Skip to main content
. 2021 Feb 10;7:e364. doi: 10.7717/peerj-cs.364

Algorithm 1. Two layer perceptual image fusion using deep learning.

Procedure: Fusion Schema using NSCT
Input X, Y are two CXR input image(s) and VGGNet is the pretrained VGG-16 network.
Output Z is the fuzed CXR image
Begin
 Xa, Xb decomposeByNSCT (X)
 Ya, Yb decomposeByNSCT (Y)
 Za DeepLearningFusionRule (Xa, Ya, VGGNet)
 Zb DeepLearningFusionRule (Xb, Yb, VGGNet)
 Z recomposeByNSCT(Za,Zb)
 saveImageFile(Z)
 [ ] evalautionMetrics(X, Y, Z)
 Print([ ])
End
Procedure Deep Learning Fusion Rule
Input A, B are two subband of CXR input image(s) and VGGNet is the pretrained VGG-16 network.
Output C is the fuzed subband of CXR image
Begin
Afeature extractFeatures(VGGNet, A)
AvecAfeature
ATCAvec/norm(Afeature)
 For each Bi in B subband CXR images
  Bifeature extractFeatures(VGGNet, Bi)
  BivecBifeature
  BiTCBvec/norm(Bfeature)
End
S,Vimg,denomzeros(B)
For each Bi in B subband CXR images
  SS+BiTC
  VimgVimg+Bivec
  denomdenom+Bivec
End
 For each Bi in B subband CXR images
  WBiTC/denom
 End
  Czeros(B)
 For each Wi in W
  CC+BiWi
 End
End