Skip to main content
. 2021 Mar 2;7:e374. doi: 10.7717/peerj-cs.374

Table 2. The classification accuracy of the implemented machine learning-based classification algorithms.

Metrics Data-1 Data-2 Data-3 Data-4
k3b k6b l1b Mean ± SD aa al av aw ay Mean ± SD A01 A02 A03 A04 A05 A06 A07 A08 A09 Mean ± SD
LDA 95.8 82.8 36.3 66.7 61.93 ± 23.61 67.9 68.2 70.6 69.4 65.2 68.26 ± 2.01 93.6 87.1 90.8 81.4 61.4 64.1 56.3 86.2 82.2 78.12 ± 13.81
Naïve Bayes 97.1 91.1 73.3 94.2 86.20 ± 11.27 89.3 73.9 82.9 78.2 76.6 80.18 ± 6.05 90.2 85.6 89.1 83.2 58.4 60.2 47.4 88.4 79.6 75.78 ± 16.05
SVM 98.1 91.4 57.5 82.1 77 ± 17.51 93.6 90.4 88.4 89.4 86.4 89.64 ± 2.66 96.8 91.2 93.4 88.4 64.6 78.6 62.4 90.6 84.2 83.35 ± 12.42
k-NN 97.5 88.1 57.9 86.3 77.43 ± 16.94 89.6 88.6 86.8 90.2 87.6 88.56 ± 1.39 92.6 88.4 90.1 81.4 69.4 70.1 59.1 79.8 77.1 78.66 ± 11.02
RF 96.4 86.4 76.3 83.8 82.16 ± 5.24 91.8 92.2 89.4 88.6 86.2 89.64 ± 2.45 89.2 90.2 92.6 88.1 60.8 59.6 59.8 88.2 79.6 78.67 ± 14.39
ERS- k-NN 99.21 98.33 83.33 97.92 93.19 ± 8.54 94.64 94.64 95.00 93.21 90.36 93.57 ± 1.9 98.96 97.57 97.57 93.75 80.21 88.54 71.18 94.79 90.28 90.32 ± 9.24