancers occur
exclusively in H3.3 (1, 3), we hypothesized that a localized gain
of H3K27 methylation on histone H3.3 G34W at enhancers
would antagonize H3K27ac levels (Fig. 3C). We profiled active
enhancers in cells expressing H3.3 WT or G34W using H3K27ac
quantitative ChIP-Seq. Overall, 3,440 (∼23%) active enhancers
exhibited decreased H3K27ac enrichment in cells expressing
H3.3 G34W (Fig. 3D). Importantly, loss of H3K27ac at these
enhancers correlated with a reduction in H3.3-K36me3 and a
gain of H3.3-K27me3 as measured by reChIP-Seq (Fig. 3 E and F
and SI Appendix, Fig. S5 A and B). Histone H3.3 is enriched at
both active and poised enhancers (6, 29), and we observed only a
small decrease in the occupancy of H3.3 G34W at these en-
hancers (SI Appendix, Fig. S5C). Moreover, intra- or intergenic
enhancers were not enriched within the set with lowered
H3K27ac, indicating that G34W-mediated changes at active
enhancers are uncoupled from gene body transcription (SI Ap-
pendix, Fig. S5D).

Non-SETD2-Catalyzed H3K36me2 Prevents Enhancer Inactivation by
H3.3 G34W. Unlike SETD2, we found that NSD2-mediated ca-
talysis of H3K36 methylation was unaffected by G34 mutations
in vitro (Fig. 1E). Because we found that enhancers were not
equally affected by the incorporation of H3.3 G34W histones, we
hypothesized that NSD2-mediated H3K36me2 may protect a
subset of enhancers from PRC2-mediated inactivation. In line
with our hypothesis, we observed that enhancers with reduced
H3K27ac contained lower baseline H3K36me2 levels (Fig. 3G).

We measured changes in H3K27ac at active enhancers con-
taining low, medium, and high levels of H3K36me2 in wild-type
mMSCs. We found that enhancers with high levels of non-
SETD2-catalyzed H3K36me2 were unaffected by H3.3 G34W
(Fig. 3H and SI Appendix, Fig. S5E). In contrast, enhancers with
low H3K36me2 levels exhibited a significant reduction in
H3K27ac by H3.3 G34W (Fig. 3H and SI Appendix, Fig. S5 E
and F).
Based on our in vitro findings and mass spectrometry data, we

propose that the G34W substitution reduces SETD2 activity in
cis on nucleosomes at enhancers. In support of this model, we
found that SETD2−/− cells and H3.3 G34W-expressing cells
exhibited a remarkably similar reduction of H3K27ac at en-
hancers (Fig. 3I). Furthermore, expression of H3.3 G34W in
SETD2−/− cells did not affect H3K27ac at enhancers (Fig. 3J).
These results support our model that reduced SETD2 activity on
H3.3 G34W histones is a necessary intermediate step toward
reduction of H3K27ac at enhancers.

Reduced H3K27ac by H3.3 G34W Correlates with Down-Regulation of
Corresponding Genes. We found that expression of H3.3 G34W
led to increased H3K27me3 and loss of H3K27ac at a subset of
enhancers and active genes. The recruitment of BRD4 and
Mediator complex to enhancer elements is a major step toward
activating associated genes, and previous studies have found that
BRD4 and Mediator ChIP-Seq intensities correlate positively
with enhancer activity (30, 31). We mapped BRD4 and Mediator
complex subunit, Med1 occupancies in cells expressing H3.3 WT
and G34W by ChIP-Seq. The majority of enhancers with reduced
H3K27ac also exhibited decreased BRD4 and Med1 occupancy,
while enhancers exhibiting no change in H3K27ac retained these
proteins (Fig. 4 A and B). These data link the reduction of
H3K27ac to enhancer inactivation by H3.3 G34W. Using RNA
sequencing, we found that the majority of differentially
expressed genes in H3.3 G34W cells became down-regulated (SI
Appendix, Fig. S6A). Moreover, most genes (73%) proximal to
enhancers with decreased H3K27ac were down-regulated in
H3.3 G34W cells (SI Appendix, Fig. S6 B and C). Together, these
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findings suggest that H3.3 G34W decreases enhancer activity that
leads to lower expression of associated genes. Some genes located
near G34W-affected enhancers showed no change in expression
(SI Appendix, Fig. S6C), and we speculate that enhancer redun-
dancy might maintain expression of these genes (32).
Based on our biochemical and ChIP-Seq studies, we hypoth-

esized that H3.3 G34W at enhancers reduce H3K27ac by
obstructing SETD2 activity on the mutant nucleosomes. There-
fore, we compared gene expression changes in cells expressing

H3.3 G34W to SETD2−/− cells. Overall, we found significant
overlap between genes down-regulated by the expression of H3.3
G34W or the loss of SETD2 (Fig. 4 C and D and SI Appendix,
Fig. S6D). These data support a model that H3.3 G34W alters
gene expression primarily by interfering with SETD2 activity.
SETD2 is thought to deposit H3K36me2/3 at transcribed genes
through interaction with the phosphorylated C-terminal domain
of RNA polymerase II (33). Surprisingly, we observed only a
small increase of H3K27me3 at active gene bodies in cells
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expressing H3.3 G34W, likely reflecting a robust SETD2/NSD1/2
activity at these sites (SI Appendix, Fig. S4F). Importantly, we did not
detect gene expression differences between exogenous reference
normalized or internally median normalized expression values (SI
Appendix, Fig. S6E), suggesting that the small increase of H3K27me3
in gene bodies has little effect on global gene expression.
While the G34W mutation is generally found in GCTBs, the

H3.3 G34R/V mutations are most commonly found in HGA
tumors (1, 3). Even though these specific G34 mutations are
associated with different tumor types, we observed remarkable
mechanistic similarities. For example, we observed similar gains
of H3K27me3 on H3.3 G34R/W/V in our biochemical experi-
ments (Fig. 1 F,G, and I). Moreover, we found that expression of
H3.3 G34R in cells also reduced H3K27ac at enhancers that
were sensitive to H3.3 G34W (Fig. 4E), and that genes proximal
to enhancers with reduced H3K27ac were similarly affected by

H3.3 G34R (SI Appendix, Fig. S6F). Importantly, expression of
H3.3 G34R or H3.3 G34W led to remarkably similar gene ex-
pression profiles (Figs. 4F and 5A). These data are consistent
with our biochemical findings that both G34R and G34W mu-
tations act similarly by blocking SETD2 activity and conse-
quently permitting H3K27 methylation.
Our results suggest that incorporation of H3.3 G34W histones

at enhancers favors PRC2-mediated H3K27me3 which leads to
down-regulation of associated genes. To directly test this hy-
pothesis, we treated cells expressing H3.3 G34W with tazeme-
tostat, an EZH1/2 inhibitor, and probed the expression of down-
regulated genes. Treatment of cells with tazemetostat led to
reduced H3K27me2/3 in cells expressing H3.3 G34W and re-
stored the expression of down-regulated genes near enhancers
with reduced H3K27ac (Fig. 4 G–I). These results further link
PRC2 activity with aberrant gene repression by H3.3 G34W.
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The G34W Gene Expression Profile Requires PRC2 Activity on the
Mutant H3.3. In contrast to the K-to-M oncohistones, G34 mu-
tations are exclusively found in genes encoding histone H3.3 (1, 3).
Previous studies have found that histone H3.3 is enriched at tran-
scriptionally active chromatin including enhancers (6). In line with
these observations, our findings presented here suggest that H3.3
G34W functions locally at a subset of active enhancers to increase
H3K27 methylation and reduce H3K27ac. To test the importance
of H3.3 in mediating the G34 phenotype, we generated a cell line
expressing H3.1 G34W transgene (SI Appendix, Fig. S6G). We
found that expression of H3.1 G34W, which was depleted from
active enhancers as measured by ChIP-Seq (Fig. 3B), failed to re-
capitulate the gene expression changes caused by the H3.3 G34W/R
transgenes (Fig. 5A).
PRC2 activity is allosterically stimulated through binding of its

own catalytic product, histone H3K27me3 or Jarid2 K116me3, to
the EED subunit (17, 34). This feed-forward allosteric activation
mechanism is proposed to help generate large H3K27me3 domains.
To test the importance of H3K27 modifications in mediating the
G34R/W gene expression, we used a G34W-K27R mutant H3.3
transgene that blocks K27me3 and hence, fails to stimulate PRC2 in
trans (SI Appendix, Fig. S6 H and I). Interestingly, the K27R mu-
tation on the H3.3 G34W oncohistone failed to recapitulate the
gene expression profile mediated by G34W mutation alone. We
suggest that these data show that allosteric activation of PRC2 by

H3K27me3 on G34W oncohistones may amplify PRC2 activity lo-
cally. Collectively, our results indicate that reduced SETD2 activity
on G34 oncohistones followed by PRC2-mediated methylation are
intermediate steps in H3.3 G34W-driven gene expression changes.
In an alternative model, we supposed that the G34W mutation

could reduce H3K36me3 and alter gene expression by negatively
affecting recruitment of chromatin readers that bind to H3K36me3.
To test this hypothesis, we used a H3.3 G34W-K36R transgene,
which would continue to block recruitment of H3K36me3 readers
while also negatively affecting PRC2 activity due to the K36R
mutation (Figs. 1G and 5B). Notably, this G34W-K36R transgene
also suppressed the gene expression profiles mediated by H3.3
G34W/R (Fig. 5A). These data indicate that loss of H3K36 meth-
ylation, alone, is insufficient to drive H3.3 G34W-mediated gene
expression changes and provide an explanation for the absence of
loss-of-function H3.3 K36 mutations (e.g., K36A and K36R) in
GCTBs and HGAs. The inability of the H3.3 G34W-K36R double
mutant to mimic the H3.3 G34W gene expression profile is con-
sistent with our model that increased PRC2 activity on G34-
mutated histones is important for generating the unique G34W/R
gene expression profile.

H3.3 G34W Promotes Osteoblastic Gene Expression and Enhances
Tumor Growth In Vivo. We found that mMSCs expressing H3.3
G34W displayed down-regulation of several genes, including
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Fig. 5. H3.3G34W generates a unique gene expression profile in a PRC2-dependent manner. (A) Heatmap displaying the expression profiles of 180 dif-
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and G) Kaplan–Meier survival curve displaying the survival of mice injected with mesenchymal stem cells overexpressing H3.3WT (n = 9, 10), H3.3G34W (n =
10, 9), or H3.3G34W;K27R (n = 5, 10) double mutant. P values for significant difference for H3.3G34W samples were determined using the log rank test with
respect to WT (in blue) or G34W;K27R double mutant (in green).
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transcription factors and proteins involved in regulating cell fate
commitment and up-regulation of genes associated with osteo-
blastic differentiation (Fig. 5 C and D and SI Appendix, Fig.
S7A). This expression profile is similar to changes observed in
H3.3 G34W-containing mesenchymal stromal cells in GCTBs.
GCTB stromal cells retain their proliferative capacity and can be
differentiated into osteoblastic, chondroblastic, and adipocytic
lineages in vitro (35). Additionally, these malignant cells exhibit
aberrant expression of osteoblastic factors, such as RANKL and
CSF1, that are proposed to promote excessive recruitment of
monocytes and subsequent tumor-associated osteoclastogenesis
(36, 37).
The curious adipogenic and osteoblastic gene expression

profile of mMSCs expressing H3.3 G34W led us to analyze
RNA-Seq data from patient-derived giant cell tumor of the bone
(38). Genes involved in promoting MSC differentiation, specif-
ically toward osteoblastic and adipogenic lineages, were differ-
entially expressed in human GCTBs containing H3.3 G34W
mutations (Fig. 5E and SI Appendix, Fig. S7E). Importantly,
master regulators of osteoblast and adipocytic lineages, RUNX2
and PPARG, respectively, were up-regulated in H3.3 G34W
samples (Fig. 5E). As described previously, expression of the
osteoblast-secreted proinflammatory factors, which aid matrix
degradation and may contribute to local invasiveness in GCTBs,
was significantly increased in G34W tumors (Fig. 5E) (39, 40).
Taken together, these results indicate that H3.3 G34 mutations
promote preosteoblastic gene expression profile to facilitate
tumor growth.
Osteoblastic and adipogenic cells express genes implicated in

tumor invasion and angiogenesis (39, 41–43). Based on this gene
expression signature, we sought to determine if mMSCs
expressing H3.3 G34W exhibited tumorigenic capacity. Subcu-
taneous and intratibial xenograft experiments revealed that ex-
pression of H3.3 G34W significantly promoted tumor
progression of mMSCs in vivo (Fig. 5 F and G and SI Appendix,
Fig. S7 B–D). Importantly, the H3.3 G34W-K27R double mutant
alleviated H3.3 G34W-mediated tumor progression, highlighting

the importance of lysine 27 in H3.3 G34W-mediated tumori-
genesis.

Discussion
Our biochemical and cell-based studies have identified a mech-
anism by which H3.3 G34-mutated oncohistones disrupt the
homeostatic balance of H3K36- and H3K27-modifying enzymes
at gene enhancers and promotes aberrant gene expression and
tumorigenesis (Fig. 6). Consistent with our biochemical data and
those from a recent study, we found that expression of H3.3
G34W in cells resulted in increased H3K27me2/3 at and a con-
comitant reduction in H3K27ac levels (44). In specific cell con-
texts, these histone modification changes at enhancers promote a
gene expression profile that reflects immature differentiation
and simulates tumor progression in vivo.
Unlike the K27 and K36 oncohistone mutations that have high

preference for long aliphatic residues such as methionine or
isoleucine, the substitutions at G34 residues—R, V, W, L—share
few chemical similarities. The dissimilar biochemical properties
of G34 mutations argue against a model that these substitutions
generate a novel binding site for a chromatin modifier. Instead,
we propose that these mutations work, in part, by generating
steric hindrance that opposes SETD2 activity. In line with this
hypothesis, bulky side chains of mutations at G34 position
clashed with residues within the substrate channel of SETD2
SET domain and prevent its activity (21, 45). Interestingly, we
find that substitutions at G33, V35, and K37 positions also re-
duce H3K36me3. However, mutations at these residues, or
loss-of-function mutations at K36 position itself, are not preva-
lent in human cancers. The simple loss of H3K36me3 or dis-
ruption of H3K36me3-binding proteins, despite possibly
promoting a selective advantage (45, 46), is not a compelling
explanation for the high selectivity of tumor-associated
mutations at glycine 34.
Our study uncovered the unique ability of G34 mutations to

promote PRC2 activity in cis by impeding SETD2 activity.
Strikingly, we found that no other residue in the H3.3 tail
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blocked SETD2 and was simultaneously tolerated by PRC2.
Based on our data presented here, we propose that increased
H3K27 methylation on G34 oncohistones is a critical step for
their oncogenic function. Current high-resolution cocrystal
structures of PRC2 and the H3 substrate peptide do not contain
electron density maps for residues beyond P30 of the histone H3
tail. However, we predict that most H3 tail residues in this region
are either sterically constrained or make critical contacts with
PRC2 since substitutions at these sites are not tolerated by
PRC2. Thus, our investigation has illuminated important se-
quence features of the H3 tail involved in the regulatory cross-
talk between PRC2 and its substrates. Moreover, our study
revealed how cancer-associated mutations modulate PRC2 ac-
tivity to fine tune gene expression.
The G34 mutations stand apart from the K27M and K36M

oncohistones for their preferential occurrence in the histone variant
H3.3. Previous studies have characterized the K-to-M mutations as
the specific inhibitors of their corresponding methyltransferases
(12). Consistent with their dominant negative mode of action, the
K-to-M oncohistones lead to a global reduction of corresponding
lysine methylation irrespective of the histone variant affected (9,
10). Moreover, EZHIP, the recently characterized K27M mimic
found in posterior fossa type-A ependymomas reduces H3K27me3
without their incorporation into the nucleosomes (28, 47). In con-
trast, our study argues that the localization of G34 oncohistones to
H3.3-containing active genes and enhancers is critical for their on-
cogenic function and might explain their preference of histone
variant H3.3.
While different G34 mutations (e.g., G34R and G34W) are as-

sociated with specific tumor types, our data suggest that the G34W
and G34R mutations work through a common mechanism and
promote similar gene expression changes. The recent discovery that
G34W- and G34R-containing osteosarcomas coclustered within the
same group by DNA methylation profile supports our conclusion
that these mutations share common underlying biochemical mech-
anisms (5). Despite these similarities, the preference for specific
substitutions in these distinct tumors is intriguing. Future studies in
genetic model systems will explore possible phenotypic differences
between the different G34 substitutions.
Tissue-specific and temporal regulation of PRC2 activity is

critical for normal development (48). However, the cis regu-
latory elements that could account for the global pattern of
PRC2 activity in mammals have not been identified. Instead, a
recent model proposes that PRC2 adopts a hit-and-run
strategy where factors that locally modulate PRC2 activity are
responsible for the ultimate distribution of H3K27 methyl-
ation (49). Features associated with heterochromatin such as
H3K27me3 and densely packed nucleosomes stimulate PRC2
activity, whereas active chromatin associated factors such as
RNA, polyacetylated histones, H3K4me3 and H3K36me2/3
block PRC2 activity. The importance of these regulatory
mechanisms for proper PRC2 recruitment and activity is most
evident in human cancers driven by histone mutations. For
example, the chondroblastoma-associated H3 K36M mutation
is a competitive inhibitor of SETD2 and NSD1/2 enzymes and
is associated with globally reduced levels of H3K36me2/3.
This global loss of H3K36me2/3 provides novel substrates for
PRC2, resulting in a genome-wide gain of H3K27me3, dilu-
tion of PRC1 recruitment, and subsequent derepression of
silenced genes (10).
In contrast to the global changes in histone PTMs by H3

K36M mutations, we discovered that the H3.3 G34 mutations
drive local changes of H3K27me2/3 at a subset of active en-
hancers. We find that G34 oncohistones exploit the ability of
PRC2 to precisely “sense” local chromatin and drive localized
gain of PRC2 activity. Ultimately, this increased PRC2 activity
leads to down-regulation of specific genes and immature differ-
entiation of mesenchymal stem cells. Overall, our studies have

demonstrated that both H3 K36M and H3.3 G34 modulate finely
tuned Polycomb activity to drive distinct cancers.

Materials and Methods
Transgenic Cell Line Generation. Human 293T or immortalized mMSC
C3H10T1/2 cells were cultured in Dulbecco’s modified Eagle’s medium sup-
plemented with 10% fetal bovine serum and passaged at subconfluency.
Cells were regularly tested for mycoplasma. Cells were transduced with
recombinant lentiviruses produced using pCDH-EF1a-MCS-Puro expression
vector containing histone transgene as describes previously (12). Transduced
cells were selected with 1 μg/mL of puromycin for 4 d. SETD2, NSD1, and
NSD2 knockout C3H10T1/2 cells used in this study to map contributions of
these histone methyltransferases at various genomic loci were generated as
previously described (50).

Purification of Mononucleosome from HEK293T Cells. A total of ∼3 × 108 cells
were lysed by resuspending in buffer-A (15 mM Hepes, pH 7.9, 10 mM KCl,
5 mM MgCl2, 0.5 mM ethylenediaminetetraacetic acid [EDTA], 1 mM
β-mercaptoethanol) and nuclei were collected by centrifugation at 3,000 rpm
for 5 min. Nuclei was resuspended in MNase digestion buffer (15 mM Hepes,
pH 7.9, 30 mM KCl, 5 mM MgCl2, 3 mM CaCl2, 1× protease inhibitor mixture
[Roche], 1 mM dithiothreitol [DTT], 0.4 mM phenylmethylsulfonyl fluoride
[PMSF]). Mononucleosomes were prepared by incubating the nuclei with 1,500
units of MNase for 20 min at 37 °C. MNase reaction was quenched and
mononucleosomes were solubilized by resuspending the nuclei in 3 mM
ethylene glycol-bis(β-aminoethyl ether)-N,N,N′,N′-tetraacetic acid (EGTA),
5 mM EDTA, 0.1% Triton, and 150 mM KCl. Cell debris were removed by
centrifugation at 14,000 rpm for 10 min. Supernatant was incubated with
FLAG M2 agarose beads to capture mononucleosomes containing FLAG-
epitope- tagged mutated histone. Beads were washed five times with 1 mL
of wash buffer (15 mM Hepes, pH 7.9, 300 mM KCl, 1 mM EDTA, 10%
glycerol) and mononucleosomes were eluted using wash buffer containing
0.3 mg/mL of 3× FLAG peptide. Nucleosomes were dialyzed against 15 mM
Hepes, pH 7.9, 150 mM KCl, 1 mM EDTA, and 10% glycerol for 2 h to
remove FLAG peptides.

Histone Methyltransferase (HMT) Assays. For a typical methyltransferase re-
action, 300 nM recombinant nucleosome substrates were incubated with
40 nM SETD2 or NSD2 enzymes and 4 μM S-adenosyl methionine (1 μM
3H-SAM (Perkin-Elmer); 3 μM cold SAM) in 2× reaction buffer (50 mM Tris pH 8.0,
4 mM MgSO4, 10 mM DTT, and 8 mM PMSF) for 60 min. For scintillation
counting, reactions were spotted on phosphocellulose filters (Whatman
p81) and dried for 10 min. Filters were washed three times with 0.1 M
NaHCO3, rinsed with acetone, and dried for 10 min. Scintillation counting
was performed using a Perkin-Elmer Tri-Carb 2910 TR liquid scintillation
analyzer. Appropriate negative controls were used for background cor-
rection. For PRC2 assays, similar reaction conditions were used except
with 20 nM enzyme and 20 μM H3K27me3 peptide. Reaction mixtures
were resolved by polyacrylamide gel electrophoresis gel, transferred on
nitrocellulose membrane, and probed with antibodies for immunoblot-
ting. For sequential HMT assays, 300 nM nucleosome substrates were
incubated with 40 nM SETD2 and 50 μM cSAM at 30 °C for 3 h. An ad-
ditional 40 nM SETD2 was added to the reaction for 12 h. Reaction
products were incubated with 20 nM rPRC2, 20 nM rJarid2, 20 μM
H3K27me3 peptide, and 50 μM cSAM for 3 h at 30 °C, followed by
immunoblotting.

ChIP-Seq Analysis. ChIP-Seq data were analyzed as previously described (10,
47). Briefly, reads that passed quality score were aligned to mouse mm9 and
reference genomes (dm6 or hg19) using bowtie1 (parameters: -q -v 2 -m 2 -a
-best -strata). Sample normalization factor was determined as 106/(reads
mapped to reference genome) or reads per kilobase per million (RPKM)
factor = 106/total aligned reads. H3K27me3 data were normalized by me-
dian normalization using RPKM normalized intensities at H3K27me3
peaks. Peaks were determined using Mosaics-HMM (broad peaks) for H3.3,
H3K36me3, and H3K27me3; and Mosaics for K27ac ChIP to determine
sharp peaks (51). Input samples were used to estimate background during
peak calling. Active enhancers were defined as H3K27ac peaks excluded
from the transcription start site (TSS) (5 kb upstream, 2 kb downstream).
Bigwig files and average profiles were generated using Deeptools and
visualized using the Integrative Genome Browser (IGV). Bigwig files, bed
files containing peaks, etc., are deposited at Gene Expression Omnibus
(GEO). Statistical analysis and graphs were generated using R. Enhancer-
gene association was determined using GREAT (52, 53). ChIP-Seq results
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were also validated through correlations from previously published studies
from several laboratories such as anticorrelation between H3K27me3 and
H3K36me3, enrichment of H3.3 at enhancers, enrichment of H3K36me3 at
gene bodies, etc. ChIP-Seq results were validated by qPCR at select
enhancers.

Tumor Xenograft Study A: s.c. Injection. Cells were prepared in single cell
suspension in phosphate-buffered saline 50% Matrigel, and a volume of
200 μL containing 1.2 to 1.5 × 106 cells was injected s.c. into the left flank
of the NOD scid gamma mice. Tumor formation was monitored weekly by
palpation starting at 4 wk postinjection. Tumor diameters were mea-
sured with digital calipers, and the tumor volume in mm3 was calculated.
Mice were killed when tumor volume reached ≥2,000 mm3 (maximum
size) and the tumors were collected for the following experiments. Pa-
rental C3H10T1/2 cells used in this study or expression of H3.1 did not
form tumors in vivo.
Intratibial (Orthotopic) Implantation. The NRG mouse leg cleaned with 70%
ethanol and a predrilled hole was created in the tibia plateau using a
25-gauge needle by rotating movements and 3 μL of PBS-20% Matrigel
containing 1.8 to 2 × 105 cells was injected down into the diaphysis of the
tibia with a Hamilton syringe (27-G needle). Tumor formation was moni-
tored weekly and tumor volume was measured with digital calipers, and
mice were killed when the tumor volume reached the maximum size.

Data Availability. The next-generation sequencing data generated in this
study are deposited at GEO database with accession nos. GSE133722 (54) and

GSE118785 (55). Published data used in this paper were downloaded from
GEO (accession no. GSE103559) (56).
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