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ABSTRACT

In recent times, technologies such as machine learning and deep learning have played
a vital role in providing assistive solutions to a medical domain’s challenges.

They also improve predictive accuracy for early and timely disease detection using
medical imaging and audio analysis. Due to the scarcity of trained human resources,
medical practitioners are welcoming such technology assistance as it provides a
helping hand to them in coping with more patients. Apart from critical health
diseases such as cancer and diabetes, the impact of respiratory diseases is also
gradually on the rise and is becoming life-threatening for society. The early diagnosis
and immediate treatment are crucial in respiratory diseases, and hence the audio of
the respiratory sounds is proving very beneficial along with chest X-rays. The
presented research work aims to apply Convolutional Neural Network based deep
learning methodologies to assist medical experts by providing a detailed and rigorous
analysis of the medical respiratory audio data for Chronic Obstructive Pulmonary
detection. In the conducted experiments, we have used a Librosa machine learning
library features such as MFCC, Mel-Spectrogram, Chroma, Chroma (Constant-Q)
and Chroma CENS. The presented system could also interpret the severity of the
disease identified, such as mild, moderate, or acute. The investigation results validate
the success of the proposed deep learning approach. The system classification
accuracy has been enhanced to an ICBHI score of 93%. Furthermore, in the
conducted experiments, we have applied K-fold Cross-Validation with ten splits to
optimize the performance of the presented deep learning approach.

Subjects Artificial Intelligence, Data Mining and Machine Learning, Natural Language and Speech
Keywords Deep learning, CNN based classification, Medical-assistive technology,
Respiratory sound analysis, Machine learning

INTRODUCTION

The healthcare sector is an independent and one of the most critical sectors compared to
various other industries. It is one of the most vital and essential sectors where people
expect the highest levels of diagnosis, treatment, and high quality of services in accordance
with the money they spend. Various medical equipment's images and audio could

have multiple limitations due to their subjectivity, clarity, and complexity. They may

be subjected to extensive variations due to a different analysis by different

How to cite this article Srivastava A, Jain S, Miranda R, Patil S, Pandya S, Kotecha K. 2021. Deep learning based respiratory sound analysis
for detection of chronic obstructive pulmonary disease. Peer] Comput. Sci. 7:¢369 DOI 10.7717/peerj-cs.369


http://dx.doi.org/10.7717/peerj-cs.369
mailto:shruti.�patil@�sitpune.�edu.�in
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.369
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

PeerJ Computer Science

interpreters/doctors (Rocha et al., 2019). Not too long ago, we relied purely on human
intelligence, ability and skillset to interpret and understand the enormous amount of
medical data generated by various equipment and machinery types. Chronic Obstructive
Pulmonary Disease (COPD) is a disease name used as an umbrella of a broad group of
lung diseases that block the airflow in and out of the lungs due to narrow air passages,
making it difficult to breathe. The lungs are unable to get enough oxygen and give out
unwanted carbon dioxide. Emphysema and chronic bronchitis are the two crucial
conditions contributing to COPD (Weese ¢ Lorenz, 2016). These two conditions usually
occur together and can vary in severity among COPD individuals. Bronchitis leads to
inflamed and narrowed airways (Khatri ¢» Tamil, 2018). Commonly known causes of
COPD include tobacco smoking, genetic disorder (alpha-1-antitrypsin deficiency), air
pollution, etc. Early or timely detection of COPD is still an area of development which has
not achieved 100% accuracy.

Traditionally used techniques by medical practitioners currently are (Liu et al., 2017):

1. Lung (pulmonary) function tests: in these tests, we check if the patient's lungs are
functioning well and deliver enough oxygen when the person breathes. The most
common test for this is called Spirometry. In Spirometry, the person breathes into a
device called Spirometer, and that device measures the amount of air the person exhaled.

2. Chest X-ray: the Chest X-Ray can reveal several lung diseases, and especially
Emphysema. Emphysema is a major cause of COPD.

3. CT scan: CT Scan is not commonly used but is used in extreme cases where the
detection with typical methods is impossible. A CT scan can show if the patient requires
any sort of surgery for COPD.

4. Arterial blood gas analysis: this analysis checks the amount of oxygen that increases in
the blood when a person breathes.

Limitations of currently used techniques:

1. Spirometry cannot be performed on patients with underlying heart problems or those
who have recently undergone heart surgery.

2. Breathlessness, nausea, and dizziness are some symptoms commonly seen after the tests.

3. CT Scans and X-Rays both risk the life of a patient by exposing the patients to radiation.

With so many limitations and the advent of artificial intelligence, various machine
learning and deep learning algorithms were examined, studied, and applied to see if
they could help provide timely and more accurate results while aiding the doctors in
detecting COPD. Detection of COPD using an appropriate algorithm is possible either by
images or by the respiratory organ’s internal audio.

RELATED WORK

The related work section describes automation methods and physical systems to ease the
detection of respiratory diseases. Physical devices like the Breath Monitoring System
(Radogna et al., 2019) propose a smart breath analysis device that can be used to detect
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COPD. A classifier based on combination of ANN and backpropagation based Multi-Layer
Perceptron algorithm to predict patients respiratory audio crucial event with certain
respiratory diseases, predominantly asthma and COPD, was examined (Khatri ¢ Tamil,
2018). Because ANN is a nonlinear method, its output is better than commonly used
classification or regression techniques. Further analysis can be performed along similar
lines by refining the classifier’s parameters or using specific machine learning techniques
such as deep learning. The precision and recall were 77.1% and 78.0% for the peak
event level, respectively, and those for the non-peak events were 83.9% and 83.2%.

The average machine performance is 81.0%. An articulate system for chronic illness

was proposed that offers an integrated platform for successful diagnosis and real-time
appraisal of patients’ health status with COPD disease (Bellos et al., 2014). A machine/
device is being put together to observe a patient’s condition in real-time. A hybridized
classifier was developed on a personalalized digital assistant consisting of a ml algorithms
such as SVM, random forest, and a predicate-based approach to include a more complex
classification scheme to classify a COPD series early and in real-time. The classification
quality obtained was calculated at 94%.

A computer-based approach to automatically interpret stethoscopic recorded
respiratory sounds, which has several possible use cases such as telemedicine and self-
screening, has also been proposed (Liu et al., 2017). One custom-built test tool collects
three forms of respiratory sounds from 60 patients. A deep model of Convolutional Neural
Networks that consisted of 6 convolution layers, three max-pooling layers, and three
wholly linked layers are deployed ahead. Via time-frequency transformation, 60 bands
of Log-scaled Mel-Frequency Spectral features were collected framewise which were
present in the dataset and segmented as model inputs in a size of 23 consecutive frames.
Finally, the developed model was evaluated with a new dataset of 12 subjects measured in
precision and recall to 5 respiratory physicians’ mean results.

A simple and cost-effective digital stethoscope to record respiratory sounds on a
monitor, which can be used on any unit, was proposed by Aykanat et al. (2017), using
which 17,930 lung sounds were recorded from 1,630 subjects. The study used two forms
of machine learning algorithms: Mel frequency cepstral coefficient features in the
Convolutional Neural Network (CNN) and SVM along with spectrogram images. While
the usage of MFCC functionality for an SVM algorithm is a widely agreed approach for
audio classification, the patrons used its tests to assess the CNN algorithm performance.
With each CNN and SVM algorithm, four data sets were prepared for classification of
respiratory audio: safe versus unhealthy; rale, rhonchus, and standard classification of
speech; singular classification of respiratory speech form; and classification of the audio
form of all sound forms. Experimental accuracy findings were 86% CNN, 86% SVM,
76% CNN, 75% SVM, 80% CNN, 80% SVM and 62% CNN, 62% SVM respectively.
Consequently, it was found that spectrogram picture classification works well with both
the CNN and the SVM algorithms. Given a vast proportion of input, CNN and SVM
algorithms can correctly identify and pre-determine COPD through respiratory audio.
In research, for the classification of spirometry results, ANFIS, MANFIS, and CANFIS
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models with different membership functions were employed (Asaithambi, Manoharan ¢
Subramanian, 2012). ANFIS algorithm achieves better recognition accuracy compared
to the neural network approach previously employed. This may be because ANFIS
incorporates neural networks’ learning capacities and the fuzzy inference system's logic
capacities. CANFIS achieves 97.5% higher classification accuracy relative to the standard
ANFIS and MANFIS, as observed. Chamberlain et al. (2016), focused on wheezes and
crackles (two most frequent lung sounds), and their algorithm achieved ROC curves
with AUCs of 0.86 and 0.74 for wheezes and crackles, respectively. Another research was
carried out in which the COPD disease dataset consisted of 155 samples which were
belonging to two distinct categories , classified into Class 1: COPD containing 55 samples
and Class 2: Standard containing 100 samples (Er ¢» Temurtas, 2008).

Results achieved with an two hidden layer based MLNN (95.33% accuracy) were
higher as compared to single hidden layer based MLNN system. A study conducted to
categorize data samples used a feed-forward NN architecture with a secret layer running
on the log sigmoid transfer feature (Asaithambi, Manoharan ¢ Subramanian, 2012).
This network had a range of plain, layer-organized neuron-like processing units. The
network testing was carried out with the error propagation backward. Neural networks
that operate radial bases are often focused on supervised learning. RBF networks can be used
effectively to model nonlinear data, as they can be trained in one-step instead of using a
repetitive method similar to Multiple Layer Perceptron. Radial base networks learn quickly.
The hidden layer outputs are combined linearly in response to an input vector to form
the network answer, which is interpreted with a desired solution to the output layer.

The weights are conditioned using a standardized linear system in a controlled manner.

Machine-learning techniques have tremendous potential to aid the early detection of
COPD exacerbations (Fernandez-Granero, Sanchez-Morillo ¢ Leon-Jimenez, 2018).
Prediction of exacerbations may reduce inevitable adverse consequences and minimize
the high costs associated with patients with COPD. Acute exacerbations are one of the
critical factors of declining qualities of a healthy life and accord to sustained obstructive
pulmonary disease (COPD) patients being hospitalized. The established model could
detect early searing COPD exacerbations 4.4 days before its initiation. For automatic
symptom-based exacerbation predictions, a decision tree forest classifier was trained and
validated with recorded data.Deep learning based algorithms such as CNN and LSTMS are
getting lots of attention in real life critical learning sytems (Bai et al., 2020).

THE NECESSITY OF A PROPOSED SYSTEM

With large datasets of respiratory audio sounds and spectrogram images, we can train
deep neural networks without providing lesion-based features to identify COPD condition
in patients who are having increased sensitivity and specificity. The main advantage of
using this computerized COPD detection system is uniformity in the model outcomes
(as a model predicts the same values everytime on a specific image), high sensitivity,
dynamic results generation and high specificity. Furthermore, as an algorithm may have
several operational points, the responsiveness and precision is possible to tailore to fit
different clinical conditions criteria, such as high sensitivity for a screening system.
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The conventional methods of COPD diagnosis were detection via a Spirometry test or
an Al-based system, which needed images to be fed as input to detect the diseases. In case
of any respiratory distress situation like a heart attack or asthma attack, reaching the
hospital and making the initial diagnosis via chest scan or x-ray is time-consuming,
expensive, and life-threatening. Also, the automated Al systems for image-based detection
require training the model on vast numbers of high-quality HD images of x-ray, which
is challenging to get each time. Instead, there is a requirement of a more straightforward
and less resource-intensive system, which can help medical healthcare providers quickly
make the initial diagnosis.

The system that we have proposed is a system that detects COPD based on respiratory
sounds. The sound produced by the body's internal organs is very different in case of a
heart attack, asthma, COPD, etc. Automated detecting such sounds to classify if a
person is susceptible to COPD is a too time-saving, self-alarming method for both the
patient and the doctor. The doctors can use the system for confirmed detection of COPD.
In contrast, this system’s future scope involves integration with smart devices and mics to
record people's sounds routinely and thus predict the possibility of a case of COPD.

Research Gaps in the Existing Literature
Difficulties faced during detection of COPD through audio samples:

1. The previous analysis methods, especially the non-CNNs based neural networks uses
highly complex analysis networks, which are very resource-intensive. This implies it
requires a high-end computational ability that can incur many infrastructure costs.

If there is no investment in the infrastructure, the disease's training and prediction
can take a very long time. Existing methods like manual diagnosis by a doctor also takes
a long time and several visits to the hospital for concluding if a patient has COPD or not.

2. The number of respiratory audio samples in many cases is quite unbalanced in
terms of the diseases. There is always a need to balance the dataset since any network
trained on unbalanced data is useful in predicting the disease, which had the highest
number of samples.

3. There is usually a lot of noise in the respiratory audio samples. It has to be taken care of
in many approaches. Table 1 showcases a summary of the existing research work that
has been carried out in the recent past for COPD disease prediction.

Key aspects of successful deep learning models

1. Selection of Dataset: collecting and managing a clean dataset is highly crucial as the
entire model is based on it. It is essential that the dataset used for training be
preprocessed with no discrepancies.

2. Selection of Algorithm: it is essential to understand the objective of the study. Various
algorithms can be tested to identify which ones yield results closer to achieving the goal.

3. Feature extraction techniques: this is also a vital task in building effective models. It proves
to be useful when good model accuracy is required along with optimized feature selection
which also helps in generation of redundant data during each data analysis cycle.
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Table 1 Existing work.

Year Author

Purpose

Techniques used

Accuracy

Features

Issues

2020 Du et al. (2020)

To detect COPD

using snapshots of

3D lung airway
tree and with the
help of deep CNN

2020 Ahmed et al. (2020) Classification of

2008 Manoharan,

Veezhinathan ¢
Ramakrishnan

(2008)

2008 Er & Temurtas

(2008)

COPD using CT
images and a 3D
Convolutional

Neural Network

Comparisons of two
artificial neural
networks based
on spirometric
pulmonary
function tests data

Detection of COPD
via utilizing two
MultiLayer NN
structures, one
having a two
hidden layer and
other having one
single hidden
layer.

2012 Amaral et al. (2012) To identify chronic

obstructive
pulmonary
disease using
applied machine
learning
algorithms and
forced oscillation
measurements

Classification by
colorful snapshot

Classification by
gray snapshot

Classification by
binary snapshot

Without Transfer
Learning

With Transfer
Learning

Back Propagation

Radial basis
function Neural
Network

MLNN with:

one hidden Layer +
Backpropagation
one hidden Layer +
Levenberg-
Marquardt

algorithm

two hidden layers +
Backpropagation
two hidden layers +
Levenberg-
Marquardt

algorithm

Worked on the
selection of
features for
various
classification
algorithms such as
linear bayesian ,
KNN, decision
trees, ANN, and
SVM

88.2%
88.6%

86.4%

Validation: 68.5%,
Test accuracy:
58.8%

Validation: 78.3%,
Test accuracy:
70%

96%
100%

93.14%

94.46%

95.43%

96.08%

KNN, SVM and
ANN were
found to be the
best with Se >
87%, Sp > 94%,

and AUC > 0.95.

Features from
Spirometry Tests

CT images from
two datasets
consisting of
inspiration scans
using soft kernel

Individual Features
from spirometry
test.

Individual Features
were used.

Small dataset

Includes only COPD and
healthy control patients

Utilizes the information of the
airway, but does not include
lung parenchyma, patterns of
LAA, air trapping, pulmonary
blood vessels, and medical
records in the deep CNN
model.

Validating the model with a
detailed comparison with
other methods on bigger and
balanced data sets, ideally
using k-fold cross-validation.

The correctness can be further
enhanced by adding more
input feature values
(spirometric) and a huge
database for training.

It was noticed that the neural
network with 2 hidden layers
was more preferable than with
1 hidden layer. However, they
have not checked for more
than 2 hidden layers that
could yield even better results.

Does not classify the severity of
the disease whether mild,
moderate or severe.
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Table 1 (continued)

Year Author Purpose Techniques used Accuracy Features Issues
2016 Chamberlain et al. ~ Classification of Denoising Auto 86% Wheeze 30-second audio None
(2016) lung sounds using  Encoder recordings from

a deep learning
algorithm (semi-
supervised) that
emphasizes
wheezes and
crackles.

74% Crackle

Two SVMS have
been trained in

11 different chest

locations were
used from the
patients.

Denoising
Autoencoder to
individually
identify wheezes
and identify
crackles
respectively.

2018 Altan et al. (2018)  Analysis of 3D- Deep Belief Accuracy: 95.84%, 120 lung sounds
space Networks Sensitivity: from smokers (12
quantization that 93.34% and channels x 5
originates with Specificity: subjects) and
successive three 93.65% COPD patients
data points in the (12 channels x 5
signal. subjects) were

used.

2012 Asaithambi, To classify Adaptive Neuro- No specific feature  Severity classification of
Manoharan & respiratory Fuzzy Inference selected respiratory abnormalities
Subramanian abnormalities System (ANFIS) not done
(2012) with the help of an Triangular 88.17%

Adaptive Fuzzy .
Trapezoidal 82.22%
Inference System
Gaussian 85.56%
Gbell 88.89%
Multiple ANFIS
Triangular 93.33%
Trapezoidal 96.67%
Gaussian 85.56%
Gbell 84.44%
Complex valued
ANFIS
Triangular 91.25%
Trapezoidal 90.82%
Gaussian 97.55%
Gbell. 82.50%
(Continued)
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Table 1 (continued)
Year Author

Purpose Techniques used

Accuracy

Features

Issues

2018 Fernandez-Granero,

Sanchez-Morillo
¢ Leon-Jimenez
(2018)

2018 Badnjevic, Gurbeta
& Custovic (2018)

2018 Altan, Kutlu &
Allahwardi (2019)

Early predictions on Decision Tree
symptom-based Classifier
COPD
exacerbations
using Artificial
Intelligence

Artificial Neural
Network + Fuzzy
Logic

Identification of
asthma and
chronic
obstructive
pulmonary
disease
automatically
using an Expert
Diagnostic System

Deep Learning for
COPD Detection
using Lung
Sounds

Deep Belief
Networks

Accuracy 87.8%,
Sensitivity 78.1%

Specificity 95.9%
Copd: 95.17%
Healthy: 98.7%

70.28%, 67.22%,
73.33% as
accuracy,
sensitivity and
specificity

Sequential Forward = 90.83%, 94.44%,

Feature Selection
applied to DBN

87.22% as
accuracy,
sensitivity and
specificity

Features were
extracted using a
discrete wavelet
transform. The
input dataset
contained 18
wavelet features.

Seven features from
symptom
questionnaire +
four features from
the result of SPIR
test

No specific feature
selected

Not large enough training data
and larger sample data needed
to get more accurate results to
determine the actual accuracy
of the model. Longer training
time on audio

Evaluation of the EDS was
conducted in a healthcare
center in Bosnia and
Herzegovina. However, it is
recommended to further test
in other healthcare
establishments in order to
further justify the EDS.

Results suffered from noise
presence. Overall also, the
accuracy, sensitivity and
specificity are less without
SEFS.

OVERVIEW OF THE PROPOSED SYSTEM

As shown in Fig. 1, the developed application can be described as a series of interconnected
processes across multiple layers. The user layer consists of the doctor taking the recording
of lung sounds. These recordings are then forwarded to the front-end layer, which is
the interface with which the doctor can upload the patients recording into the system.
The network layer provides connectivity and access to the back-end layer on the cloud.
Finally, the back-end layer consists of a feature extraction module and a classifier module
to analyze and provide results back to the front-end interface.

The classification process is broken into several stages. The audio sample is first
recorded and passed to the preprocessing module to transmute the data. The data
is normalized, and features from this altered data are extracted and given to the
augmentation module. Upon completion of the augmentation process, it is passed to the
convolutional neural network classified into either of the two categories: COPD and
non-COPD. This system can be used as an aid to the doctors who are diagonosing
respiratory diseases in patients. In case of severe COPD patients, it will help in early by
capturing the sound of breathing instead of waiting for the chest x-ray reports.
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Figure 2 Workflow of the proposed system. Full-size K&l DOT: 10.7717/peerj-cs.369/fig-2
Methodology

Figure 2 shows the overall training and testing methodology and is explained as given
below:

Data Acquisition: the lung sounds that are offered as input was recorded from
normal as well as abnormal male and female patients with various kinds of respiratory
dysfunctions such as: COPD, Asthma, lower and upper respiratory tract infection (LRTI,
URTI). Two research teams from Portugal and Greece created a database of respiratory
sounds from where 126 input recordings has been taken (ICBHI, 2017 Challenge).

The data samples include both respiratory sounds of healthy individuals as well as of
patients who were having the repiratory ailments. The patients span from all age
groups, including young children, adults, and senior citizens. The dataset consists of a
total of 5.5 h of recordings containing 6898 respiratory cycles, of which 1,864 contain
crackles, 886 contain wheezes and 506 contain both crackles and wheezes, in 920
annotated audio samples from 126 subjects. The cycles were annotated by respiratory
experts as including crackles, wheezes, a combination of them, or no adventitious
respiratory sounds. The recordings were collected using heterogeneous equipment and
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Table 2 Augmentation methods.

No. Augmentation technique Parameters

1 Loudness augmentation 0.6-1.4% of loudness

2 Mask augmentation Random areas masked

3 Shift augmentation Shifts random segments in random(left/right) directions
4 Speed augmentation Between 0.5x and 2x speed

their duration ranged from 10 s to 90 s. The chest locations from which the recordings
were acquired is also provided. Noise levels in some respiration cycles is high, which
simulate real life conditions.

Data Preprocessing: the dataset contained a lot of irregularities and unstructured data.
To normalize the data, we trimmed/padded the audio files to a length of 20 seconds using a
Python library Librosa (Librosa, 2020).

Feature Extraction: for the feature extraction, we calculated five features. The features
were Mel-Frequency Cepstral Coefficients (mfcc), melspectrogram (Mel-Spectrogram),
Chromagram calculated from the waveform/power spectrogram (chroma_stft), Constant-
Q Chromagram (chroma_cqt) and chroma_cens (Chroma Energy Normalized Variant
(CENS)). MFCCs are coefficients that collectively make up an mel-frequency cepstrum
(MFC). An MFC is a representation of the short-term power spectrum of a sound, based
on a linear cosine transform of a log power spectrogram on a non-linear mel scale of
frequency. These features represent phonemes (which are the distinct units of sound) as
the shape of the vocal tract (which is responsible for sound generation) is manifest in
them. This makes MFCC a great feature to consider for respiratory audio analysis. In order
to obtain the Mel-Spectrogram, we take samples of air pressure over time, map it from
the time domain to the frequency domain using the fast Fourier Transform and
we convert the freugnecy to a mel scale and the color dimension to the amplitude.

It represents short-term power spectrum of a sound. Chroma-based features (like the ones
we mentioned above) are also referred to as “pitch class profiles”, are a powerful set of
features for analysing music whose pitches can be categorized. Since the respiratory
sounds also vary quite distinctly in pitch, Chroma makes it a great feature for our user case.
CENS features are robust to dynamics, timbre, and articulation, making these commonly
used in audio matching and retrieval applications. We gave each of the features the “n”
value (like n_mfcc’s in mfcc and n_chroma bins in chroma features) as 40 to maintain
consistency across the features.

Augmentation: we used different audio augmentation methods on the samples to
increase the number of non-COPD samples since the number of COPD samples was
almost four times the number of non-COPD samples. We applied the following techniques
for the audio augmentation, as shown in Table 2.

CNN Structure: our model is a CNN developed using Keras and a Tensorflow back-end.
It is a sequential model comprising of Input Layer, Convolution 2D layers, DropOut
Layers, MaxPooling2D Layers and a Dense Layer. Feature detection is the main aim of a
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Table 3 CNN architecture.

Network architecture Output

Input layer (Image dimensions: 40 x 862 x 1)

Conv2D (16F, K2, ReLu) - MaxPooling2D (P2) - Dr 0.2 19 x 430 x 16
Conv2D (32F, K2, ReLu) - MaxPooling2D (P2) - Dr 0.2 9 x 214 x 32
Conv2D (64F, K2, ReLu) - MaxPooling2D (P2) - Dr 0.2 4 x 106 x 64
Conv2D (128F, K2, ReLu) - MaxPooling2D (P2) - Dr 0.2 1 x 52 x 128
GlobalAverage2D 128

Dense 2

convolution layers. It works by moving a filter window over the input and calculating
the multiplication of matrices which gets stored as a feature map. This process of feature
map generation is known as a convolution. Each convolutional layer has an associated
pooling layer of MaxPooling2D, with the final layer having GlobalAveragePooling2D type.
The task of reducing the model dimentionability is done by the pooling layer which is
achieved by optimizing the parameters and leads to less computation requirements.
This reduces the training time and chances of overfitting. For each window, the maximum
size and average window size is taken by Maxpooling and the Global Average Pooling type
for feeding into our dense output layer. The count of possible classification is decided
based on the two nodes (num_labels of the output layer). The activation of the output layer
is softmax. Softmax makes the output number as high as one such that the output can be
viewed as a probability.

The quantity of nodes in each layer is specified by the filter parameter. In a progressive
manner, the size of the individual layer increase from 16, 32, 64 to 128, while the kernel
size parameter defines the kernel window size, which is two resulting in a 2 x 2 filter
matrix. As shown in Table 3, an input shape will be provided to the first layer. The values of
input shape would be of (40, 862, 1) representing number of MFCC’s as 40, number of
frames as 862 considering padding into account, and the mono audio structure showed by
1. The features then go through the Convolution2D layer (16 filters, kernel size: 2, relu)
which passes on the data to the MaxPooling2D layer of (Pooling Size: 2). After this we set
a 20%dropout rate to avoid overfitting the data. After the dropout, the data goes to a
Convolution layer (32 filters, kernel size:2, relu), which again passes on the data to a
MaxPooling2D layers of (Pooling size: 2). Once again after a 20% dropout, there is a
Convolution2D layer (64 filters, kernel size: 2, relu), MaxPooling2D layer (Pooling size: 2)
and a dropout of 20%. The data then passes through another Convolution2D layer
(32 filters, kernel size:2, relu), MaxPooling2D layer (Pooling size: 2) and a dropout layer
(20%). ReLu is the activation function used for generation of activation map from
convolutional layer. Then finally we pass the remaining data to the Global AveragePooling2D
layer (128) to flatten the output and then finally pass it to a dense layer to classify it into
2 outputs, namely COPD and non-COPD.

It is observed that, the audio inputs generally have higher amount of noise as compared
to the image inputs. We have used the Adam optimization algorithm for optimizing
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Table 4 Comparative analysis of various optimizers on benchmark datasets Wierenga (2020).

Optimizers  Training accuracy (%) Training loss  Validation accuracy (%) Validation loss

MNIST

SGD 89.54 0.3798 90.27 0.3657
AdaGrad 91.06 0.3228 91.45 0.3167
RMSProp 99.37 0.0248 97.67 0.0813
Adam 99.56 0.0210 97.60 0.0790
CIFARI10

SGD 47.02 1.4931 46.03 1.5064
AdaGrad 48.56 1.4463 47.58 1.4537
RMSProp 85.65 0.4479 76.23 0.7176
Adam 92.46 0.2841 77.97 0.6477
IMDB Reviews

SGD 90.77 0.2766 87.43 0.3334
AdaGrad 90.75 0.2770 87.39 0.3341
RMSProp 90.79 0.2771 87.45 0.3338
Adam 90.86 0.2755 87.55 0.3326

our model as it is computationally efficient, requires less memory storage and gives a
better performance for noisy input values. Adam is a combination of stochastic

gradient descent and RMSprop algorithm, which provides an improved network weight
optimization logic that in turn also makes the process of hyper parameter tuning more
efficient (Kingma ¢» Ba, 2017). As compared to other existing optimers such as RMSprop,
SGD , ADAGrad, NAdam this algorithm provides a faster convergence along with an
optimised performance parameters. A comparative analysis of various optimizers on three
benchmarked database was refrerred and shown in the below given Table 4:

The model then makes its prediction based on which option has the highest likelihood.
The provided audio sample is split into two sets of data, training data and testing data.
Before training the model, the training data is run through a series of processes like
Normalization, Feature Extraction, and Augmentation. The model then stores the training
data with its modified features. The testing data, likewise, is run through a similar series
of processes. It uses the trained model created for CNN classification and prediction of
COPD. A spectrogram is useful in describing the signal in terms of time, frequency, and
magnitude. To define, a spectrogram is a 2D Representation of audio with time and
magnitude being the two dimensions, with a third dimension depicted by colors. Since
respiratory diseases are musical anomalies identified by proper auscultation techniques,
their presence also produces a different spectrogram. Our extracted features can be divided
into three main categories, namely Mel-Spectrograms, MFCC and Chromagram.

The vocal tract’s shape manifests itself in the short-time power spectrum envelope, and
the MFCC accurately represents this envelope. MFCC’s have been widely used in audio
classification since they were introduced. Chroma features, also known as pitch-class
features, are a powerful representation for an audio sample. The normal Chroma variant
(chroma_stft) typically indicates how much energy of each pitch class is present in the
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chroma_cqt - 162_1b2_LI_mc_AKGC417L.wav
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Figure 3 Chroma constant-Q time. X-axis: pitch class; y-axis: time.
Full-size k&l DOT: 10.7717/peerj-cs.369/fig-3
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Figure 4 MFCC representation. X-axis: MFCC coefficients; y-axis: time.
Full-size K&l DOT: 10.7717/peerj-cs.369/fig-4

signal. We have also used the Chromagram with a “Constant Q” transform (chroma_cqt).
The constant-Q transform transforms a data series from a time domain to a frequency
domain. The other variant, Chroma Energy Normalized Statistics (CENS) (chroma_cens),
is based on the idea that taking statistics over large windows smooths local deviations in
different audio characteristics (Librosa, 2019). Figures 3-7 shows the spectral
representations that were produced and considered for the analysis.

Device Configuration: all this was run on a machine with the configuration as listed below:

e Processor: Intel(R) Core(TM) i7-7700HQ CPU @ 2.80GHz
e GPU: Nvidia K80s, (24GB DDR5 Type)

e RAM: 36GB
e HDD: 250GB SSD, max sequential read speed: upto 550 MB/s, max sequential write

speed: upto 520 MB/s
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Figure 5 Chroma CENS representation. X-axis: pitch class; y-axis: time.
Full-size k4] DOT: 10.7717/peerj-cs.369/fig-5

Figure 6 Chroma STFT representation. X-axis: pitch class; y-axis: time.

Full-size 4] DOT: 10.7717/peerj-cs.369/fig-6
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Figure 7 Mel frequency spectrogram. Full-size K&l DOTI: 10.7717/peerj-cs.369/fig-7
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Table 5 Pre-augmentation metrics.

Feature Sensitivity Specificity ICBHI score
mfcc 0.98 0.56 0.77
melspectrogram 0.84 0.63 0.73
chroma_stft 0.92 0.28 0.60
chroma_cqt 0.99 0.06 0.53
chroma_cens 0.60 0.59 0.60
Sensifivity W Specificity WICBHI Score
0.98
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Figure 8 Pre-augmentation metrics graph.

Full-size K] DOT: 10.7717/peerj-cs.369/fig-8

This enabled us to extract individual features from the audio file within ~5 mins (for 920

samples). And it took around ~3 mins to train the model.

RESULTS AND DISCUSSIONS

Evaluation Criteria: The performance of the models was evaluated using individual metrics

like accuracy (on a train and test sets), Sensitivity (Se), Specificity (Sp) and ICBHI Score.

Pre-augmentation

The model performances before augmenting the dataset are shown in Table 5. It can be
observed that the sensitivity of mfcc and chroma_cqt is relatively high, but on the other

hand, their specificity is extremely poor. Furthermore, it also depicts that these models

are not capable to give excellent performance in such scenarios. The graphical

representation of pre and post augmentation performance is shown in Figs. 8 and 9.
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Figure 9 Post-augmentation metrics graph.
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Table 6 Post-augmentation metrics.

Feature Sensitivity Specificity ICBHI score
mfcc 0.92 0.92 0.92
melspectrogram 0.73 0.91 0.82
chroma_stft 0.84 0.34 0.59
chroma_cqt 0.66 0.69 0.67
chroma_cens 0.69 0.53 0.61

Post-augmentation

It is evident that the values after augmentation have improved significantly. The

Sensitivity and Specificity of mfcc were consistent, this time both being 0.92. None other

feature worked well after augmentation. Table 6 shows the post augmentation values for

various components.

Area Under Curve (AUC): the best AUC for the features before augmentation was
achieved by “mfcc” (0.86). Using Augmentation, AUC for “mfcc” increased to 0.89.

All other features performed poorly compared to “mfcc”. The actual values are shown in

Table 7. The graphical representation of pre and post augmentation performance is

shown in Fig. 10.

Receiving Operator Characteristic (ROC): as shown in Fig. 11, the feature “mfcc” had

the best ROC Curve before Augmentation. Using augmentation, it offered an increase of
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Table 7 AUC before and after Augmentation.

Feature AUC

Pre-augmentation Post augmentation
mfcc 0.86 0.89
melspectrogram 0.62 0.77
chroma_stft 0.59 0.62
chroma_cqt 0.71 0.65
chroma_cens 0.53 0.60

#AUC Post Augmentation ~ ® AUC Pre-Augmentation
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0.62
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melspectrogram
0.62
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Figure 10 Pre and post augmentation AUC performance.
Full-size K&l DOT: 10.7717/peerj-cs.369/fig-10

10% in the AUC. We can interpret two significant results after our analysis. We can

see that “mfcc” clearly outperformed every other feature in all the metrics. Consequently,
we have used the results of “mfcc” to compare against different state-of-the-art
methodologies.

When we compare our model (mfcc) with other models, as shown in Fig. 12 and
Table 8, we can see that the presented model has a competitive and balanced score in terms
of Sensitivity, Specificity. It outperforms the other models’ performance, which is
presented in terms of the ICBHI Score.
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Figure 12 Comparison of features with existing techniques.
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Table 8 Comparison of features with existing techniques.

Method Sensitivity Specificity ICBHI score

CNN (Perna, 2018) 0.78 0.97 0.88

LSTM (Perna & Tagarelli, 2019) 0.82 0.99 0.91

CNN-MOoE (Pham et al., 2020) 0.83 0.99 0.91

Our method (CNN [MFCC]) 0.93 0.93 0.93
CONCLUSION

In this study, we have proposed a simple and less resource-intensive CNN-based deep
learning assistive model, which can assist medical experts in detecting COPD using
respiratory sounds. In the conducted experiments, we have used a Librosa machine
learning library features such as MFCC, Mel-Spectrogram, Chroma, Chroma (Constant-
Q), and Chroma CENS to perform a detailed analysis of respiratory sounds (Librosa
Chroma feature overview, Accessed 20 May 2020) on the (ICBHI, 2017) Dataset. Based
on the conducted experiments, it has been found that “mfcc” has provided better accuracy
in detecting COPD compared to all other Librosa machine learning library features.

For the future scope, we can extend its functionalities to aid doctors in detecting various
other diseases such as probability of occurrence of heart attack/cardiac arrest based on
the heart beats sounds, detection of Asthma based on lung sounds etc. We can also
enhance the current system to detect the severity of the disease. We can also apply
different data augmentation techniques to improve its performance. Our system can be
combined with a Breath Monitoring System (Radogna et al., 2019) to make the process of
detecting COPD even easier. Also, making this system attack resistant and more privacy
preserved would be of utmost importance (Shaikh ¢ Patil, 2018; Patil, Shashank ¢
Deepali, 2020).
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APPENDIX

List of Used Terminologies

CNN Convolutional Neural Network ~ CANFIS Complex-Valued Adaptive Neuro-
Fuzzy Inference System
COPD Chronic Obstructive Pulmonary ROC Receiving Operator Characteristic
Disease
ANN Artificial Neural Network AUC Area Under Curve
SVM Support Vector Machines MLNN Multi-Layer Neural Network
ANFEIS Adaptive Neuro-Fuzzy Inference BP Back Propagation
System

Multiple Adaptive Neuro-Fuzzy LM Structure Levenberg-Marquardt Structure
Inference System

MANTFIS

RBE Network Radial Basis Function Network ~ KNN
ReLU Rectified Linear Unit MFCC

K-Nearest Neighbors
Mel-Frequency Cepstral Coefficients
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