Skip to main content
. 2021 Feb 10;7:e386. doi: 10.7717/peerj-cs.386

Table 8. Comparison of results achieved on the MIT-BIH dataset.

Reference Methods Accuracy (%)
Acharya et al. (2017) Custom 9-layer deep CNN 94.03
Ullah et al. (2020) 2D CNN model applied on FFT spectrograms 99.11
Jin et al. (2020) Domain Adaptive Residual Network
Li et al. (2020) Fully-connected neural networks as classifiers on handcraft features 89.25
Romdhane et al. (2020) Custom 1D CNN 98.41
Van Steenkiste, Van Loon & Crevecoeur (2020) Custom CNN optimized by Genetic Algorithm (GA) 97.7
Yang et al. (2021) Ensemble of mixed-kernel extreme learning machine-based random forest binary classifiers 98.1
This article Deep features from 3 deep networks and Cubic SVM 97.6