Skip to main content
. 2021 Feb 10;7:e386. doi: 10.7717/peerj-cs.386

Table 3. Classification results on VGG19 DCNN features. Best values are shown in bold.

Classifier Performance measures
Sensitivity (%) Specificity (%) FNR (%) Accuracy (%) F-score
Quadratic SVM 93.0 92.0 7 92.1 0.925
Linear SVM 88.8 88.1 11.11 88.2 0.885
Cubic SVM 92.0 92.0 8 91.9 0.920
Fine KNN 87.5 90.6 12.5 89.2 0.889
Medium KNN 93.0 91.6 7 90.4 0.924
Cubic KNN 93.0 91.6 7 90.4 0.924
Weighted KNN 91.0 91.0 9 90.9 0.910
Subspace discriminant 90.3 90.1 9.6 90.2 0.902
Ensemble subspace KNN 88.3 91.5 11.6 90.0 0.897