Table 2. The classification accuracy of the implemented machine learning-based classification algorithms.
Metrics | Data-1 | Data-2 | Data-3 | Data-4 | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
k3b | k6b | l1b | Mean ± SD | aa | al | av | aw | ay | Mean ± SD | A01 | A02 | A03 | A04 | A05 | A06 | A07 | A08 | A09 | Mean ± SD | ||
LDA | 95.8 | 82.8 | 36.3 | 66.7 | 61.93 ± 23.61 | 67.9 | 68.2 | 70.6 | 69.4 | 65.2 | 68.26 ± 2.01 | 93.6 | 87.1 | 90.8 | 81.4 | 61.4 | 64.1 | 56.3 | 86.2 | 82.2 | 78.12 ± 13.81 |
Naïve Bayes | 97.1 | 91.1 | 73.3 | 94.2 | 86.20 ± 11.27 | 89.3 | 73.9 | 82.9 | 78.2 | 76.6 | 80.18 ± 6.05 | 90.2 | 85.6 | 89.1 | 83.2 | 58.4 | 60.2 | 47.4 | 88.4 | 79.6 | 75.78 ± 16.05 |
SVM | 98.1 | 91.4 | 57.5 | 82.1 | 77 ± 17.51 | 93.6 | 90.4 | 88.4 | 89.4 | 86.4 | 89.64 ± 2.66 | 96.8 | 91.2 | 93.4 | 88.4 | 64.6 | 78.6 | 62.4 | 90.6 | 84.2 | 83.35 ± 12.42 |
k-NN | 97.5 | 88.1 | 57.9 | 86.3 | 77.43 ± 16.94 | 89.6 | 88.6 | 86.8 | 90.2 | 87.6 | 88.56 ± 1.39 | 92.6 | 88.4 | 90.1 | 81.4 | 69.4 | 70.1 | 59.1 | 79.8 | 77.1 | 78.66 ± 11.02 |
RF | 96.4 | 86.4 | 76.3 | 83.8 | 82.16 ± 5.24 | 91.8 | 92.2 | 89.4 | 88.6 | 86.2 | 89.64 ± 2.45 | 89.2 | 90.2 | 92.6 | 88.1 | 60.8 | 59.6 | 59.8 | 88.2 | 79.6 | 78.67 ± 14.39 |
ERS- k-NN | 99.21 | 98.33 | 83.33 | 97.92 | 93.19 ± 8.54 | 94.64 | 94.64 | 95.00 | 93.21 | 90.36 | 93.57 ± 1.9 | 98.96 | 97.57 | 97.57 | 93.75 | 80.21 | 88.54 | 71.18 | 94.79 | 90.28 | 90.32 ± 9.24 |