Skip to main content
. 2021 Feb 18;7:e348. doi: 10.7717/peerj-cs.348

Table 2. The multi-class prediction scores for the Herlev and SIPaKMeD Cervical Cancer datasets under evaluation criteria, that is, Accuracy, Precision, Recall, F-Beta, and Kappa Score.

Multi-class classification Convolution Neural Network used the K-fold cross-validation techniques, which showed a substantial increase in scores. The EfficientNet-B3 in consultation with Transfer Learning and Progressive resizing generated Benchmark scores for Whole-Slide images of the SIPakMeD dataset.

Model K-Fold CV Accuracy (%) Precision (%) Recall (%) F-Beta (%) Kappa Score (%)
Herlev
VGG19 5-Fold 85.18 ± 6.90 88.22 ± 4.66 87.24 ± 7.00 87.20 ± 6.76 91.26 ± 5.40
ResNet-34 5-Fold 91.94 ± 8.73 93.36 ± 7.41 92.81 ± 8.43 92.86 ± 8.28 95.31 ± 5.05
ResNet-101 5-Fold 93.14 ± 8.78 94.56 ± 7.01 93.98 ± 8.08 94.05 ± 7.93 95.57 ± 5.55
EfficientNetB3 5-Fold 91.40 ± 10.25 92.74 ± 8.63 92.20 ± 9.36 92.19 ± 9.36 92.99 ± 8.04
EfficientNetB4 5-Fold 93.03 ± 8.95 94.31 ± 7.31 94.27 ± 7.62 94.25 ± 7.58 96.40 ± 4.51
EfficientNetB5 5-Fold 92.16 ± 9.25 93.19 ± 9.13 93.21 ± 8.23 93.12 ± 8.28 95.29 ± 4.63
SIPaKMeD
VGG19 5-Fold 98.65 ± 0.57 98.79 ± 0.64 98.44 ± 0.48 98.90 ± 0.48 99.09 ± 0.41
ResNet-34 3-Fold 96.56 ± 0.13 97.19 ± 0.29 97.27 ± 0.17 97.22 ± 0.14 98.19 ± 0.13
ResNet-101 5-Fold 98.55 ± 1.11 98.57 ± 1.26 98.70 ± 0.88 98.65 ± 0.97 98.07 ± 1.47
EfficientNetB3 3-Fold 97.81 ± 0.10 98.09 ± 0.10 98.23 ± 0.23 98.24 ± 0.21 98.58 ± 0.15
EfficientNetB3 5-Fold 99.27 ± 0.74 99.36 ± 0.69 99.43 ± 0.61 99.41 ± 0.63 99.54 ± 0.60
EfficientNetB3 5-Fold 96.39 ± 1.85 96.49 ± 1.42 97.02 ± 1.59 96.88 ± 1.56 97.37 ± 1.12
EfficientNetB3 5-Fold 99.70 ± 1.07 99.70 ± 1.03 99.72 ± 0.87 99.63 ± 0.88 99.31 ± 0.78