Skip to main content
. 2021 Feb 10;7:e364. doi: 10.7717/peerj-cs.364

Table 2. Characteristics of CCN used in the proposed framework.

CNN models Year Principal contribution Parameters Rate of error Depth Categorization Reference
VGGNet 2014
  • Homogeneous topology

  • Using fewer filters

138 M ImageNet: 7.3 19 Spatial Exploitation Simonyan & Zisserman (2014)
AlexNet 2012
  • More deep and broader than the LeNet

  • Using Relu, drop and overlap Pooling

  • NVIDIA GTX 580 GPU

60 M ImageNet: 16.4 8 Spatial Exploitation Krizhevsky, Sutskever & Hinton (2017)
ResNet 2016
  • Residual training

  • Identity object tracking skip connection

25.6 M
1.7 M
ImageNet: 3.6
CIFAR-10: 6.43
152
110
Depth and Multipath He et al. (2016)
GoogleNet 2015
  • Introduced principle of block

  • Divide the idea of transformation and fusion

4 M ImageNet: 6.7 22 Spatial Exploitation Szegedy et al. (2016)