Table 6. Classification results on the fused Alexnet, VGG19, Inceptionv3 DCNN features after entropy based selection. Best values are shown in bold.
Classifier | Performance measures | ||||
---|---|---|---|---|---|
Sensitivity (%) | Specificity (%) | FNR (%) | Accuracy (%) | F-score | |
Cubic SVM | 98.2 | 97.5 | 2.3 | 97.6 | 0.979 |
Linear SVM | 95.16 | 91.7 | 4.8 | 93.5 | 0.935 |
Quadratic SVM | 96.50 | 95.5 | 3.4 | 96.0 | 0.960 |
Fine KNN | 93.5 | 94.0 | 6.4 | 93.8 | 0.937 |
Medium KNN | 96.7 | 90.68 | 3.1 | 93.8 | 0.939 |
Cubic KNN | 96.41 | 89.6 | 3.5 | 93.1 | 0.932 |
Weighted KNN | 96.31 | 89.2 | 3.3 | 93.1 | 0.930 |