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Suspensions of soft and highly deformable microgels can be
concentrated far more than suspensions of hard colloids, leading
to their unusual mechanical properties. Microgels can accommo-
date compression in suspensions in a variety of ways such as
interpenetration, deformation, and shrinking. Previous experi-
ments have offered insightful, but somewhat conflicting, accounts
of the behavior of individual microgels in compressed suspensions.
We develop a mesoscale computational model to probe the
behavior of compressed suspensions consisting of microgels with
different architectures at a variety of packing fractions and solvent
conditions. We find that microgels predominantly change shape
and mildly shrink above random close packing. Interpenetration is
only appreciable above space filling, remaining small relative to
the mean distance between cross-links. At even higher packing
fractions, microgels solely shrink. Remarkably, irrespective of the
single-microgel properties, and whether the suspension concentra-
tion is changed via changing the particle number density or the
swelling state of the particles, which can even result in colloidal
gelation, the mechanics of the suspension can be quantified in
terms of the single-microgel bulk modulus, which thus emerges
as the correct mechanical measure for these type of soft-
colloidal suspensions. Our results rationalize the many and varied
experimental results, providing insights into the relative importance
of effects defining the mechanics of suspensions comprising soft
particles.
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Microgel suspensions have diverse and rich mechanical be-
havior (1–10). Their unique character results from the soft

and responsive nature of the constituent microgel particles,
which are cross-linked polymer networks (11–14) with a typical
size between 50 nm and 10 μm (14, 15). The high particle
deformability ultimately results from the flexibility of the constit-
uent polymer chains (16, 17), although the distribution and con-
centration of cross-linkers (15), as well as the particle−particle
interactions (18, 19), can have considerable impact.
Microgels typically have a relatively low degree of cross-

linking and exhibit open structures with high porosity in their
swollen state (2, 4, 20, 21). Changes in network-solvent misci-
bility result in an osmotic pressure imbalance between the inside
and outside of the particles (22), which can lead to swelling or
deswelling, and an associated change in microgel volume
(23–25); variables like temperature, pH, and salt concentration
often enable controlling the swelling state of the particles (22,
26–29). Importantly, the resultant changes in volume and inter-
nal structure can yield discernable changes in the microgel me-
chanical properties, which can, in turn, drastically affect the
mechanical properties of the suspension. Furthermore, varia-
tions in the solvency induce attractive interactions not only be-
tween the chains within the microgel but also between the
microgel particles themselves (3).
Either at sufficiently high particle densities or in the presence

of interparticle attraction, microgels in contact can experience
different phenomena. One possibility is that the shape of the
microgels deviates from the initial spherical shape, due to com-
pression of peripheral polymer chains (5, 30). Alternatively,
microgel particles could interpenetrate with their neighbors (10,

31), and/or shrink, particularly at high particle densities (10, 30,
32). However, the instances where each of these effects domi-
nates and effectively controls the suspension behavior, and/or
whether they act with comparable importance, remains elusive,
in part due to the difficulties associated with experimentally
determining the degree of interpenetration and deformation of
individual microgels in a given suspension at high particle
number densities. There have been, however, attempts at this.
For example, atomic force microscopy measurements seem to
suggest that microgels experience important shape changes for
sufficiently concentrated suspensions, faceting in ways that are
reminiscent of droplet deformation in compressed emulsions (5,
7). Meanwhile, recent advances in high-resolution microscopy
enable experiments with dyed microgels indicating that micro-
gels first shrink, then interpenetrate/deform, to finally shrink
again (31). Additionally, there are studies indicating that
microgels mainly shrink with only mild deformation/interpen-
etration (30, 32).
In this paper, we shed light on these widespread behaviors,

using computational modeling. We thus scrutinize the behavior
of individual microgels at different particle number densities,
solvent conditions, and cross-link distributions and concentra-
tions. We further probe how these factors affect the macroscopic
mechanical properties of the suspension.

Simulation Details and In Silico Microgel Particles
We utilize dissipative particle dynamics (DPD), a Lagrangian
particle-based mesoscale method with soft pairwise potentials.
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Compared to traditional molecular dynamics, the accessible length
and time scales in DPD are much greater. In addition, momentum-
conserving pairwise forces reproduce hydrodynamics as described
by the Navier−Stokes equations (33–35). Prior works have suc-
cessfully applied DPD to model diverse polymer systems, including
polymer melts (36–38), polymer flows (33, 39, 40), polymeric sus-
pensions (41–44), and, of utmost importance for our goals in this
work, swelling kinetics and single-particle properties of different
microgel particles (20, 45).
In DPD, individual beads interact via three forces associated

with thermal fluctuations, viscous dissipation, and excluded vol-
ume (SI Appendix). The first two forces constitute a thermostat,
whereas the strength of the excluded volume force between
beads is used to control miscibility and is set by the magnitude of
the repulsion parameter a. Thus, changes in miscibility are in-
troduced by altering the repulsion between polymer and solvent
beads aP−S; low aP−S causes the polymer to swell, while high aP−S
leads to polymer collapse.
We assemble individual microgels from polymer chains con-

sisting of monomers interacting via bond, angle, and segmented
repulsive potentials with parameters as described previously (20)
(see also SI Appendix). The latter potential is required to prevent
chain crossings (46). We cross-link the chains in a microgel at
randomly distributed sites with either a uniform distribution or a
Gaussian distribution f (r) = (1= ̅̅̅̅̅̅̅̅̅̅

2πσ2
√ )e−0.5r2=σ2, with r the dis-

tance from the microgel center and σ the distribution width; we
take σ approximately equal to 1=3 of the microgel diameter.
Each cross-linking site is limited to a maximum of four
connections.
The selected cross-link distributions mimic the nearly uniform

(15) and decaying (18) distributions that have been achieved
experimentally, and that are known to affect interactions among
microgels in a suspension (18). We have chosen four different
microgel particles (see Table 1 and SI Appendix for more de-
tails). Two have uniformly distributed cross-links, as illustrated in
Fig. 1, Top Left (see also SI Appendix, Fig. S2), but different
average chain lengths; microgel I (Fig. 1A) has, on average, 12
beads per chain, whereas microgel II (Fig. 1B) has 20. While the
cross-link density of microgel II is smaller than that of microgel I,
their total polymer densities (number of monomers/swollen
volume; Table 1) are approximately the same. By keeping the
total polymer densities nearly constant, we can examine the ef-
fects of microgel structure on the suspension properties. The
other two microgels have a Gaussian distribution of cross-links,
as illustrated in the Fig. 1, Bottom Left, and therefore take on the
common core−shell structure most commonly found in experi-
ments (SI Appendix, Fig. S2). In these cases, the sparser cross-
link distribution results in a highly irregular periphery comprising
long dangling chains. Microgel III (Fig. 1C) has a 40% higher
monomer count than the other microgels and a chain length
distribution with a relatively narrow width (14% of the mean). In
contrast, microgel IV (Fig. 1D) has a monomer count similar to
microgels I and II, but the cross-link distribution is Gaussian.
Furthermore, microgel IV has a wide chain length distribution
(70% of the mean); it is thus much more open and branched

than microgel III. These abovementioned parameters were chosen
to cover a large portion of parameter space. While some of these
parameters are difficult to assess and quantify experimentally,
computationally, we can easily gauge the impact they have on
suspension behavior.
All microgels undergo a reversible volume phase transition

from a swollen to a deswollen state as we increase the repulsion
between polymer and solvent beads, aP−S, from 25 to 35; this
change represents a change in the Flory solvency parameter that
is used to characterize the microgel−solvent interaction in ex-
periments (20, 47). In our simulations, good solvent is repre-
sented by aP−S = 25 and results in swollen microgels, whereas
aP−S = 35 represents bad solvent and results in deswollen
microgels. The lower critical solution repulsive parameter of the
microgels is aP−S ≈ 29. The mechanic and kinetic properties of
our mesoscale computational microgels agree well with estab-
lished polymer physic theories (17, 48), indicating that our model
is capable of reproducing the behavior of experimental microgels
(SI Appendix).

Microgel Suspensions—Shrinking, Interpenetration, and
Shape Changes
We create our suspensions by introducing κ identical microgels
inside a cubic computational domain of volume Vsus subjected to
periodic boundary conditions. As can be seen from SI Appendix,
Tables S1 and S2, in most of the simulations, κ = 106. We de-
crease κ only in two cases, to reduce computational costs when
simulating dilute states. We define a generalized packing frac-
tion, ζ = κVeq=Vsus, in terms of the equilibrium microgel volume
at the given solvency, Veq, and the particle number density
ϱ = κ=Vsus. Note that, while rigid particles have a fixed volume,
the volume of a microgel can significantly change at high ϱ due to
compression, or at any particle density due to changes in solu-
bility. Hence, in general, ζ is different from the true volume
fraction, ϕ, which is defined in terms of the actual microgel
volume; indeed, ζ can take values above 1, while ϕ< 1. In dilute
conditions, however, ζ = ϕ. The suspensions created here are
idealized in some respects relative to experiments, since a single
microgel topology is used for each suspension; we thus do not
account for any polydispersity in particle mechanics, topology,
and/or size, which are likely present in experimental realizations.
However, this is done with the intent of isolating the impact of
single-microgel properties on the suspension behavior, which
would be difficult to do if particles with different properties
were included.
Once the suspensions are generated and equilibrated in dilute

state and in good solvent, we vary ζ by changing, quasistatically,
either Vsus, or Veq through changes in aP−S. We refer to these
distinct procedures for changing ζ as the volumetric or solvency
methods, respectively. In the first case, we progressively com-
press the suspension by eliminating the solvent; this mimics what
is done experimentally to concentrate suspensions by evaporat-
ing the solvent. In the second case, we initially follow an identical
approach and subsequently, also quasistatically, change aP−S.
Importantly, in this second case, the change in solvency also
affects microgel−microgel interactions.

Table 1. Structural parameters of microgels

Microgel
Cross-link
distribution

Number of
monomers

Number of
cross-
linkers

Average
beads

per chain

Swollen
volume
(Veq25)

Percent of cross-
linkers

by number
Mean cross-link

spacing

I, Fig. 1A Uniform 34,080 1,840 12 99,000 5.4 5.2
II, Fig. 1B Uniform 35,030 845 20 115,000 2.4 8.6
III, Fig. 1C Gaussian 48,236 2,903 11 135,000 6 4.9
IV, Fig. 1D Gaussian 34,674 1,632 12 109,000 4.7 5.1
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Both the volumetric and solvency methods yield similar sus-
pension structure at ζ> 1, as illustrated in Fig. 2. However, the
suspension structures differ noticeably for ζ< 1. While, in the
volumetric method at low ζ, the suspension remains in good
solvent throughout and forms a colloidal fluid phase (Fig. 2A), in
the solvency method, low ζ-states correspond to poor solvent
conditions that lead to the formation of a colloidal gel (Fig. 2J).
To quantify the effects of packing, we first determine the

microgel volume using a surface mesh around each microgel (see
SI Appendix, Fig. S1 for an example) and then normalize it by the
swollen volume in a good solvent, aP−S = 25, measured in dilute
conditions, Veq25. We find V ≈ Veq25 for ζK 0.6, as shown in
Fig. 3A, since, in this range of ζ, the microgels are not in direct
contact and thus retain their equilibrium size and shape. For
0.6K ζK 1, the average particle volume decreases slowly as ζ

increases, and the particles begin to deform. For ζJ 1.5, we find
that V ∼ ζ−1 (see the solid line in Fig. 3A), indicating that the
microgels purely shrink at sufficiently high ζ, where the volume
of the compressed microgels is V ≈ Vsus=κ, implying
ζ ≈ Veq=V ∼ V−1. Note that this is observed for microgels with
both Gaussian and uniform cross-link distributions, and agrees
with experimental data (10, 32).
To evaluate the degree of microgel−microgel interpenetra-

tion, we sum up the volumes of surface meshes of individual
microgels and compare them to the volume occupied by the
microgel domain in the suspension, which is obtained by con-
structing a single mesh enclosing all microgel particles. This
quantifies the overlap volume, which we then use to evaluate the
average degree of microgel−microgel interpenetration. Note
that, for ζ> 1, the microgel domain volume coincides with Vsus.

Fig. 1. Simulation snapshots of swollen microgel particles. (Top) Microgels that have a uniform cross-link distribution, and (Bottom) microgels that have a
Gaussian cross-link distribution. (Left) Schematic illustrations of how the cross-link density changes with the distance from the microgel center. (Right)
Microgels I and II are shown in A and B, respectively, and have, on average, fewer dangling chains than microgels III and IV shown in C and D, respectively.
Microgels I, II, and IV have approximately the same number of monomers, whereas microgel III has ∼40% more monomers.

Fig. 2. Snapshots illustrating changes in microgel suspension for different ζ for the (A–D) volumetric and (E–J) solvency methods for microgel I. D and E
correspond to compression in good solvent aP−S = 25 and ζ = 4.3. (G, H) The lower critical solution repulsion parameter for the solvency method corresponds
to aP−S between 29 and 30. (D and J) The volumetric and solvency methods result in different suspension structure at low ζ states.
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We find, for the volumetric method, that the microgel penetra-
tion depth is nearly zero up to ζ ≈ 1, and gradually increases at
higher ζ, as shown in Fig. 3B, where we normalize the penetra-
tion depth by the average cross-link separation within the
microgel in dilute conditions. Note that, even at the highest
compression states considered in our simulations, particle in-
terpenetration remains much smaller than the average cross-link
separation. Importantly, we note that the cross-link distribution
and concentration do not appear to have a significant impact on
the degree of microgel interpenetration.
In contrast, the cross-link distribution has a noticeable effect

on the shape of the microgel particles in the suspension. We
quantify deviations from the spherical shape by monitoring the
ratio S between the surface area of the mesh of each individual
microgel and the corresponding mesh volume. For low ζ, when
the particles are in the dilute regime, S matches the values for a
standalone microgel, as expected (Fig. 3C). For 0.4K ζK 1,
however, the surface to volume ratio S appreciably decreases
with increasing ζ, particularly for microgel IV, which has
Gaussian-distributed cross-links and a sparse chain distribution;
this results from the retraction of peripheric chains, which re-
duces the overall surface area. The corresponding decrease in S
for the other microgels is smaller. This can be attributed to the
fact that these networks are more homogeneous and do not have
long dangling chains at the surface. The solid lines in Fig. 3C

show the expected value of S assuming that the microgel shape in
the dilute state is fixed and that the size changes affinely. These
lines approximately describe the behavior of the homogeneous
microgels I and II and deviate the most for the sparsest microgel
IV. As ζ increases further, the reduction in microgel volume due
to shrinking causes S to steadily increase. The deviations from
dilute shape are the largest around the minimum at ζ ≈ 1 for
microgels III and IV, which have a Gaussian cross-link distri-
bution.
We summarize our results above by considering two neigh-

boring microgel particles in the suspension and illustrating how
the volume, interpenetration, and shape change as ζ increases at
constant aP−S = 25. The microgels remain nearly spherical up to
random close packing ζ ≈ 0.64 (Fig. 4 A and B). In the range
0.64K ζK 1.5, the microgel particles lose their spherical shape
as they facet and deform, in agreement with experiments (31).
Meanwhile, interpenetration is negligible up to ζ ≈ 1 (Fig. 4 A–
C), and gradually increases for larger ζ, but, in all cases, remains
significantly smaller than the mean separation between cross-
links; this is also in agreement with experiments (10, 31).
Hence, interpenetration is limited by the mesh size of the
interacting microgels. For larger interpenetration to occur (be-
yond the mesh size), the network needs to be highly deformed
locally, which is energetically unfavorable (31). Shrinking hap-
pens above ζ ≈ 0.64, but becomes the sole behavior for ζJ 1.5.

Fig. 3. Volume, interpenetration, and deformation data for suspensions comprised of microgels I through IV for the volumetric and solvency methods. (A)
Average microgel volume V in the suspension as a function of ζ at a constant aP−S = 25. The solid black line represents the accessible volume per particle in the
suspension, Vsus=κ. Note that V is normalized with Veq25, which is the standalone particle volume in good solvent. (B) Radial penetration depth δ at a constant
aP−S = 25. Note that δ'0 for ζ < 1 and monotonically increases for ζ> 1. Note, also, that δ is normalized with the average cross-link separation δx−link. The
simulations show that, on average, δ is consistently much smaller than δx−link. (C) Surface area to volume ratio S for different microgel suspensions at a
constant aP−S = 25. The solid lines show how S would change if we assume that the shape for standalone microgels is preserved. In this case, changes in the
microgel shape are affine and volumetrically match the data shown by the open symbols. (D) Average microgel volume in the suspension V normalized with
Veq25 as a function of aP−S for the solvency method. The solid blue line shows the volume of microgel I in the absence of interpenetration for aP−S >29. For
aP−S < 29, we assume the microgel volume is fixed and equal to V = Vbox=κ, as shown by the dotted black line. (E) Radial penetration depth δ normalized with
δx−link for the solvency method. Microgel interpenetration is minimized near the gelation point at aP−S'29. For low aP−S, interpenetration increases with ζ.
Meanwhile, at high aP−S, interpenetration increases as the attraction between neighboring microgels increases. For suspension comprising microgel IV, δ'0 at
the gelation point where the initial packing fraction ζ0 is such that the gelation point ζ is below space filling. (F) Surface area to volume ratio S for different
microgel suspensions for the solvency method. Markers show S for microgel particles in the suspension. The solid lines show S for standalone microgel
particles.
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In this range, interpenetration slightly increases while neigh-
bor−neighbor contacts become essentially independent of ζ,
causing the microgel shape to remain nearly unchanged
(Fig. 4 C–F); the microgels shrink according to V ∼ ζ−1 to ac-
commodate for the changes in suspension volume, consistent
with experiment (10, 32).

Microgel Suspensions—Changes Induced via the Solvency
Method
When, instead of the volumetric method, we use the solvency
method to change ζ, the behavior of the suspension is distinctly
different. We find that, when interparticle interactions become
attractive, they induce the formation of a colloidal gel; this
happens for aP−S J 29, as shown in Fig. 2 E–J, and is consistent
with experiments (49). As indicated above and in SI Appendix, we
start with an equilibrated suspension in a dilute state in good
solvent and increase ζ quasistatically until the suspension is in a
highly packed state ζ0. From this ζ0 state, we then quasistatically
increase aP−S while keeping Vsus constant. As aP−S increases, the
microgel particles in the suspension deswell, decreasing their
equilibrium volume Veq, which, in turn, decreases ζ. As aP−S in-
creases, the particles also experience an effective attraction to
other microgels, leading to colloidal gel formation. Each time
the solvency is varied, we monitor the pressure and assume the
system has equilibrated once it is constant in time. We tested
different initial dilute states and found that they produce sta-
tistically equivalent colloidal gel states at aP−S = 35. We consider
ζ0 ≈ 4.2 for all microgels, but also perform simulations with
microgel IV for suspensions with ζ0 ≈ 2.8. Note that, in either
case, the microgels are compressed and have a size which is
smaller than their dilute equilibrium size. We find that, for
ζ0 ≈ 4.2, the average microgel volume is constant down to
aP−S ≈ 29, where ζ ≈ 1. Thus, when microgels in the suspension
fill space, corresponding to ζ≥ 1, the particle volume does not
change with solvency and remains equal to approximately

V = Vsus=κ + Vpen, where Vpen <Vsus=κ is the average penetration
volume per microgel. Once aP−S J 29, κVeq <Vsus, and the
microgel volume V is no longer constrained by Vsus; in this sit-
uation, the microgels deswell. Note that the behavior largely
depends on ζ0 and is identical for microgels with uniform and
Gaussian-distributed cross-links (see ζ0 ≈ 4.2 data in Fig. 3D).
Decreasing ζ0 increases V for ζ≥ 1, since Vsus increases. For the
sparsest microgel IV, when ζ0 ≈ 2.8, we observe a slight desw-
elling before aP−S ≈ 29. For this case, the gelation point,
aP−S ≈ 29, corresponds to ζ ≈ 0.8; the microgels are thus not
constrained by Vsus and can change their volume slightly before
reaching the gelation point. Hence, increasing ζ0 results in a
sharper microgel volume change at the gelation point.
To understand the change in microgel volume as the solvent

quality decreases, we compare our results with data for a
single isolated microgel I equilibrated at identical solvent
conditions; this is shown in Fig. 3D with the solid blue line. In
this case, for ζ> 1, corresponding to aP−S < 29, we set the single
particle volume to Vsus=κ (dotted black line in Fig. 3D), while,
for ζ< 1, corresponding to aP−S > 29, we plot Veq (solid blue
line in Fig. 3D). Given that, for a single isolated microgel, the
volume changes roughly 10-fold (SI Appendix, Fig. S4), we
expect V=Veq ≈ 0.1 in a poor solvent (aP−S ≈ 35), as we,
indeed, observe.
Interestingly, we find that, for aP−S > 29, microgels in the

suspension have larger volumes than isolated microgels in the
same solvent conditions. To understand this, we examine
microgel interpenetration and compute the penetration length δ
between neighboring microgel particles. We find that, as aP−S
increases and ζ decreases, δ also decreases (Fig. 3E). However,
after the gelation point, as aP−S continues to increase, the trend
reverses, and δ is found to increase, indicating that microgels,
which were originally entangled, remain entangled at lower ζ. As
a result of this interpenetration, microgels in the suspension can
acquire larger volumes. This explains the difference in volume

Fig. 4. Representative simulation snapshots of a pair of microgel neighbors for the (A–F) volumetric and (G–I) solvency methods. (A, B) Microgels are nearly
spherical for ζ below random close packing ζK0.64. (C) Microgels begin to deform due to contact with neighboring microgels above close packing. (D–F) As ζ
continues to increase, the microgels shrink to accommodate the change in volume. Interpenetration between microgels occurs only for ζ > 1. (G–I) Microgels
below the gelation point; as aP−S increases, the microgel volume remains nearly constant, since ζ is always larger than 1 and Vsus is constant. (I) Near the
gelation point, microgel interpenetration decreases slightly. (J–L) As aP−S increases above the gelation point, the microgels shrink, while interpenetration
slightly increases. The snapshots are shown for suspensions comprising microgel I. The red and yellow outlines are guides to the eye aimed at illustrating, in
simplistic terms, how the shape and overlap between microgels evolve in both the volumetric and solvency methods.
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between isolated microgels and microgels in the suspension. For
suspensions comprising microgel IV with ζ0 = 2.8, gelation oc-
curs at ζ ≈ 0.8, which is below 1; hence, in this case, δ is essen-
tially zero at the gelation point. As ζ decreases below 1, entropic
forces cause microgels to disentangle so that they can better
explore their accessible configuration space. When the gelation
occurs at ζ> 1, large entropic forces cannot be generated, as the
microgels are held in an out of equilibrium state. As a result, δ
remains nonzero throughout the entire volume phase transition.
These results suggest that interparticle attractions can dramati-
cally affect microgel interpenetration for ζ< 1. The data in
Fig. 3E also suggest that microgel interpenetration increases for
uniform cross-link distributions and higher cross-link densities.
We relate this to the greater compression of peripheric chains in
microgels with lower cross-link density that precedes and
subsequently decreases interpenetration.
Consistent with the effects caused by entanglement at high

aP−S, the surface-to-volume ratio S increases in the range
30< aP−S < 35 (Fig. 3F); the microgels thus become more
aspherical as aP−S increases in this range. The largest increase in
S occurs for microgel IV, which has the widest chain length
distribution, indicating that this network parameter can signifi-
cantly affect particle deformation. Interestingly, for suspensions
comprising microgel IV at both ζ0 ≈ 2.8 and ζ0 ≈ 4.2, we obtain
similar changes in S. In good solvent, when ζ is large, all sus-
pension data converge to nearly the same constant S, indicating
that all particles adopt similar shapes. In contrast, for standalone
microgels, decreasing aP−S in the range 25< aP−S < 28 slightly
increases S (Fig. 3F). In this case, the decrease in aP−S causes the
expansion of peripheral polymer chains, effectively increasing
the microgel surface area. This does not occur in dense sus-
pensions, as low values of aP−S correspond to high values of ζ,
which restricts the possible chain expansion. Importantly, the
observed behavior is in contrast to what is expected for a simple
sphere, for which S changes monotonously with size, since
S = 3=R. For standalone microgels in poor solvent (aP−S = 35),
the particles do assume a nearly spherical shape, as S ≈ 3=R. For
standalone microgels I, II, and IV, which have approximately the
same molecular weight, S is nearly identical. Meanwhile, for
microgel III, which has a higher molecular weight and is larger in
size, S takes a lower value at high aP−S. In poor solvent, microgels

in the suspension have a larger S, as they deform to maintain
contact with neighboring particles and minimize the contact with
the solvent.
Our results indicate that, at high ζ in good solvent (Fig. 4G–I),

the microgels maintain a nearly constant shape and volume, and
interpenetrate with their neighbors. Once aP−S increases past the
gelation point, however, the microgel and solvent become im-
miscible (Fig. 4J), and the microgels experience significant shape
changes. As aP−S increases further into the bad solvent regime,
the shape of the microgels remains nearly the same. The
microgel volume, however, decreases as aP−S increases. In con-
trast, interpenetration is maintained and, except at the gelation
point, remains essentially unchanged irrespective of ζ.

Mechanical Properties of the Suspensions
To characterize the mechanical properties of the suspensions, we
determine the bulk modulus K, which we measure by uniformly
compressing the suspension in the linear regime of the pressur-
e−volume relation (20). Increasing ζ at constant aP−S = 25,
corresponding to swollen microgels, causes K to increase, as
shown in Fig. 5A, and is consistent with experimental results (2).
We find that increasing the cross-link concentration leads to
slightly stiffer suspensions. This is more appreciable at higher
generalized volume fractions. In contrast, when ζ is changed via
the solvency method, K remains constant (Fig. 5B); this indicates
the mechanics is, in this case, controlled by the attraction leading
to gelation at high aP−S. Indeed, at low packing densities, K is
much larger for the colloidal gel than for the colloidal fluid in a
good solvent. Note also that the value of K for suspensions with
ζ0 ≈ 4.2 is nearly identical at all solvent conditions, indicating
that the cross-link distribution alone does not significantly im-
pact the mechanics of these suspensions. In contrast, K is smaller
for suspension IV with ζ0 ≈ 2.8, since, in this case, the particle
density is lower.
To draw a comparison to experimental data, we examine the

dimensionless parameter K=KP, where KP is the single-microgel
bulk modulus measured in the dilute state at the corresponding
aP−S (2, 20) and corresponding microgel volume in the suspen-
sion at ζ. Remarkably, despite the large differences in K between
the volumetric and solvency methods, normalizing K by KP (2,
20) causes the data to collapse onto a single master curve, as

Fig. 5. Bulk modulus K for suspensions comprising microgels with uniform (I and II) and Gaussian (III and IV) cross-link distributions for (A) the volumetric
method and (B) the solvency method. (C) Normalizing by the single-microgel bulk modulus Kp results in the collapse of all of the data into a master curve,
indicating that suspension mechanics is largely controlled by the bulk modulus of the constituent particles. The error bars show standard deviation for each
measurement.
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shown in Fig. 5C. This was experimentally observed only for the
volumetric compression of microgel suspensions with different
cross-link concentrations (2). Our simulations indicate that the
same scaling also applies when ζ is varied via the solvency method,
and that it holds irrespective of the cross-link distribution.
Recall that, for the volumetric method at low ζ, the suspension

is in a dilute colloidal fluid state (Fig. 2D) with K <KP; hence the
suspension is much more compressible than a single microgel
particle. As ζ increases up to roughly 1, the initially dilute
microgel suspension densifies, and K approaches KP (1, 50, 51).
For ζ> 1, the microgel particles completely fill space, and
K ≈ KP; the normalized bulk modulus then becomes relatively
constant with ζ. Since, at high ζ, microgels accommodate the
change in volume by shrinking, the key parameter which deter-
mines how much the microgels can shrink is KP. Normalization
of K by KP then results in the observed flat curve for ζ> 1. Note,
however, that, in this range, there is some spread in the data
corresponding to microgels I through IV. This could potentially
be attributed to the fact that the microgel shape in dense
suspensions does not perfectly map onto the shape in dilute
suspension, hence preventing an accurate estimate of the single-
particle bulk modulus. Similar spread has been observed in ex-
periments (2). The spread, however, does not preclude us from
concluding that the single-particle bulk modulus is an essential
parameter in determining the suspension mechanics.
In contrast, in the solvency method at low ζ, microgels form a

colloidal gel. As the solvency shifts toward good solvent, the
normalized bulk modulus increases. This does not occur due to
the stiffening of the suspension per se (Fig. 5B), but rather due to
the softening of standalone microgels (KP) with increasing ζ.
Remarkably, the ratio K=KP is a universal measure of the me-
chanics of microgel suspensions. With this normalization, the
solvency method, which results in a strikingly different trend in K
compared to the volumetric method, shows essentially the same
behavior when plotted normalized by Kp. The result is insensitive
to the type of cross-link distribution within the microgel particles
and to how sparsely the chains at the periphery are distributed;
the individual properties enter through KP, which is then the
right measure for the suspension mechanics.

Conclusions
We have examined the behavior of microgel suspensions at dif-
ferent generalized packing fractions ζ. The suspensions comprise
identical microgels with either uniform or Gaussian cross-link
distributions. We have changed ζ either by changing the sus-
pension volume or by changing the microgel volume through the
monomer−solvent repulsion parameter aP−S.
When ζ is changed by varying the suspension volume, our

results show that, at low ζ, the suspension is in a colloidal fluid
state where the volume of the microgels equals the volume of a
standalone microgel in good solvent. As ζ increases in the range
0.6K ζK 1, the microgels begin to deform and mildly shrink.
For ζJ 1.5, shrinking becomes dominant, and the average
microgel volume scales as V ∼ ζ−1. Interpenetration becomes
appreciable above space filling; however, the maximum radial
penetration depth is, at most, ∼ 20% of the average cross-link
separation. This indicates that interpenetration is likely limited
by the mesh size of the microgel network. Microgel shape
change is the dominant effect up to space filling. This is most

pronounced for suspensions comprising microgels with a Gaussian
cross-link distribution and a wide chain length distribution. For
ζ> 1, the microgel shape does not change significantly; increasing
ζ in this range leads to shrinking which decreases the average
microgel volume, and ultimately causes the surface-to-volume
ratio S to steadily increase.
When ζ is changed by increasing aP−S, we find that, compared

to isolated microgels, microgels in suspension can attain slightly
larger volumes as a result of interpenetration. This can be true
throughout the entire volume phase transition if the gelation
point occurs at ζJ 1. When the initial generalized volume
fraction ζ0 is such that the gelation point occurs at ζ< 1,
microgels disentangle, suppressing interpenetration, in order to
maximize configurational entropy. Once aP−S increases above the
gelation point, however, the effective attraction between parti-
cles drives the microgels to interpenetrate again. Interestingly,
the degree of penetration in bad and good solvent is similar,
indicating that interpenetration is, at most, equal to a fraction of
the microgel mesh size. Consistent with what we find in the
volumetric method, the maximum radial penetration depth in
the solvency method is, at most, ∼ 20% of the average cross-link
separation. Shape-wise, we find that, in bad solvent, microgels
with Gaussian cross-link distributions attain higher S values than
microgels with uniform cross-link distributions. This indicates
that microgels with Gaussian cross-link distributions experience
the largest deformations in bad solvent. In particular, microgels
with a wide chain length distribution exhibit the largest increases
in S, implying that a higher chain length variability can make
microgels more mechanically compliant. Indeed, recent studies
have shown that colloidal deformability has a strong impact on
the relaxation dynamics of soft colloids (52).
Finally, despite the structural difference between suspensions

subjected to interparticle attractions, which form colloidal gels at
low ζ, and suspensions comprising swollen microgels that are
solely subjected to interparticle repulsions, the mechanics of the
suspension is controlled by the single-microgel bulk modulus; the
ratio K=KP is thus universal.
Overall, our results pinpoint the relative importance among

shape change, interpenetration, and shrinking, and at what
conditions each of these processes is the most relevant feature of
the suspension, explaining experimental results within certain
ζ-ranges. Importantly, since compression is the key ingredient
distinguishing microgels from conventional hard colloids or
emulsion drops, the single-microgel bulk modulus is what ef-
fectively absorbs any significant difference between single
microgel particles, thus becoming an essential parameter for
understanding the mechanical properties of microgel suspen-
sions. Our work opens the door to future studies aimed at un-
derstanding the effects of microgel polydispersity on microgel
deformation, interpenetration, and mechanics.

Data Availability. All data in this study are included in the article
and SI Appendix.
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